Formulation of Magneto-Responsive Hydrogels from Dually Cross-Linked Polysaccharides: Synthesis, Tuning and Evaluation of Rheological Properties

. 2022 Aug 25 ; 23 (17) : . [epub] 20220825

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36077030

Grantová podpora
Reg. 580 No. CZ.02.2.69/0.0/0.0/19 _073/0016941 the project OP RDE Junior Grants of TBU in Zlín
IGA/CPS/2022/001 Internal grant of TBU in Zlín funded from the resources of specific academic research
DKRVO (RP/CPS/2022/003), DKRVO (RP/CPS/2022/001) Ministry of Education, Youth and Sports of the Czech Republic

Smart hydrogels based on natural polymers present an opportunity to fabricate responsive scaffolds that provide an immediate and reversible reaction to a given stimulus. Modulation of mechanical characteristics is especially interesting in myocyte cultivation, and can be achieved by magnetically controlled stiffening. Here, hyaluronan hydrogels with carbonyl iron particles as a magnetic filler are prepared in a low-toxicity process. Desired mechanical behaviour is achieved using a combination of two cross-linking routes-dynamic Schiff base linkages and ionic cross-linking. We found that gelation time is greatly affected by polymer chain conformation. This factor can surpass the influence of the number of reactive sites, shortening gelation from 5 h to 20 min. Ionic cross-linking efficiency increased with the number of carboxyl groups and led to the storage modulus reaching 103 Pa compared to 101 Pa-102 Pa for gels cross-linked with only Schiff bases. Furthermore, the ability of magnetic particles to induce significant stiffening of the hydrogel through the magnetorheological effect is confirmed, as a 103-times higher storage modulus is achieved in an external magnetic field of 842 kA·m-1. Finally, cytotoxicity testing confirms the ability to produce hydrogels that provide over 75% relative cell viability. Therefore, dual cross-linked hyaluronan-based magneto-responsive hydrogels present a potential material for on-demand mechanically tunable scaffolds usable in myocyte cultivation.

Zobrazit více v PubMed

Vasile C., Pamfil D., Stoleru E., Baican M. New Developments in Medical Applications of Hybrid Hydrogels Containing Natural Polymers. Molecules. 2020;25:1539. doi: 10.3390/molecules25071539. PubMed DOI PMC

Zhang G., Wang Z., Han F., Jin G., Xu L., Xu H., Su H., Wang H., Le Y., Fu Y., et al. Mechano-regulation of vascular network formation without branches in 3D bioprinted cell-laden hydrogel constructs. Biotechnol. Bioeng. 2021;118:3787–3798. doi: 10.1002/bit.27854. PubMed DOI

Cui P., Qin P.P.L., Wang X., Chen X., Deng Y., Zhang X. Nanoengineered hydrogels as 3D biomimetic extracellular matrix with injectable and sustained delivery capability for cartilage regeneration. Bioact. Mater. 2022;19:487–498. doi: 10.1016/j.bioactmat.2022.03.032. PubMed DOI PMC

Dangi D., Mattoo M., Kumar V., Sharma P. Synthesis and characterization of galactomannan polymer hydrogel and sustained drug delivery. Carbohydr. Polym. Technol. Appl. 2022;4:100230. doi: 10.1016/j.carpta.2022.100230. DOI

Razali N.A.M., Lin W.C. Accelerating the excisional wound closure by using the patterned microstructural nanofibrous mats/gentamicin-loaded hydrogel composite scaffold. Mater. Today Bio. 2022;16:100347. doi: 10.1016/j.mtbio.2022.100347. PubMed DOI PMC

Huang X., Wang L., Shen Z., Ren J., Chen G., Li Q., Zhou Z. Super-Stretchable and Self-Healing hydrogel with a Three-Dimensional silver nanowires network structure for wearable sensor and electromagnetic interference shielding. Chem. Eng. J. 2022;446:137136. doi: 10.1016/j.cej.2022.137136. DOI

Yin X., Wu J., Zhao H., Zhou L., He T., Fan Y., Chen L., Wang K., He Y. A microgel-structured cellulose nanofibril coating with robust antifouling performance for highly efficient oil/water and immiscible organic solvent separation. Colloids Surfaces A Physicochem. Eng. Asp. 2022;647:128875. doi: 10.1016/j.colsurfa.2022.128875. DOI

