Formulation of Magneto-Responsive Hydrogels from Dually Cross-Linked Polysaccharides: Synthesis, Tuning and Evaluation of Rheological Properties
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
Reg. 580 No. CZ.02.2.69/0.0/0.0/19 _073/0016941
the project OP RDE Junior Grants of TBU in Zlín
IGA/CPS/2022/001
Internal grant of TBU in Zlín funded from the resources of specific academic research
DKRVO (RP/CPS/2022/003), DKRVO (RP/CPS/2022/001)
Ministry of Education, Youth and Sports of the Czech Republic
PubMed
36077030
PubMed Central
PMC9455683
DOI
10.3390/ijms23179633
PII: ijms23179633
Knihovny.cz E-zdroje
- Klíčová slova
- Schiff base, hyaluronan, hydrodynamic radius, magnetorheology, smart hydrogels, tissue engineering,
- MeSH
- hydrogely * chemie MeSH
- kyselina hyaluronová * MeSH
- polymery MeSH
- polysacharidy MeSH
- reologie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- hydrogely * MeSH
- kyselina hyaluronová * MeSH
- polymery MeSH
- polysacharidy MeSH
Smart hydrogels based on natural polymers present an opportunity to fabricate responsive scaffolds that provide an immediate and reversible reaction to a given stimulus. Modulation of mechanical characteristics is especially interesting in myocyte cultivation, and can be achieved by magnetically controlled stiffening. Here, hyaluronan hydrogels with carbonyl iron particles as a magnetic filler are prepared in a low-toxicity process. Desired mechanical behaviour is achieved using a combination of two cross-linking routes-dynamic Schiff base linkages and ionic cross-linking. We found that gelation time is greatly affected by polymer chain conformation. This factor can surpass the influence of the number of reactive sites, shortening gelation from 5 h to 20 min. Ionic cross-linking efficiency increased with the number of carboxyl groups and led to the storage modulus reaching 103 Pa compared to 101 Pa-102 Pa for gels cross-linked with only Schiff bases. Furthermore, the ability of magnetic particles to induce significant stiffening of the hydrogel through the magnetorheological effect is confirmed, as a 103-times higher storage modulus is achieved in an external magnetic field of 842 kA·m-1. Finally, cytotoxicity testing confirms the ability to produce hydrogels that provide over 75% relative cell viability. Therefore, dual cross-linked hyaluronan-based magneto-responsive hydrogels present a potential material for on-demand mechanically tunable scaffolds usable in myocyte cultivation.
Zobrazit více v PubMed
Vasile C., Pamfil D., Stoleru E., Baican M. New Developments in Medical Applications of Hybrid Hydrogels Containing Natural Polymers. Molecules. 2020;25:1539. doi: 10.3390/molecules25071539. PubMed DOI PMC
Zhang G., Wang Z., Han F., Jin G., Xu L., Xu H., Su H., Wang H., Le Y., Fu Y., et al. Mechano-regulation of vascular network formation without branches in 3D bioprinted cell-laden hydrogel constructs. Biotechnol. Bioeng. 2021;118:3787–3798. doi: 10.1002/bit.27854. PubMed DOI
Cui P., Qin P.P.L., Wang X., Chen X., Deng Y., Zhang X. Nanoengineered hydrogels as 3D biomimetic extracellular matrix with injectable and sustained delivery capability for cartilage regeneration. Bioact. Mater. 2022;19:487–498. doi: 10.1016/j.bioactmat.2022.03.032. PubMed DOI PMC
Dangi D., Mattoo M., Kumar V., Sharma P. Synthesis and characterization of galactomannan polymer hydrogel and sustained drug delivery. Carbohydr. Polym. Technol. Appl. 2022;4:100230. doi: 10.1016/j.carpta.2022.100230. DOI
