Recovery from supercooling, freezing, and cryopreservation stress in larvae of the drosophilid fly, Chymomyza costata
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29535362
PubMed Central
PMC5849770
DOI
10.1038/s41598-018-22757-0
PII: 10.1038/s41598-018-22757-0
Knihovny.cz E-zdroje
- MeSH
- Drosophilidae * genetika metabolismus MeSH
- fyziologický stres * MeSH
- kryoprezervace * metody MeSH
- larva MeSH
- metabolomika metody MeSH
- ochrana biologická MeSH
- reakce na chladový šok MeSH
- stanovení celkové genové exprese MeSH
- zmrazování * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Physiological adjustments accompanying insect cold acclimation prior to cold stress have been relatively well explored. In contrast, recovery from cold stress received much less attention. Here we report on recovery of drosophilid fly larvae (Chymomyza costata) from three different levels of cold stress: supercooling to -10 °C, freezing at -30 °C, and cryopreservation at -196 °C. Analysis of larval CO2 production suggested that recovery from all three cold stresses requires access to additional energy reserves to support cold-injury repair processes. Metabolomic profiling (targeting 41 metabolites using mass spectrometry) and custom microarray analysis (targeting 1,124 candidate mRNA sequences) indicated that additional energy was needed to: clear by-products of anaerobic metabolism, deal with oxidative stress, re-fold partially denatured proteins, and remove damaged proteins, complexes and/or organelles. Metabolomic and transcriptomic recovery profiles were closely similar in supercooled and frozen larvae, most of which successfully repaired the cold injury and metamorphosed into adults. In contrast, the majority of cryopreseved larvae failed to proceed in ontogenesis, showed specific metabolic perturbations suggesting impaired mitochondrial function, and failed to up-regulate a set of 116 specific genes potentially linked to repair of cold injury.
Zobrazit více v PubMed
Salt RW. Principles of insect cold-hardiness. Annu. Rev. Entomol. 1961;6:55–74. doi: 10.1146/annurev.en.06.010161.000415. DOI
Lee, R. E. Jr. A primer on insect cold-tolerance in Low Temperature Biology of Insects (eds Denlinger, D. L. & Lee, R. E. Jr.) 3–34 (Cambridge University Press, 2010).
Teets NM, Denlinger DL. Physiological mechanisms of seasonal and rapid cold-hardening in insects. Physiol. Entomol. 2013;38:105–116. doi: 10.1111/phen.12019. DOI
Hayward SAL. Application of functional “Omics” in environmental stress physiology: Insights, limitations, and future challenges. Curr. Opinion Insect Sci. 2014;4:35–41. doi: 10.1016/j.cois.2014.08.005. PubMed DOI
Koštál V. Eco-physiological phases of insect diapause. J. Insect Physiol. 2006;52:113–127. doi: 10.1016/j.jinsphys.2005.09.008. PubMed DOI
Storey, K. B. & Storey, J. M. Biochemistry of cryoprotectants in Insects at Low Temperature (eds Lee, R. E. Jr. & Denlinger, D. L.) 64–93 (Chapman and Hall (1991).
Duman JG. Animal ice-binding (antifreeze) proteins and glycolipids: an overview with emphasis on physiological function. J. Exp. Biol. 2015;218:1846–1855. doi: 10.1242/jeb.116905. PubMed DOI
Koštál, V. Cell structural modification in insects at low temperatures in Low Temperature Biology of Insects (eds Denlinger, D. L. & Lee, R. E. Jr.) 116–140 (Cambridge University Press, 2010).