Ren J., Li R., Wang X., Li M., Yang W. A superabsorbent hydrogel for removal of dyes from aqueous solution. J. Polym. Environ. 2022;30:3327–3339. doi: 10.1007/s10924-022-02434-0. DOI

Lu H., Li X., Yang H., Wu J., Zhang Y., Huang H. Preparation and properties of riboflavin-loaded sanxan microcapsules. Food Hydrocoll. 2022;129:107641. doi: 10.1016/j.foodhyd.2022.107641. DOI

Lopes P.M.P., Moldovan D., Moldovan M., Carpa R., Saroşi C., Păşcuţă P., Moldovan A.M., Fechete R., Popescu V. New Composite Hydrogel Based on Whey and Gelatin Crosslinked with Copper Sulphate. Materials. 2022;15:2611. doi: 10.3390/ma15072611. PubMed DOI PMC

Cvek M., Zahoranova A., Mrlik M., Sramkova P., Minarik A., Sedlacik M. Poly(2-oxazoline)-based magnetic hydrogels: Synthesis, performance and cytotoxicity. Colloids Surfaces B Biointerfaces. 2020;190:110912. doi: 10.1016/j.colsurfb.2020.110912. PubMed DOI

Zhang S.D., Zhai Y.C., Zhang Z.F. Study on Polyvinly-Alcohol(PVA)/ Iron Oxide Black(Fe3O4) and Polyvinly-Alcohol(PVA)/ Iron Oxide Red(Fe2O3) Magnetic Sensitive Hydrogel. Adv. Mater. Res. 2011;287–290:2032–2035. doi: 10.4028/www.scientific.net/AMR.287-290.2032. DOI

Bardajee G.R., Hooshyar Z. One-pot synthesis of biocompatible superparamagnetic iron oxide nanoparticles/hydrogel based on salep: Characterization and drug delivery. Carbohydr. Polym. 2014;101:741–751. doi: 10.1016/j.carbpol.2013.10.028. PubMed DOI

Alveroğlu E., Sözeri H., Kurtan U., Şenel M., Baykal A. Magnetic and spectroscopic properties of Polyacrylamide-CoFe2O4 magnetic hydrogel. J. Mol. Struct. 2013;1036:386–391. doi: 10.1016/j.molstruc.2012.12.009. DOI

Morillas J., de Vicente J. Magnetorheology: A review. Soft Matter. 2020;16:9614–9642. doi: 10.1039/D0SM01082K. PubMed DOI

Levy M., Luciani N., Alloyeau D., Elgrabli D., Deveaux V., Pechoux C., Chat S., Wang G., Vats N., Gendron F., et al. Long term in vivo biotransformation of iron oxide nanoparticles. Biomaterials. 2011;32:3988–3999. doi: 10.1016/j.biomaterials.2011.02.031. PubMed DOI

Jingli G., Haifei X., Yehua H., Wei D., Wei H., Chunyu W., Ning G., Haiyan X., Jimin C. The internalization pathway, metabolic fate and biological effect of superparamagnetic iron oxide nanoparticles in the macrophage-like RAW264.7 cell. Sci. China Life Sci. Vol. 2011;54:793–805. doi: 10.1007/s11427-011-4215-5. PubMed DOI

Mrlík M., Ilčíková M., Cvek M., Pavlínek V., Zahoranová A., Kroneková Z., Kasak P. Carbonyl iron coated with a sulfobetaine moiety as a biocompatible system and the magnetorheological performance of its silicone oil suspensions. RSC Adv. 2016;6:32823–32830. doi: 10.1039/C6RA03919G. DOI

Cvek M., Mrlík M., Ilčíková M., Mosnáček J., Babayan V., Kuceková Z., Humpolíček P., Pavlínek V. The chemical stability and cytotoxicity of carbonyl iron particles grafted with poly(glycidyl methacrylate) and the magnetorheological activity of their suspensions. RSC Adv. 2015;5:72816–72824. doi: 10.1039/C5RA11968E. DOI

Bossis G., Volkova O., Lacis S., Meunier A. Ferrofluids. Lecture Notes in Physics. Springer; Berlin, Germany: 2002. Magnetorheology: Fluids, Structures and Rheology. DOI

