Smart Biopolymer Scaffolds Based on Hyaluronic Acid and Carbonyl Iron Microparticles: 3D Printing, Magneto-Responsive, and Cytotoxicity Study
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
39417485
PubMed Central
PMC11577426
DOI
10.1021/acsabm.4c00567
Knihovny.cz E-zdroje
- Klíčová slova
- 3D printing, hyaluronic acid, magnetic particles, magneto-responsive, scaffold,
- MeSH
- 3D tisk * MeSH
- biokompatibilní materiály * chemie farmakologie MeSH
- biopolymery chemie MeSH
- buňky NIH 3T3 MeSH
- hydrogely chemie farmakologie MeSH
- karbonylové sloučeniny železa chemie MeSH
- kyselina hyaluronová * chemie farmakologie MeSH
- myši MeSH
- testování materiálů * MeSH
- tkáňové podpůrné struktury * chemie MeSH
- velikost částic * MeSH
- viabilita buněk * účinky léků MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- biokompatibilní materiály * MeSH
- biopolymery MeSH
- hydrogely MeSH
- karbonylové sloučeniny železa MeSH
- kyselina hyaluronová * MeSH
This study deals with utilization of the hyaluronic acid (HA) and carbonyl iron (CI) microparticles to fabricate the magneto-responsive hydrogel scaffolds that can provide triggered functionality upon application of an external magnetic field. The various combinations of the HA and CI were investigated from the rheological and viscoelastic point of view to clearly show promising behavior in connection to 3D printing. Furthermore, the swelling capabilities with water diffusion kinetics were also elucidated. Magneto-responsive performance of bulk hydrogels and their noncytotoxic nature were investigated,, and all hydrogels showed cell viability in the range 75-85%. The 3D printing of such developed systems was successful, and fundamental characterization of the scaffolds morphology (SEM and CT) has been presented. The magnetic activity of the final scaffolds was confirmed at a very low magnetic field strength of 140 kA/m, and such a scaffold also provides very good biocompatibility with NIH/3T3 fibroblasts.
Centre of Polymer Systems Tomas Bata University in Zlin Trida T Bati 5678 760 01 Zlin Czech Republic
Polymer Institute Slovak Academy of Sciences Dubravska cesta 9 845 45 Bratislava Slovakia
Zobrazit více v PubMed
Mi H. Y.; Jing X.; Turng L. S. Fabrication of porous synthetic polymer scaffolds for tissue engineering. J. Cell. Plast. 2015, 51 (2), 165–196. 10.1177/0021955X14531002. DOI
Dissanayaka W. L.; Zhang C. Scaffold-based and Scaffold-free Strategies in Dental Pulp Regeneration. J. Endod. 2020, 46 (9), S81–S89. 10.1016/j.joen.2020.06.022. PubMed DOI
Wei Z. K.; Wu C. J.; Li R. G.; Yu D. M.; Ding Q. J. Nanocellulose based hydrogel or aerogel scaffolds for tissue engineering. Cellulose 2021, 28 (12), 7497–7520. 10.1007/s10570-021-04021-3. DOI
Khorshidi S.; Karkhaneh A. Hydrogel/fiber conductive scaffold for bone tissue engineering. J. Biomed. Mater. Res., Part A 2018, 106 (3), 718–724. 10.1002/jbm.a.36282. PubMed DOI
Mohammadian F.; Eatemadi A. Drug loading and delivery using nanofibers scaffolds. Artif. Cells, Nanomed., Biotechnol. 2017, 45 (5), 881–888. 10.1080/21691401.2016.1185726. PubMed DOI