Razali N.A.M., Lin W.C. Accelerating the excisional wound closure by using the patterned microstructural nanofibrous mats/gentamicin-loaded hydrogel composite scaffold. Mater. Today Bio. 2022;16:100347. doi: 10.1016/j.mtbio.2022.100347. PubMed DOI PMC
Huang X., Wang L., Shen Z., Ren J., Chen G., Li Q., Zhou Z. Super-Stretchable and Self-Healing hydrogel with a Three-Dimensional silver nanowires network structure for wearable sensor and electromagnetic interference shielding. Chem. Eng. J. 2022;446:137136. doi: 10.1016/j.cej.2022.137136. DOI
Yin X., Wu J., Zhao H., Zhou L., He T., Fan Y., Chen L., Wang K., He Y. A microgel-structured cellulose nanofibril coating with robust antifouling performance for highly efficient oil/water and immiscible organic solvent separation. Colloids Surfaces A Physicochem. Eng. Asp. 2022;647:128875. doi: 10.1016/j.colsurfa.2022.128875. DOI
Ren J., Li R., Wang X., Li M., Yang W. A superabsorbent hydrogel for removal of dyes from aqueous solution. J. Polym. Environ. 2022;30:3327–3339. doi: 10.1007/s10924-022-02434-0. DOI
Lu H., Li X., Yang H., Wu J., Zhang Y., Huang H. Preparation and properties of riboflavin-loaded sanxan microcapsules. Food Hydrocoll. 2022;129:107641. doi: 10.1016/j.foodhyd.2022.107641. DOI
Lopes P.M.P., Moldovan D., Moldovan M., Carpa R., Saroşi C., Păşcuţă P., Moldovan A.M., Fechete R., Popescu V. New Composite Hydrogel Based on Whey and Gelatin Crosslinked with Copper Sulphate. Materials. 2022;15:2611. doi: 10.3390/ma15072611. PubMed DOI PMC
Cvek M., Zahoranova A., Mrlik M., Sramkova P., Minarik A., Sedlacik M. Poly(2-oxazoline)-based magnetic hydrogels: Synthesis, performance and cytotoxicity. Colloids Surfaces B Biointerfaces. 2020;190:110912. doi: 10.1016/j.colsurfb.2020.110912. PubMed DOI
Zhang S.D., Zhai Y.C., Zhang Z.F. Study on Polyvinly-Alcohol(PVA)/ Iron Oxide Black(Fe3O4) and Polyvinly-Alcohol(PVA)/ Iron Oxide Red(Fe2O3) Magnetic Sensitive Hydrogel. Adv. Mater. Res. 2011;287–290:2032–2035. doi: 10.4028/www.scientific.net/AMR.287-290.2032. DOI
Bardajee G.R., Hooshyar Z. One-pot synthesis of biocompatible superparamagnetic iron oxide nanoparticles/hydrogel based on salep: Characterization and drug delivery. Carbohydr. Polym. 2014;101:741–751. doi: 10.1016/j.carbpol.2013.10.028. PubMed DOI
Alveroğlu E., Sözeri H., Kurtan U., Şenel M., Baykal A. Magnetic and spectroscopic properties of Polyacrylamide-CoFe2O4 magnetic hydrogel. J. Mol. Struct. 2013;1036:386–391. doi: 10.1016/j.molstruc.2012.12.009. DOI
Morillas J., de Vicente J. Magnetorheology: A review. Soft Matter. 2020;16:9614–9642. doi: 10.1039/D0SM01082K. PubMed DOI
Levy M., Luciani N., Alloyeau D., Elgrabli D., Deveaux V., Pechoux C., Chat S., Wang G., Vats N., Gendron F., et al. Long term in vivo biotransformation of iron oxide nanoparticles. Biomaterials. 2011;32:3988–3999. doi: 10.1016/j.biomaterials.2011.02.031. PubMed DOI
Jingli G., Haifei X., Yehua H., Wei D., Wei H., Chunyu W., Ning G., Haiyan X., Jimin C. The internalization pathway, metabolic fate and biological effect of superparamagnetic iron oxide nanoparticles in the macrophage-like RAW264.7 cell. Sci. China Life Sci. Vol. 2011;54:793–805. doi: 10.1007/s11427-011-4215-5. PubMed DOI