Ruiz-López J.A., Hidalgo-Alvarez R., de Vicente J. Towards a universal master curve in magnetorheology. Smart Mater. Struct. 2017;26:054001. doi: 10.1088/1361-665X/aa6648. DOI

Gila-Vilchez C., Bonhome-Espinosa A.B., Kuzhir P., Zubarev A., Duran J.D.G., Lopez-Lopez M.T. Rheology of magnetic alginate hydrogels. J. Rheol. 2018;62:1083–1096. doi: 10.1122/1.5028137. DOI

Bin L., Xu C., Wang S.D.X. Alignment of magnetic particles in hydrogel matrix: A novel anisotropic magnetic hydrogels for soft robotics. J. Intell. Mater. Syst. Struct. 2021;32:1432–1440. doi: 10.1177/1045389X20975500. DOI

Galindo-Gonzalez C., Gantz S., Ourry L., Mammeri F., Ammar-Merah S., Ponton A. Elaboration and Rheological Investigation of Magnetic Sensitive Nanocomposite Biopolymer Networks. Macromolecules. 2014;47:3136–3144. doi: 10.1021/ma402655g. DOI

Borin D., Stepanov G., Musikhin A., Zubarev A., Bakhtiiarov A., Storozhenko P. Magnetorheological Effect of Magnetoactive Elastomer with a Permalloy Filler. Polymers. 2020;12:2371. doi: 10.3390/polym12102371. PubMed DOI PMC

Rich J.P., McKinley G.H., Doyle P.S. Arrested Chain Growth During Magnetic Directed Particle Assembly in Yield Stress Matrix Fluids. Langmuir. 2012;28:3683–3689. doi: 10.1021/la204240f. PubMed DOI

Liu J., Flores G.A., Sheng R. In-vitro investigation of blood embolization in cancer treatment using magnetorheological fluids. J. Magn. Magn. Mater. 2001;225:209–217. doi: 10.1016/S0304-8853(00)01260-9. DOI

Zhang Y., Li D., Chen Y., Li Z. A Comparative Study of Ferrofluid Seal and Magnetorheological Fluid Seal. IEEE Trans. Magn. 2018;54:4601207. doi: 10.1109/TMAG.2018.2868298. DOI

Nardecchia S., Chocarro-Wrona C., Sánchez-Moreno P., Zambrano-Marín J.R., Marchal J.A., de Vicente J. Living magnetorheological composites: From the synthesis to the in vitro characterization. Smart Mater. Struct. 2021;30:065015. doi: 10.1088/1361-665X/abf5f0. DOI

Fang Y., Yang X., Lin Y., Shi J., Prominski A., Clayton C., Ostroff E., Tian B. Dissecting Biological and Synthetic Soft–Hard Interfaces for Tissue-Like Systems. Chem. Rev. 2022;122:5233–5276. doi: 10.1021/acs.chemrev.1c00365. PubMed DOI PMC

de Moraes Porto I.C.C. Polymerization. InTech; London, UK: 2012. Polymer Biocompatibility. DOI

Tibbitt M.W., Anseth K.S. Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol. Bioeng. 2009;103:655–663. doi: 10.1002/bit.22361. PubMed DOI PMC

Siglreitmeier M., Wu B., Kollmann T., Neubauer M., Nagy G., Schwahn D., Pipich V., Faivre D., Zahn D., Fery A., et al. Multifunctional layered magnetic composites. Beilstein J. Nanotechnol. 2015;6:134–148. doi: 10.3762/bjnano.6.13. PubMed DOI PMC

de Marco C., Alcântara C.C.J., Kim S., Briatico F., Kadioglu A., de Bernardis G., Chen X., Marano C., Nelson B.J., Pané S. Indirect 3D and 4D Printing of Soft Robotic Microstructures. Adv. Mater. Technol. 2019;4:1900332. doi: 10.1002/admt.201900332. DOI

Tognato R., Armiento A.R., Bonfrate V., Levato R., Malda J., Alini M., Eglin D., Giancane G., Serra T. A Stimuli-Responsive Nanocomposite for 3D Anisotropic Cell-Guidance and Magnetic Soft Robotics. Adv. Funct. Mater. 2019;29:1804647. doi: 10.1002/adfm.201804647. DOI