Sivashankari P. R.; Prabaharan M. Prospects of chitosan-based scaffolds for growth factor release in tissue engineering. Int. J. Biol. Macromol. 2016, 93, 1382–1389. 10.1016/j.ijbiomac.2016.02.043. PubMed DOI
Abbasi N.; Hamlet S.; Love R. M.; Nguyen N. T. Porous scaffolds for bone regeneration. J. Sci.: Adv. Mater. Devices 2020, 5 (1), 1–9. 10.1016/j.jsamd.2020.01.007. DOI
Moglia R. S.; Robinson J. L.; Muschenborn A. D.; Touchet T. J.; Maitland D. J.; Cosgriff-Hernandez E. Injectable polyMIPE scaffolds for soft tissue regeneration. Polymer 2014, 55 (1), 426–434. 10.1016/j.polymer.2013.09.009. PubMed DOI PMC
Karageorgiou V.; Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 2005, 26 (27), 5474–5491. 10.1016/j.biomaterials.2005.02.002. PubMed DOI
Ege D.; Hasirci V. Is 3D Printing Promising for Osteochondral Tissue Regeneration?. ACS Appl. Bio Mater. 2023, 6 (4), 1431–1444. 10.1021/acsabm.3c00093. PubMed DOI PMC
Uribe-Gomez J.; Posada-Murcia A.; Shukla A.; Ergin M.; Constante G.; Apsite I.; Martin D.; Schwarzer M.; Caspari A.; Synytska A.; et al. Shape-Morphing Fibrous Hydrogel/Elastomer Bilayers Fabricated by a Combination of 3D Printing and Melt Electrowriting for Muscle Tissue Regeneration. ACS Appl. Bio Mater. 2021, 4 (2), 1720–1730. 10.1021/acsabm.0c01495. PubMed DOI
Kade J. C.; Bakirci E.; Tandon B.; Gorgol D.; Mrlik M.; Luxenhofer R.; Dalton P. D. The Impact of Including Carbonyl Iron Particles on the Melt Electrowriting Process. Macromol. Mater. Eng. 2022, 307 (12), 2200478.10.1002/mame.202200478. DOI
An J.; Teoh J. E. M.; Suntornnond R.; Chua C. K. Design and 3D Printing of Scaffolds and Tissues. Engineering 2015, 1 (2), 261–268. 10.15302/J-ENG-2015061. DOI
Liu X.; Liu J.; Lin S.; Zhao X. Hydrogel machines. Mater. Today 2020, 36, 102–124. 10.1016/j.mattod.2019.12.026. DOI
Hong H.; Seo Y. B.; Kim D. Y.; Lee J. S.; Lee Y. J.; Lee H.; Ajiteru O.; Sultan M. T.; Lee O. J.; Kim S. H.; et al. Digital light processing 3D printed silk fibroin hydrogel for cartilage tissue engineering. Biomaterials 2020, 232, 119679.10.1016/j.biomaterials.2019.119679. PubMed DOI
Schwab A.; Levato R.; D’Este M.; Piluso S.; Eglin D.; Malda J. Printability and Shape Fidelity of Bioinks in 3D Bioprinting. Chem. Rev. 2020, 120 (19), 11028–11055. 10.1021/acs.chemrev.0c00084. PubMed DOI PMC
Dong R.; Guo B. Smart wound dressings for wound healing. Nano Today 2021, 41, 101290.10.1016/j.nantod.2021.101290. DOI
Bin L.; Xu C.; Dong S.; Wang X. Alignment of magnetic particles in hydrogel matrix: A novel anisotropic magnetic hydrogels for soft robotics. J. Intell. Mater. Syst. Struct. 2021, 32 (13), 1432–1440. 10.1177/1045389X20975500. DOI
Kondo A.; Fukuda H. Preparation of thermo-sensitive magnetic hydrogel microspheres and application to enzyme immobilization. J. Ferment. Bioeng. 1997, 84 (4), 337–341. 10.1016/S0922-338X(97)89255-0. DOI
Marra K. G.; Brayfield C. A.; Rubin J. P. Adipose stem cell differentiation into smooth muscle cells. Methods Mol. Biol. 2011, 702, 261–268. 10.1007/978-1-61737-960-4_19. PubMed DOI
Miskon A.; Uslama J.. A Preliminary Study on Magnetic Fields Effects on Stem Cell Differentiation. 5th Kuala Lumpur International Conference on Biomedical Engineering 2011 (Biomed 2011), 2011.