Mrlík M., Ilčíková M., Cvek M., Pavlínek V., Zahoranová A., Kroneková Z., Kasak P. Carbonyl iron coated with a sulfobetaine moiety as a biocompatible system and the magnetorheological performance of its silicone oil suspensions. RSC Adv. 2016;6:32823–32830. doi: 10.1039/C6RA03919G. DOI
Cvek M., Mrlík M., Ilčíková M., Mosnáček J., Babayan V., Kuceková Z., Humpolíček P., Pavlínek V. The chemical stability and cytotoxicity of carbonyl iron particles grafted with poly(glycidyl methacrylate) and the magnetorheological activity of their suspensions. RSC Adv. 2015;5:72816–72824. doi: 10.1039/C5RA11968E. DOI
Bossis G., Volkova O., Lacis S., Meunier A. Ferrofluids. Lecture Notes in Physics. Springer; Berlin, Germany: 2002. Magnetorheology: Fluids, Structures and Rheology. DOI
Ruiz-López J.A., Hidalgo-Alvarez R., de Vicente J. Towards a universal master curve in magnetorheology. Smart Mater. Struct. 2017;26:054001. doi: 10.1088/1361-665X/aa6648. DOI
Gila-Vilchez C., Bonhome-Espinosa A.B., Kuzhir P., Zubarev A., Duran J.D.G., Lopez-Lopez M.T. Rheology of magnetic alginate hydrogels. J. Rheol. 2018;62:1083–1096. doi: 10.1122/1.5028137. DOI
Bin L., Xu C., Wang S.D.X. Alignment of magnetic particles in hydrogel matrix: A novel anisotropic magnetic hydrogels for soft robotics. J. Intell. Mater. Syst. Struct. 2021;32:1432–1440. doi: 10.1177/1045389X20975500. DOI
Galindo-Gonzalez C., Gantz S., Ourry L., Mammeri F., Ammar-Merah S., Ponton A. Elaboration and Rheological Investigation of Magnetic Sensitive Nanocomposite Biopolymer Networks. Macromolecules. 2014;47:3136–3144. doi: 10.1021/ma402655g. DOI
Borin D., Stepanov G., Musikhin A., Zubarev A., Bakhtiiarov A., Storozhenko P. Magnetorheological Effect of Magnetoactive Elastomer with a Permalloy Filler. Polymers. 2020;12:2371. doi: 10.3390/polym12102371. PubMed DOI PMC
Rich J.P., McKinley G.H., Doyle P.S. Arrested Chain Growth During Magnetic Directed Particle Assembly in Yield Stress Matrix Fluids. Langmuir. 2012;28:3683–3689. doi: 10.1021/la204240f. PubMed DOI
Liu J., Flores G.A., Sheng R. In-vitro investigation of blood embolization in cancer treatment using magnetorheological fluids. J. Magn. Magn. Mater. 2001;225:209–217. doi: 10.1016/S0304-8853(00)01260-9. DOI
Zhang Y., Li D., Chen Y., Li Z. A Comparative Study of Ferrofluid Seal and Magnetorheological Fluid Seal. IEEE Trans. Magn. 2018;54:4601207. doi: 10.1109/TMAG.2018.2868298. DOI
Nardecchia S., Chocarro-Wrona C., Sánchez-Moreno P., Zambrano-Marín J.R., Marchal J.A., de Vicente J. Living magnetorheological composites: From the synthesis to the in vitro characterization. Smart Mater. Struct. 2021;30:065015. doi: 10.1088/1361-665X/abf5f0. DOI
Fang Y., Yang X., Lin Y., Shi J., Prominski A., Clayton C., Ostroff E., Tian B. Dissecting Biological and Synthetic Soft–Hard Interfaces for Tissue-Like Systems. Chem. Rev. 2022;122:5233–5276. doi: 10.1021/acs.chemrev.1c00365. PubMed DOI PMC
de Moraes Porto I.C.C. Polymerization. InTech; London, UK: 2012. Polymer Biocompatibility. DOI
Tibbitt M.W., Anseth K.S. Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol. Bioeng. 2009;103:655–663. doi: 10.1002/bit.22361. PubMed DOI PMC
Siglreitmeier M., Wu B., Kollmann T., Neubauer M., Nagy G., Schwahn D., Pipich V., Faivre D., Zahn D., Fery A., et al. Multifunctional layered magnetic composites. Beilstein J. Nanotechnol. 2015;6:134–148. doi: 10.3762/bjnano.6.13. PubMed DOI PMC
de Marco C., Alcântara C.C.J., Kim S., Briatico F., Kadioglu A., de Bernardis G., Chen X., Marano C., Nelson B.J., Pané S. Indirect 3D and 4D Printing of Soft Robotic Microstructures. Adv. Mater. Technol. 2019;4:1900332. doi: 10.1002/admt.201900332. DOI