Löwik D.W.P.M., Shklyarevskiy I.O., Ruizendaal L., Christianen P.C.M., Maan J.C., van Hest J.C.M. A Highly Ordered Material from Magnetically Aligned Peptide Amphiphile Nanofiber Assemblies. Adv. Mater. 2007;19:1191–1195. doi: 10.1002/adma.200602295. DOI

Lopez-Lopez M.T., Rodriguez I.A., Rodriguez-Arco L., Carriel V., Bonhome-Espinosa A.B., Campos F., Zubarev A., Duran J.D.G. Synthesis, characterization and in vivo evaluation of biocompatible ferrogels. J. Magn. Magn. Mater. 2017;431:110–114. doi: 10.1016/j.jmmm.2016.08.053. DOI

Akama S., Ikeda J., Kawai M., Mitsumata T. A Feature in Magnetorheological Effect for Polysaccharide Magnetic Hydrogels. Chem. Lett. 2018;47:1240–1242. doi: 10.1246/cl.180511. DOI

Abrougui M.M., Lopez-Lopez M.T., Duran J.D.G. Mechanical properties of magnetic gels containing rod-like composite particles. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2019;377 doi: 10.1098/rsta.2018.0218. PubMed DOI PMC

Abrougui M.M., Srasra E., Lopez-Lopez M.T., Duran J.D.G. Rheology of magnetic colloids containing clusters of particle platelets and polymer nanofibres. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2020;378 doi: 10.1098/rsta.2019.0255. PubMed DOI PMC

Zhao X., Kim J., Cezar C.A., Huebsch N., Lee K., Bouhadir K., Mooney D.J. Active scaffolds for on-demand drug and cell delivery. Proc. Natl. Acad. Sci. USA. 2011;108:67–72. doi: 10.1073/pnas.1007862108. PubMed DOI PMC

Popa E., Santo V., Rodrigues M., Gomes M. Magnetically-Responsive Hydrogels for Modulation of Chondrogenic Commitment of Human Adipose-Derived Stem Cells. Polymers. 2016;8:28. doi: 10.3390/polym8020028. PubMed DOI PMC

Ikeda J., Takahashi D., Watanabe M., Kawai M., Mitsumata T. Particle Size in Secondary Particle and Magnetic Response for Carrageenan Magnetic Hydrogels. Gels. 2019;5:39. doi: 10.3390/gels5030039. PubMed DOI PMC

Amorim S., Reis C.A., Reis R.L., Pires R.A. Extracellular Matrix Mimics Using Hyaluronan-Based Biomaterials. Trends Biotechnol. 2021;39:90–104. doi: 10.1016/j.tibtech.2020.06.003. PubMed DOI

Jongprasitkul H., Turunen S., Parihar V.S., Annurakshita S., Kellomäki M. Photocross-linkable Methacrylated Polypeptides and Polysaccharides for Casting, Injecting, and 3D Fabrication. Biomacromolecules. 2021;22:481–493. doi: 10.1021/acs.biomac.0c01322. PubMed DOI

Teong B., Wu S.C., Chang C.M., Chen J.W., Chen H.T., Chen C.H., Chang J.K., Ho M.L. The stiffness of a crosslinked hyaluronan hydrogel affects its chondro-induction activity on hADSCs. J. Biomed. Mater. Res. Part B Appl. Biomater. 2018;106:808–816. doi: 10.1002/jbm.b.33881. PubMed DOI

Bobula T., Buffa R., Hermannová M., Kohutová L., Procházková P., Vágnerová H., Čepa M., Wolfová L., Židek O., Velebný V. A novel photopolymerizable derivative of hyaluronan for designed hydrogel formation. Carbohydr. Polym. 2017;161:277–285. doi: 10.1016/j.carbpol.2017.01.009. PubMed DOI

Staubli F., Stoddart M.J., D’Este M., Schwab A. Pre-culture of human mesenchymal stromal cells in spheroids facilitates chondrogenesis at a low total cell count upon embedding in biomaterials to generate cartilage microtissues. Acta Biomater. 2022;143:253–265. doi: 10.1016/j.actbio.2022.02.038. PubMed DOI

Santhanam S., Liang J., Baid R., Ravi N. Investigating thiol-modification on hyaluronan via carbodiimide chemistry using response surface methodology. J. Biomed. Mater. Res. Part A. 2015;103:2300–2308. doi: 10.1002/jbm.a.35366. PubMed DOI PMC