Yun H.-M.; Ahn S.-J.; Park K.-R.; Kim M.-J.; Kim J.-J.; Jin G.-Z.; Kim H.-W.; Kim E.-C. Magnetic nanocomposite scaffolds combined with static magnetic field in the stimulation of osteoblastic differentiation and bone formation. Biomaterials 2016, 85, 88–98. 10.1016/j.biomaterials.2016.01.035. PubMed DOI
Semeano A. T.; Tofoli F. A.; Corrêa-Velloso J. C.; de Jesus Santos A. P.; Oliveira-Giacomelli A. ´.; Cardoso R. R.; Pessoa M. A.; da Rocha E. L.; Ribeiro G.; Ferrari M. F. R.; et al. Effects of Magnetite Nanoparticles and Static Magnetic Field on Neural Differentiation of Pluripotent Stem Cells. Stem Cell Rev. Rep. 2022, 18 (4), 1337–1354. 10.1007/s12015-022-10332-0. PubMed DOI
Zheng L.; Zhang L.; Chen L.; Jiang J.; Zhou X.; Wang M.; Fan Y. Static magnetic field regulates proliferation, migration, differentiation, and YAP/TAZ activation of human dental pulp stem cells. J. Tissue Eng. Regener. Med. 2018, 12 (10), 2029–2040. 10.1002/term.2737. PubMed DOI
Coletti D.; Teodori L.; Albertini M. C.; Rocchi M.; Pristerà A.; Fini M.; Molinaro M.; Adamo S. Static magnetic fields enhance skeletal muscle differentiation in vitro by improving myoblast alignment. Cytometry, Part A 2007, 71A (10), 846–856. 10.1002/cyto.a.20447. PubMed DOI
Mrlík M.; Ilčíková M.; Cvek M.; Pavlínek V.; Zahoranová A.; Kroneková Z.; Kasak P. Carbonyl iron coated with a sulfobetaine moiety as a biocompatible system and the magnetorheological performance of its silicone oil suspensions. RSC Adv. 2016, 6 (39), 32823–32830. 10.1039/C6RA03919G. DOI
Cvek M.; Mrlík M.; Ilčíková M.; Mosnáček J.; Babayan V.; Kuceková Z.; Humpolíček P.; Pavlínek V. The chemical stability and cytotoxicity of carbonyl iron particles grafted with poly(glycidyl methacrylate) and the magnetorheological activity of their suspensions. RSC Adv. 2015, 5 (89), 72816–72824. 10.1039/C5RA11968E. DOI
Cvek M.; Zahoranova A.; Mrlik M.; Sramkova P.; Minarik A.; Sedlacik M. Poly(2-oxazoline)-based magnetic hydrogels: Synthesis, performance and cytotoxicity. Colloids Surf., B 2020, 190, 110912.10.1016/j.colsurfb.2020.110912. PubMed DOI
Zhu Q.; Qian Y.; Yang Y.; Wu W.; Xie J.; Wei D. Effects of carbonyl iron powder on iron deficiency anemia and its subchronic toxicity. J. Food Drug Anal. 2016, 24 (4), 746–753. 10.1016/j.jfda.2016.04.003. PubMed DOI PMC
Singh J.; Kaur T.; Singh N.; Pandey P. M. Biological and mechanical characterization of biodegradable carbonyl iron powder/polycaprolactone composite material fabricated using three-dimensional printing for cardiovascular stent application. Proc. Inst. Mech. Eng., Part H 2020, 234 (9), 975–987. 10.1177/0954411920936055. PubMed DOI
Sell S. A.; Wolfe P. S.; Garg K.; McCool J. M.; Rodriguez I. A.; Bowlin G. L. Polymers 2010, 2, 522–553.
Qi X. N.; Mou Z. L.; Zhang J.; Zhang Z. Q. Preparation of chitosan/silkfibroin/hydroxyapatite porous scaffold and its characteristics in comparison to bi-component scaffolds. J. Biomed. Mater. Res., Part A 2014, 102 (2), 366–372. 10.1002/jbm.a.34710. PubMed DOI
Wan Y.; Fang Y.; Wu H.; Cao X. Y. Porous polylactide/chitosan scaffolds for tissue engineering. J. Biomed. Mater. Res., Part A 2007, 80A (4), 776–789. 10.1002/jbm.a.31025. PubMed DOI
Amani H.; Kazerooni H.; Hassanpoor H.; Akbarzadeh A.; Pazoki-Toroudi H. Tailoring synthetic polymeric biomaterials towards nerve tissue engineering: a review. Artif. Cells, Nanomed., Biotechnol. 2019, 47 (1), 3524–3539. 10.1080/21691401.2019.1639723. PubMed DOI
Necas J.; Bartosikova L.; Brauner P.; Kolar J. Hyaluronic acid (hyaluronan): a review. Vet. Med. 2008, 53 (8), 397–411. 10.17221/1930-VETMED. DOI