Tognato R., Armiento A.R., Bonfrate V., Levato R., Malda J., Alini M., Eglin D., Giancane G., Serra T. A Stimuli-Responsive Nanocomposite for 3D Anisotropic Cell-Guidance and Magnetic Soft Robotics. Adv. Funct. Mater. 2019;29:1804647. doi: 10.1002/adfm.201804647. DOI
Löwik D.W.P.M., Shklyarevskiy I.O., Ruizendaal L., Christianen P.C.M., Maan J.C., van Hest J.C.M. A Highly Ordered Material from Magnetically Aligned Peptide Amphiphile Nanofiber Assemblies. Adv. Mater. 2007;19:1191–1195. doi: 10.1002/adma.200602295. DOI
Lopez-Lopez M.T., Rodriguez I.A., Rodriguez-Arco L., Carriel V., Bonhome-Espinosa A.B., Campos F., Zubarev A., Duran J.D.G. Synthesis, characterization and in vivo evaluation of biocompatible ferrogels. J. Magn. Magn. Mater. 2017;431:110–114. doi: 10.1016/j.jmmm.2016.08.053. DOI
Akama S., Ikeda J., Kawai M., Mitsumata T. A Feature in Magnetorheological Effect for Polysaccharide Magnetic Hydrogels. Chem. Lett. 2018;47:1240–1242. doi: 10.1246/cl.180511. DOI
Abrougui M.M., Lopez-Lopez M.T., Duran J.D.G. Mechanical properties of magnetic gels containing rod-like composite particles. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2019;377 doi: 10.1098/rsta.2018.0218. PubMed DOI PMC
Abrougui M.M., Srasra E., Lopez-Lopez M.T., Duran J.D.G. Rheology of magnetic colloids containing clusters of particle platelets and polymer nanofibres. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2020;378 doi: 10.1098/rsta.2019.0255. PubMed DOI PMC
Zhao X., Kim J., Cezar C.A., Huebsch N., Lee K., Bouhadir K., Mooney D.J. Active scaffolds for on-demand drug and cell delivery. Proc. Natl. Acad. Sci. USA. 2011;108:67–72. doi: 10.1073/pnas.1007862108. PubMed DOI PMC
Popa E., Santo V., Rodrigues M., Gomes M. Magnetically-Responsive Hydrogels for Modulation of Chondrogenic Commitment of Human Adipose-Derived Stem Cells. Polymers. 2016;8:28. doi: 10.3390/polym8020028. PubMed DOI PMC
Ikeda J., Takahashi D., Watanabe M., Kawai M., Mitsumata T. Particle Size in Secondary Particle and Magnetic Response for Carrageenan Magnetic Hydrogels. Gels. 2019;5:39. doi: 10.3390/gels5030039. PubMed DOI PMC
Amorim S., Reis C.A., Reis R.L., Pires R.A. Extracellular Matrix Mimics Using Hyaluronan-Based Biomaterials. Trends Biotechnol. 2021;39:90–104. doi: 10.1016/j.tibtech.2020.06.003. PubMed DOI
Jongprasitkul H., Turunen S., Parihar V.S., Annurakshita S., Kellomäki M. Photocross-linkable Methacrylated Polypeptides and Polysaccharides for Casting, Injecting, and 3D Fabrication. Biomacromolecules. 2021;22:481–493. doi: 10.1021/acs.biomac.0c01322. PubMed DOI
Teong B., Wu S.C., Chang C.M., Chen J.W., Chen H.T., Chen C.H., Chang J.K., Ho M.L. The stiffness of a crosslinked hyaluronan hydrogel affects its chondro-induction activity on hADSCs. J. Biomed. Mater. Res. Part B Appl. Biomater. 2018;106:808–816. doi: 10.1002/jbm.b.33881. PubMed DOI
Bobula T., Buffa R., Hermannová M., Kohutová L., Procházková P., Vágnerová H., Čepa M., Wolfová L., Židek O., Velebný V. A novel photopolymerizable derivative of hyaluronan for designed hydrogel formation. Carbohydr. Polym. 2017;161:277–285. doi: 10.1016/j.carbpol.2017.01.009. PubMed DOI