Köwitsch A., Niepel M.S., Michanetzis G.P.A., Missirlis Y.F., Groth T. Effect of Immobilized Thiolated Glycosaminoglycans on Fibronectin Adsorption and Behavior of Fibroblasts. Macromol. Biosci. 2016;16:381–394. doi: 10.1002/mabi.201500276. PubMed DOI

Barthold J.E., McCreery K.P., Martinez J., Bellerjeau C., Ding Y., Bryant S.J., Whiting G.L., Neu C.P. Particulate ECM biomaterial ink is 3D printed and naturally crosslinked to form structurally-layered and lubricated cartilage tissue mimics. Biofabrication. 2022;14:025021. doi: 10.1088/1758-5090/ac584c. PubMed DOI

Buffa R., Odstrčilová L., Šedová P., Basarabová I., Novotný J., Velebný V. Conjugates of modified hyaluronic acid with amino compounds for biomedical applications. Carbohydr. Polym. 2018;189:273–279. doi: 10.1016/j.carbpol.2018.02.048. PubMed DOI

Uman S., Dhand A., Burdick J.A. Recent advances in shear-thinning and self-healing hydrogels for biomedical applications. J. Appl. Polym. Sci. 2020;137:48668. doi: 10.1002/app.48668. DOI

Wang L.L., Highley C.B., Yeh Y.C., Galarraga J.H., Uman S., Burdick J.A. Three-dimensional extrusion bioprinting of single- and double-network hydrogels containing dynamic covalent crosslinks. J. Biomed. Mater. Res. Part A. 2018;106:865–875. doi: 10.1002/jbm.a.36323. PubMed DOI PMC

Shi W., Huang J., Fang R., Mingjie M. Imparting Functionality to the Hydrogel by Magnetic-Field-Induced Nano-assembly and Macro-response. Appl. Mater. Interfaces. 2020;12:5177–5194. doi: 10.1021/acsami.9b16770. PubMed DOI

Shi L., Zeng Y., Zhao Y., Yang B., Ossipov D., Tai C.W., Dai J.W., Xu C.G. Biocompatible Injectable Magnetic Hydrogel Formed by Dynamic Coordination Network. Appl. Mater. Interfaces. 2019;11:46233–46240. doi: 10.1021/acsami.9b17627. PubMed DOI

Zhang Y., Sun Y., Yang X., Hilbornand J., Heerschapand A., Ossipov D.A. Injectable in situ forming hybrid iron oxide-hyaluronic acid hydrogel for magnetic resonance imaging and drug delivery. Macromol. Biosci. 2014;14:1249–1259. doi: 10.1002/mabi.201400117. PubMed DOI

Tay A., Sohrabi A., Poole K., Seidlits S., Carlo D.D. A 3D magnetic hyaluronic acid hydrogel for magnetomechanical neuromodulation of primary dorsal root ganglion neurons. Adv. Mater. 2018;30:1800927. doi: 10.1002/adma.201800927. PubMed DOI

Barbucci R., Giani G., Fedi S., Bottari S., Casolaro M. Biohydrogels with magnetic nanoparticles as crosslinker: Characteristics and potential use for controlled antitumor drug-delivery. Acta Biomater. 2012;8:4244–4252. doi: 10.1016/j.actbio.2012.09.006. PubMed DOI

Tran K.A., Kraus E., Clark A.T., Bennett A., Pogoda K., Cheng X., Cebers A., Janmey P., Galie P.A. Dynamic Tuning of Viscoelastic Hydrogels with Carbonyl Iron Microparticles Reveals the Rapid Response of Cells to Three-Dimensional Substrate Mechanics. ACS Appl. Mater. Interfaces. 2021;13:20947–20959. doi: 10.1021/acsami.0c21868. PubMed DOI PMC

Koand E.S., Kimand C., Choi Y., Lee K.Y. 3D printing of self-healing ferrogel prepared from glycol chitosan, oxidized hyaluronate, and iron oxide nanoparticles. Carbohydr. Polym. 2020;245:116496. doi: 10.1016/j.carbpol.2020.116496. PubMed DOI

Choi Y., Kim C., Kim H.S., Moon C., Lee K.Y. 3D Printing of dynamic tissue scaffold by combining self-healing hydrogel and self-healing ferrogel. Colloids Surfaces B Biointerfaces. 2021;208:112108. doi: 10.1016/j.colsurfb.2021.112108. PubMed DOI