Sharma S.; Sudhakara P.; Singh J.; Ilyas R. A.; Asyraf M. R. M.; Razman M. R. Critical Review of Biodegradable and Bioactive Polymer Composites for Bone Tissue Engineering and Drug Delivery Applications. Polymers 2021, 13 (16), 2623.10.3390/polym13162623. PubMed DOI PMC
Ouyang L.; Highley C. B.; Rodell C. B.; Sun W.; Burdick J. A. 3D Printing of Shear-Thinning Hyaluronic Acid Hydrogels with Secondary Cross-Linking. ACS Biomater. Sci. Eng. 2016, 2 (10), 1743–1751. 10.1021/acsbiomaterials.6b00158. PubMed DOI
Antich C.; de Vicente J.; Jiménez G.; Chocarro C.; Carrillo E.; Montañez E.; Gálvez-Martín P.; Marchal J. A. Bio-inspired hydrogel composed of hyaluronic acid and alginate as a potential bioink for 3D bioprinting of articular cartilage engineering constructs. Acta Biomater. 2020, 106, 114–123. 10.1016/j.actbio.2020.01.046. PubMed DOI
Kuijpers A. J.; Engbers G. H. M.; Krijgsveld J.; Zaat S. A. J.; Dankert J.; Feijen J. Cross-linking and characterisation of gelatin matrices for biomedical applications. J. Biomater. Sci., Polym. Ed. 2000, 11 (3), 225–243. 10.1163/156856200743670. PubMed DOI
Musilová L.; Mráček A.; Kovalcik A.; Smolka P.; Minařík A.; Humpolíček P.; Vícha R.; Ponížil P. Hyaluronan hydrogels modified by glycinated Kraft lignin: Morphology, swelling, viscoelastic properties and biocompatibility. Carbohydr. Polym. 2018, 181, 394–403. 10.1016/j.carbpol.2017.10.048. PubMed DOI
Gřundělová L.; Gregorova A.; Mráček A.; Vícha R.; Smolka P.; Minařík A. Viscoelastic and mechanical properties of hyaluronan films and hydrogels modified by carbodiimide. Carbohydr. Polym. 2015, 119, 142–148. 10.1016/j.carbpol.2014.11.049. PubMed DOI
Ko E. S.; Kim C.; Choi Y.; Lee K. Y. 3D printing of self-healing ferrogel prepared from glycol chitosan, oxidized hyaluronate, and iron oxide nanoparticles. Carbohydr. Polym. 2020, 245, 116496.10.1016/j.carbpol.2020.116496. PubMed DOI
Choi Y.; Kim C.; Kim H. S.; Moon C.; Lee K. Y. 3D Printing of dynamic tissue scaffold by combining self-healing hydrogel and self-healing ferrogel. Colloids Surf., B 2021, 208, 112108.10.1016/j.colsurfb.2021.112108. PubMed DOI
Singh I.; Lacko C. S.; Zhao Z. Y.; Schmidt C. E.; Rinaldi C. Preparation and evaluation of microfluidic magnetic alginate microparticles for magnetically templated hydrogels. J. Colloid Interface Sci. 2020, 561, 647–658. 10.1016/j.jcis.2019.11.040. PubMed DOI PMC
Hou K. T.; Liu T. Y.; Chiang M. Y.; Chen C. Y.; Chang S. J.; Chen S. Y. Cartilage Tissue-Mimetic Pellets with Multifunctional Magnetic Hyaluronic Acid-Graft-Amphiphilic Gelatin Microcapsules for Chondrogenic Stimulation. Polymers 2020, 12 (4), 785.10.3390/polym12040785. PubMed DOI PMC
Lacko C. S.; Singh I.; Wall M. A.; Garcia A. R.; Porvasnik S. L.; Rinaldi C.; Schmidt C. E. Magnetic particle templating of hydrogels: engineering naturally derived hydrogel scaffolds with 3D aligned microarchitecture for nerve repair. J. Neural Eng. 2020, 17 (1), 016057.10.1088/1741-2552/ab4a22. PubMed DOI PMC
Vítková L.; Musilová L.; Achbergerová E.; Kolařík R.; Mrlík M.; Korpasová K.; Mahelová L.; Capáková Z.; Mráček A. Formulation of Magneto-Responsive Hydrogels from Dually Cross-Linked Polysaccharides: Synthesis, Tuning and Evaluation of Rheological Properties. Int. J. Mol. Sci. 2022, 23, 9633.10.3390/ijms23179633. PubMed DOI PMC
Kocourková K.; Musilová L.; Smolka P.; Mráček A.; Humenik M.; Minařík A. Factors determining self-assembly of hyaluronan. Carbohydr. Polym. 2021, 254, 117307.10.1016/j.carbpol.2020.117307. PubMed DOI