Staubli F., Stoddart M.J., D’Este M., Schwab A. Pre-culture of human mesenchymal stromal cells in spheroids facilitates chondrogenesis at a low total cell count upon embedding in biomaterials to generate cartilage microtissues. Acta Biomater. 2022;143:253–265. doi: 10.1016/j.actbio.2022.02.038. PubMed DOI
Santhanam S., Liang J., Baid R., Ravi N. Investigating thiol-modification on hyaluronan via carbodiimide chemistry using response surface methodology. J. Biomed. Mater. Res. Part A. 2015;103:2300–2308. doi: 10.1002/jbm.a.35366. PubMed DOI PMC
Köwitsch A., Niepel M.S., Michanetzis G.P.A., Missirlis Y.F., Groth T. Effect of Immobilized Thiolated Glycosaminoglycans on Fibronectin Adsorption and Behavior of Fibroblasts. Macromol. Biosci. 2016;16:381–394. doi: 10.1002/mabi.201500276. PubMed DOI
Barthold J.E., McCreery K.P., Martinez J., Bellerjeau C., Ding Y., Bryant S.J., Whiting G.L., Neu C.P. Particulate ECM biomaterial ink is 3D printed and naturally crosslinked to form structurally-layered and lubricated cartilage tissue mimics. Biofabrication. 2022;14:025021. doi: 10.1088/1758-5090/ac584c. PubMed DOI
Buffa R., Odstrčilová L., Šedová P., Basarabová I., Novotný J., Velebný V. Conjugates of modified hyaluronic acid with amino compounds for biomedical applications. Carbohydr. Polym. 2018;189:273–279. doi: 10.1016/j.carbpol.2018.02.048. PubMed DOI
Uman S., Dhand A., Burdick J.A. Recent advances in shear-thinning and self-healing hydrogels for biomedical applications. J. Appl. Polym. Sci. 2020;137:48668. doi: 10.1002/app.48668. DOI
Wang L.L., Highley C.B., Yeh Y.C., Galarraga J.H., Uman S., Burdick J.A. Three-dimensional extrusion bioprinting of single- and double-network hydrogels containing dynamic covalent crosslinks. J. Biomed. Mater. Res. Part A. 2018;106:865–875. doi: 10.1002/jbm.a.36323. PubMed DOI PMC
Shi W., Huang J., Fang R., Mingjie M. Imparting Functionality to the Hydrogel by Magnetic-Field-Induced Nano-assembly and Macro-response. Appl. Mater. Interfaces. 2020;12:5177–5194. doi: 10.1021/acsami.9b16770. PubMed DOI
Shi L., Zeng Y., Zhao Y., Yang B., Ossipov D., Tai C.W., Dai J.W., Xu C.G. Biocompatible Injectable Magnetic Hydrogel Formed by Dynamic Coordination Network. Appl. Mater. Interfaces. 2019;11:46233–46240. doi: 10.1021/acsami.9b17627. PubMed DOI
Zhang Y., Sun Y., Yang X., Hilbornand J., Heerschapand A., Ossipov D.A. Injectable in situ forming hybrid iron oxide-hyaluronic acid hydrogel for magnetic resonance imaging and drug delivery. Macromol. Biosci. 2014;14:1249–1259. doi: 10.1002/mabi.201400117. PubMed DOI
Tay A., Sohrabi A., Poole K., Seidlits S., Carlo D.D. A 3D magnetic hyaluronic acid hydrogel for magnetomechanical neuromodulation of primary dorsal root ganglion neurons. Adv. Mater. 2018;30:1800927. doi: 10.1002/adma.201800927. PubMed DOI
Barbucci R., Giani G., Fedi S., Bottari S., Casolaro M. Biohydrogels with magnetic nanoparticles as crosslinker: Characteristics and potential use for controlled antitumor drug-delivery. Acta Biomater. 2012;8:4244–4252. doi: 10.1016/j.actbio.2012.09.006. PubMed DOI
Tran K.A., Kraus E., Clark A.T., Bennett A., Pogoda K., Cheng X., Cebers A., Janmey P., Galie P.A. Dynamic Tuning of Viscoelastic Hydrogels with Carbonyl Iron Microparticles Reveals the Rapid Response of Cells to Three-Dimensional Substrate Mechanics. ACS Appl. Mater. Interfaces. 2021;13:20947–20959. doi: 10.1021/acsami.0c21868. PubMed DOI PMC
Koand E.S., Kimand C., Choi Y., Lee K.Y. 3D printing of self-healing ferrogel prepared from glycol chitosan, oxidized hyaluronate, and iron oxide nanoparticles. Carbohydr. Polym. 2020;245:116496. doi: 10.1016/j.carbpol.2020.116496. PubMed DOI