Mo C., Xiang L., Chen Y. Advances in Injectable and Self-healing Polysaccharide Hydrogel Based on the Schiff Base Reaction. Macromol. Rapid Commun. 2021;42:2100025. doi: 10.1002/marc.202100025. PubMed DOI

Townsend J.M., Beck C.E., Gehrke S.H., Berkland C.J., Detamore M.S. Flow behavior prior to crosslinking: The need for precursor rheology for placement of hydrogels in medical applications and for 3D bioprinting. Prog. Polym. Sci. 2019;91:126–140. doi: 10.1016/j.progpolymsci.2019.01.003. PubMed DOI PMC

Zuo X., Tang H., Zhu X., Zhang D., Gao W. Injectable magnetic hydrogels for self-regulating magnetic hyperthermia and drug release. Mod. Phys. Lett. B. 2021;35 doi: 10.1142/S0217984921501694. DOI

Jahanban-Esfahlan R., Derakhshankhah H., Haghshenas B., Massoumi B., Abbasian M., Jaymand M. A bio-inspired magnetic natural hydrogel containing gelatin and alginate as a drug delivery system for cancer chemotherapy. Int. J. Biol. Macromol. 2020;156:438–445. doi: 10.1016/j.ijbiomac.2020.04.074. PubMed DOI

Bulpitt P., Aeschlimann D. New strategy for chemical modification of hyaluronic acid: Preparation of functionalized derivatives and their use in the formation of novel biocompatible hydrogels. J. Biomed. Mater. Res. 1999;47:152–169. doi: 10.1002/(SICI)1097-4636(199911)47:2<152::AID-JBM5>3.0.CO;2-I. PubMed DOI

Maia J., Carvalho R.A., Coelho J.F.J., Simões P.N., Gil M.H. Insight on the periodate oxidation of dextran and its structural vicissitudes. Polymer. 2011;52:258–265. doi: 10.1016/j.polymer.2010.11.058. DOI

Nonsuwan P., Matsugami A., Hayashi F., Hyon S.H., Matsumura K. Controlling the degradation of an oxidized dextran-based hydrogel independent of the mechanical properties. Carbohydr. Polym. 2019;204:131–141. doi: 10.1016/j.carbpol.2018.09.081. PubMed DOI

Mendichi R., Soltes L., Schieroni A.G. Evaluation of Radius of Gyration and Intrinsic Viscosity Molar Mass Dependence and Stiffness of Hyaluronan. Biomacromolecules. 2004;4:1805–1810. doi: 10.1021/bm0342178. PubMed DOI

Hersloef A., Sundeloef L.O., Edsman K. Interaction between polyelectrolyte and surfactant of opposite charge: Hydrodynamic effects in the sodium hyaluronate/tetradecyltrimethylammonium bromide/sodium chloride/water system. J. Phys. Chem. 1992;96:2345–2348. doi: 10.1021/j100184a061. DOI

Kok C.M., Rudin A. Relationship between the hydrodynamic radius and the radius of gyration of a polymer in solution. Die Makromol. Chemie Rapid Commun. 1981;2:655–659. doi: 10.1002/marc.1981.030021102. DOI

Zhou H.X., Szabo A. Theory and simulation of the time-dependent rate coefficients of diffusion-influenced reactions. Biophys. J. 1996;71:2440–2457. doi: 10.1016/S0006-3495(96)79437-7. PubMed DOI PMC

Zellermann A.M., Bergmann D., Mayer C. Cation induced conformation changes in hyaluronate solution. Eur. Polym. J. 2013;49:70–79. doi: 10.1016/j.eurpolymj.2012.09.025. DOI

Xu C., Hung C., Cao Y., Liu H.H. Tunable Crosslinking, Reversible Phase Transition, and 3D Printing of Hyaluronic Acid Hydrogels via Dynamic Coordination of Innate Carboxyl Groups and Metallic Ions. ACS Appl. Bio Mater. 2021;4:2408–2428. doi: 10.1021/acsabm.0c01300. PubMed DOI

Radhakrishnan J., Subramanian A., Krishnan U.M., Sethuraman S. Injectable and 3D Bioprinted Polysaccharide Hydrogels: From Cartilage to Osteochondral Tissue Engineering. Biomacromolecules. 2017;18:1–26. doi: 10.1021/acs.biomac.6b01619. PubMed DOI