Plachy T.; Kratina O.; Sedlacik M. Porous magnetic materials based on EPDM rubber filled with carbonyl iron particles. Compos. Struct. 2018, 192, 126–130. 10.1016/j.compstruct.2018.02.095. DOI
La Gatta A.; Salzillo R.; Catalano C.; Pirozzi A. V. A.; D’Agostino A.; Bedini E.; Cammarota M.; De Rosa M.; Schiraldi C. Hyaluronan-based hydrogels via ether-crosslinking: Is HA molecular weight an effective means to tune gel performance?. Int. J. Biol. Macromol. 2020, 144, 94–101. 10.1016/j.ijbiomac.2019.11.227. PubMed DOI
Sánchez-Téllez D.; Rodríguez-Lorenzo L.; Téllez-Jurado L. Siloxane-inorganic chemical crosslinking of hyaluronic acid – based hybrid hydrogels: Structural characterization. Carbohydr. Polym. 2020, 230, 115590.10.1016/j.carbpol.2019.115590. PubMed DOI
Khor E. Methods for the treatment of collagenous tissues for bioprostheses. Biomaterials 1997, 18 (2), 95–105. 10.1016/S0142-9612(96)00106-8. PubMed DOI
Cvek M.; Mrlik M.; Pavlinek V. A rheological evaluation of steady shear magnetorheological flow behavior using three-parameter viscoplastic models. J. Rheol. 2016, 60 (4), 687–694. 10.1122/1.4954249. DOI
Sedlacik M.; Mrlik M.; Babayan V.; Pavlinek V. Magnetorheological elastomers with efficient electromagnetic shielding. Compos. Struct. 2016, 135, 199–204. 10.1016/j.compstruct.2015.09.037. DOI
Pathak S.; An H.; Kim S. K. Dual-Cross-Linked Superparamagnetic Hydrogels with Tailored Viscoelasticity for Soft Robotics. ACS Appl. Nano Mater. 2024, 7 (15), 17482–17492. 10.1021/acsanm.4c02577. DOI
Kollár J.; Mrlík M.; Moravčíková D.; Kroneková Z.; Liptaj T.; Lacík I.; Mosnáček J. Tulips: A Renewable Source of Monomer for Superabsorbent Hydrogels. Macromolecules 2016, 49 (11), 4047–4056. 10.1021/acs.macromol.6b00467. DOI
Kollár J.; Mrlík M.; Moravčíková D.; Iván B.; Mosnáček J. Effect of monomer content and external stimuli on properties of renewable Tulipalin A-based superabsorbent hydrogels. Eur. Polym. J. 2019, 115, 99–106. 10.1016/j.eurpolymj.2019.03.012. DOI
Ou A.; Bo I. Chitosan Hydrogels and their Glutaraldehyde-Crosslinked Counterparts as Potential Drug Release and Tissue Engineering Systems - Synthesis, Characterization, Swelling Kinetics and Mechanism. J. Phys. Chem. Biophys. 2017, 07, 256.10.4172/2161-0398.1000256. DOI
Schümann M.; Odenbach S. In-situ observation of the particle microstructure of magnetorheological elastomers in presence of mechanical strain and magnetic fields. J. Magn. Magn. Mater. 2017, 441, 88–92. 10.1016/j.jmmm.2017.05.024. DOI
Cvek M.; Zahoranova A.; Mrlik M.; Sramkova P.; Minarik A.; Sedlacik M. Poly(2-oxazoline)-based magnetic hydrogels: Synthesis, performance and cytotoxicity. Colloids Surf., B 2020, 190, 110912.10.1016/j.colsurfb.2020.110912. PubMed DOI
Wan T. T.; Fan P. H.; Zhang M. F.; Shi K.; Chen X.; Yang H. J.; Liu X.; Xu W. L.; Zhou Y. S. Multiple Crosslinking Hyaluronic Acid Hydrogels with Improved Strength and 3D Printability. ACS Appl. Bio Mater. 2022, 5 (1), 334–343. 10.1021/acsabm.1c01141. PubMed DOI
Xu C. L.; Hung C. G.; Cao Y.; Liu H. H. Tunable Crosslinking, Reversible Phase Transition, and 3D Printing of Hyaluronic Acid Hydrogels via Dynamic Coordination of Innate Carboxyl Groups and Metallic Ions. ACS Appl. Bio Mater. 2021, 4 (3), 2408–2428. 10.1021/acsabm.0c01300. PubMed DOI
Ahmadian E.; Eftekhari A.; Dizaj S. M.; Sharifi S.; Mokhtarpour M.; Nasibova A. N.; Khalilov R.; Samiei M. The effect of hyaluronic acid hydrogels on dental pulp stem cells behavior. Int. J. Biol. Macromol. 2019, 140, 245–254. 10.1016/j.ijbiomac.2019.08.119. PubMed DOI