Choi Y., Kim C., Kim H.S., Moon C., Lee K.Y. 3D Printing of dynamic tissue scaffold by combining self-healing hydrogel and self-healing ferrogel. Colloids Surfaces B Biointerfaces. 2021;208:112108. doi: 10.1016/j.colsurfb.2021.112108. PubMed DOI
Mo C., Xiang L., Chen Y. Advances in Injectable and Self-healing Polysaccharide Hydrogel Based on the Schiff Base Reaction. Macromol. Rapid Commun. 2021;42:2100025. doi: 10.1002/marc.202100025. PubMed DOI
Townsend J.M., Beck C.E., Gehrke S.H., Berkland C.J., Detamore M.S. Flow behavior prior to crosslinking: The need for precursor rheology for placement of hydrogels in medical applications and for 3D bioprinting. Prog. Polym. Sci. 2019;91:126–140. doi: 10.1016/j.progpolymsci.2019.01.003. PubMed DOI PMC
Zuo X., Tang H., Zhu X., Zhang D., Gao W. Injectable magnetic hydrogels for self-regulating magnetic hyperthermia and drug release. Mod. Phys. Lett. B. 2021;35 doi: 10.1142/S0217984921501694. DOI
Jahanban-Esfahlan R., Derakhshankhah H., Haghshenas B., Massoumi B., Abbasian M., Jaymand M. A bio-inspired magnetic natural hydrogel containing gelatin and alginate as a drug delivery system for cancer chemotherapy. Int. J. Biol. Macromol. 2020;156:438–445. doi: 10.1016/j.ijbiomac.2020.04.074. PubMed DOI
Bulpitt P., Aeschlimann D. New strategy for chemical modification of hyaluronic acid: Preparation of functionalized derivatives and their use in the formation of novel biocompatible hydrogels. J. Biomed. Mater. Res. 1999;47:152–169. doi: 10.1002/(SICI)1097-4636(199911)47:2<152::AID-JBM5>3.0.CO;2-I. PubMed DOI
Maia J., Carvalho R.A., Coelho J.F.J., Simões P.N., Gil M.H. Insight on the periodate oxidation of dextran and its structural vicissitudes. Polymer. 2011;52:258–265. doi: 10.1016/j.polymer.2010.11.058. DOI
Nonsuwan P., Matsugami A., Hayashi F., Hyon S.H., Matsumura K. Controlling the degradation of an oxidized dextran-based hydrogel independent of the mechanical properties. Carbohydr. Polym. 2019;204:131–141. doi: 10.1016/j.carbpol.2018.09.081. PubMed DOI
Mendichi R., Soltes L., Schieroni A.G. Evaluation of Radius of Gyration and Intrinsic Viscosity Molar Mass Dependence and Stiffness of Hyaluronan. Biomacromolecules. 2004;4:1805–1810. doi: 10.1021/bm0342178. PubMed DOI
Hersloef A., Sundeloef L.O., Edsman K. Interaction between polyelectrolyte and surfactant of opposite charge: Hydrodynamic effects in the sodium hyaluronate/tetradecyltrimethylammonium bromide/sodium chloride/water system. J. Phys. Chem. 1992;96:2345–2348. doi: 10.1021/j100184a061. DOI
Kok C.M., Rudin A. Relationship between the hydrodynamic radius and the radius of gyration of a polymer in solution. Die Makromol. Chemie Rapid Commun. 1981;2:655–659. doi: 10.1002/marc.1981.030021102. DOI
Zhou H.X., Szabo A. Theory and simulation of the time-dependent rate coefficients of diffusion-influenced reactions. Biophys. J. 1996;71:2440–2457. doi: 10.1016/S0006-3495(96)79437-7. PubMed DOI PMC
Zellermann A.M., Bergmann D., Mayer C. Cation induced conformation changes in hyaluronate solution. Eur. Polym. J. 2013;49:70–79. doi: 10.1016/j.eurpolymj.2012.09.025. DOI
Xu C., Hung C., Cao Y., Liu H.H. Tunable Crosslinking, Reversible Phase Transition, and 3D Printing of Hyaluronic Acid Hydrogels via Dynamic Coordination of Innate Carboxyl Groups and Metallic Ions. ACS Appl. Bio Mater. 2021;4:2408–2428. doi: 10.1021/acsabm.0c01300. PubMed DOI