Chang C., Lue A., Zhang L. Effects of Crosslinking Methods on Structure and Properties of Cellulose/PVA Hydrogels. Macromol. Chem. Phys. 2008;209:1266–1273. doi: 10.1002/macp.200800161. DOI

Radulescu D.M., Neacsu I.A., Grumezescu A.M., Andronescu E. New Insights of Scaffolds Based on Hydrogels in Tissue Engineering. Polymers. 2022;14:799. doi: 10.3390/polym14040799. PubMed DOI PMC

Hölzl K., Lin S., Tytgat L., Vlierberghe S.V., Gu L., Ovsianikov A. Bioink properties before, during and after 3D bioprinting. Biofabrication. 2016;8:032002. doi: 10.1088/1758-5090/8/3/032002. PubMed DOI

Wang B., Moura A.G., Chen J., Erturk A., Hu Y. Characterization of hydrogel structural damping. Extrem. Mech. 2020;40:100841. doi: 10.1016/j.eml.2020.100841. DOI

LoPachin R.M., Gavin T. Molecular Mechanisms of Aldehyde Toxicity: A Chemical Perspective. Chem. Res. Toxicol. 2014;27:1081–1091. doi: 10.1021/tx5001046. PubMed DOI PMC

Gřundělová L., Gregorova A., Mráček A., Vícha R., Smolka P., Minařík A. Viscoelastic and mechanical properties of hyaluronan films and hydrogels modified by carbodiimide. Carbohydr. Polym. 2015;119:142–148. doi: 10.1016/j.carbpol.2014.11.049. PubMed DOI

Tumanski S. Handbook of Magnetic Measurements. CRC Press; Boca Raton, FL, USA: 2011. Chapter Magnetic Materials. DOI

Genovese D.B. Shear rheology of hard-sphere, dispersed, and aggregated suspensions, and filler-matrix composites. Adv. Colloid Interface Sci. 2012;171:1–16. doi: 10.1016/j.cis.2011.12.005. PubMed DOI

Gila-Vilchez C., Duran J.D.G., Gonzalez-Caballero F., Zubarev A., Lopez-Lopez M.T. Magnetorheology of alginate ferrogels. Smart Mater. Struct. 2019;28:035018. doi: 10.1088/1361-665X/aafeac. DOI

Sözeri H., Alveroğlu E., Kurtan U., Şenel M., Baykal A. Magnetic hydrogel with high coercivity. Mater. Res. Bull. 2013;48:2751–2757. doi: 10.1016/j.materresbull.2013.03.041. DOI

Cox J.S.G., Kennedy G.R., King J., Marshall P.R., Rutherford D. Structure of and Iron-Dextran Complex. J. Pharm. Sci. 1972;24:513–517. doi: 10.1111/j.2042-7158.1972.tb09048.x. PubMed DOI

Bendix P.M., Koenderink G.H., Cuvelier D., Dogic Z., Koeleman B.N., Brieher W.M., Field C.M., Mahadevan L., Weitz D.A. A Quantitative Analysis of Contractility in Active Cytoskeletal Protein Networks. Biophys. J. 2008;94:3126–3136. doi: 10.1529/biophysj.107.117960. PubMed DOI PMC

Laskin G.S., Gordon B.S. Changes to the Skeletal Muscle Gene Expression Signature in Response to Nutrient and/or Mechanical Stimuli. FASEB J. 2022;36:R3761. doi: 10.1096/fasebj.2022.36.S1.R3761. DOI

Singh G., Chanda A. Mechanical properties of whole-body soft human tissues: A review. Biomed. Mater. 2021;16 doi: 10.1088/1748-605X/ac2b7a. PubMed DOI

D’Este M., Eglin D., Alini M. A systematic analysis of DMTMM vs EDC/NHS for ligation of amines to Hyaluronan in water. Carbohydr. Polym. 2014;108:239–246. doi: 10.1016/j.carbpol.2014.02.070. PubMed DOI

Huiru Z., Heindel N.D. Determination of Degree of Substitution of Formyl Groups in Polyaldehyde Dextran by the Hydroxylamine Hydrochloride Method. Pharm. Res. 1991;8:400–402. doi: 10.1023/A:1015866104055. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...