Radhakrishnan J., Subramanian A., Krishnan U.M., Sethuraman S. Injectable and 3D Bioprinted Polysaccharide Hydrogels: From Cartilage to Osteochondral Tissue Engineering. Biomacromolecules. 2017;18:1–26. doi: 10.1021/acs.biomac.6b01619. PubMed DOI
Chang C., Lue A., Zhang L. Effects of Crosslinking Methods on Structure and Properties of Cellulose/PVA Hydrogels. Macromol. Chem. Phys. 2008;209:1266–1273. doi: 10.1002/macp.200800161. DOI
Radulescu D.M., Neacsu I.A., Grumezescu A.M., Andronescu E. New Insights of Scaffolds Based on Hydrogels in Tissue Engineering. Polymers. 2022;14:799. doi: 10.3390/polym14040799. PubMed DOI PMC
Hölzl K., Lin S., Tytgat L., Vlierberghe S.V., Gu L., Ovsianikov A. Bioink properties before, during and after 3D bioprinting. Biofabrication. 2016;8:032002. doi: 10.1088/1758-5090/8/3/032002. PubMed DOI
Wang B., Moura A.G., Chen J., Erturk A., Hu Y. Characterization of hydrogel structural damping. Extrem. Mech. 2020;40:100841. doi: 10.1016/j.eml.2020.100841. DOI
LoPachin R.M., Gavin T. Molecular Mechanisms of Aldehyde Toxicity: A Chemical Perspective. Chem. Res. Toxicol. 2014;27:1081–1091. doi: 10.1021/tx5001046. PubMed DOI PMC
Gřundělová L., Gregorova A., Mráček A., Vícha R., Smolka P., Minařík A. Viscoelastic and mechanical properties of hyaluronan films and hydrogels modified by carbodiimide. Carbohydr. Polym. 2015;119:142–148. doi: 10.1016/j.carbpol.2014.11.049. PubMed DOI
Tumanski S. Handbook of Magnetic Measurements. CRC Press; Boca Raton, FL, USA: 2011. Chapter Magnetic Materials. DOI
Genovese D.B. Shear rheology of hard-sphere, dispersed, and aggregated suspensions, and filler-matrix composites. Adv. Colloid Interface Sci. 2012;171:1–16. doi: 10.1016/j.cis.2011.12.005. PubMed DOI
Gila-Vilchez C., Duran J.D.G., Gonzalez-Caballero F., Zubarev A., Lopez-Lopez M.T. Magnetorheology of alginate ferrogels. Smart Mater. Struct. 2019;28:035018. doi: 10.1088/1361-665X/aafeac. DOI
Sözeri H., Alveroğlu E., Kurtan U., Şenel M., Baykal A. Magnetic hydrogel with high coercivity. Mater. Res. Bull. 2013;48:2751–2757. doi: 10.1016/j.materresbull.2013.03.041. DOI
Cox J.S.G., Kennedy G.R., King J., Marshall P.R., Rutherford D. Structure of and Iron-Dextran Complex. J. Pharm. Sci. 1972;24:513–517. doi: 10.1111/j.2042-7158.1972.tb09048.x. PubMed DOI
Bendix P.M., Koenderink G.H., Cuvelier D., Dogic Z., Koeleman B.N., Brieher W.M., Field C.M., Mahadevan L., Weitz D.A. A Quantitative Analysis of Contractility in Active Cytoskeletal Protein Networks. Biophys. J. 2008;94:3126–3136. doi: 10.1529/biophysj.107.117960. PubMed DOI PMC
Laskin G.S., Gordon B.S. Changes to the Skeletal Muscle Gene Expression Signature in Response to Nutrient and/or Mechanical Stimuli. FASEB J. 2022;36:R3761. doi: 10.1096/fasebj.2022.36.S1.R3761. DOI
Singh G., Chanda A. Mechanical properties of whole-body soft human tissues: A review. Biomed. Mater. 2021;16 doi: 10.1088/1748-605X/ac2b7a. PubMed DOI
D’Este M., Eglin D., Alini M. A systematic analysis of DMTMM vs EDC/NHS for ligation of amines to Hyaluronan in water. Carbohydr. Polym. 2014;108:239–246. doi: 10.1016/j.carbpol.2014.02.070. PubMed DOI
Huiru Z., Heindel N.D. Determination of Degree of Substitution of Formyl Groups in Polyaldehyde Dextran by the Hydroxylamine Hydrochloride Method. Pharm. Res. 1991;8:400–402. doi: 10.1023/A:1015866104055. PubMed DOI