Kim M, Robich RM, Rinegart JP, Denlinger DL. Upregulation of two actin genes and redistribution of actin during diapause and cold stress in the norther house mosquito. Culex pipiens. J. Insect Physiol. 2006;52:1226–1233. doi: 10.1016/j.jinsphys.2006.09.007. PubMed DOI PMC
Des Marteaux L, Stinziano JR, Sinclair BJ. Effects of cold acclimation on rectal macromorphology, ultrastructure, and cytoskeletal stability in Gryllus pennsylvanicus crickets. J. Insect Physiol. 2018;104:15–24. doi: 10.1016/j.jinsphys.2017.11.004. PubMed DOI
Yi, S.-X., Moore, C. W. & Lee, R. E. Jr. Rapid cold-hardening protects Drosophila melanogaster from cold-induced apoptosis. Apoptosis12, 1183-1193. PubMed
Storey, K. B. & Storey, J. M. Oxygen: stress and adaptation in cold-hardy insects in Low Temperature Biology of Insects (eds Denlinger, D. L. & Lee, R. E. Jr.) 141–165 (Cambridge University Press, 2010).
Lalouette L, Williams CW, Hervant F, Sinclair B, Renault D. Metabolic rate and oxidative stress in insects exposed to low temperature thermal fluctuations. Comp. Biochem. Physiol. A. 2011;158:229–234. doi: 10.1016/j.cbpa.2010.11.007. PubMed DOI
Sorensen JG, Kristensen TN, Loeschke V. The evolutionary and ecological role of heat shock proteins. Ecol. Lett. 2003;6:1025–1037. doi: 10.1046/j.1461-0248.2003.00528.x. DOI
Lindquist S, Craig EA. The heat shock proteins. Annu. Rev. Genet. 1988;22:631–677. doi: 10.1146/annurev.ge.22.120188.003215. PubMed DOI
Goto SG, Kimura MT. Heat- and cold-shock responses and temperature adaptations in subtropical and temperate species of Drosophila. J. Insect Physiol. 1998;44:1233–1239. doi: 10.1016/S0022-1910(98)00101-2. PubMed DOI
Nielsen MM, et al. Role of HSF activation for resistance to heat, cold and high-temperature knock-down. J. Insect Physiol. 2005;51:1320–1329. doi: 10.1016/j.jinsphys.2005.08.002. PubMed DOI
Rinehart JP, et al. Up-regulation of heat shock proteins is essential for cold survival during insect diapause. Proc. Natl. Acad. Sci. USA. 2007;104:11130–11137. doi: 10.1073/pnas.0703538104. PubMed DOI PMC
Sinclair BJ, Gibbs AG, Roberts SP. Gene transcription during exposure to, and recovery from, cold and desiccation stress in Drosophila melanogaster. Insect Mol. Biol. 2007;16:435–443. doi: 10.1111/j.1365-2583.2007.00739.x. PubMed DOI
Koštál V, Tollarová-Borovanská M. The 70 kDa heat shock protein assists during the reparation of chilling injury in the insect. Pyrrhocoris apterus. PLoS One. 2009;4:e4546. doi: 10.1371/journal.pone.0004546. PubMed DOI PMC
Colinet H, Lee SF, Hoffmann AA. Temporal expression of heat shock genes during cold stress and recovery from chill coma in adult Drosophila melanogaster. FEBS J. 2010;277:174–185. doi: 10.1111/j.1742-4658.2009.07470.x. PubMed DOI
Zhao L, Jones WA. Expression of heat shock protein genes in insect stress responses. Invertebrate Surv. J. 2012;9:93–101.
Štětina T, Koštál V, Korbelová J. The role of inducible Hsp70, and other heat shock proteins, in adaptive complex of cold tolerance of the fruit fly (Drosophila melanogaster) PLoS One. 2015;10:e018976. PubMed PMC
Haslbeck M, Vierling E. A first line of stress defense: small heat shock proteins and their function in protein homeostasis. J. Mol. Biol. 2015;427:1537–1578. doi: 10.1016/j.jmb.2015.02.002. PubMed DOI PMC
Höhfeld J, Cyr DM, Patterson C. From the cradle to the grave: molecular chaperones that may choose between folding and degradation. EMBO Rep. 2001;2:885–890. doi: 10.1093/embo-reports/kve206. PubMed DOI PMC
Miller RK. Freezing tolerance in an adult insect. Science. 1969;166:105–106. doi: 10.1126/science.166.3901.105. PubMed DOI
Bale JS, Hansen TN, Nishino M, Baust JG. Effects of cooling rate on the survival of larvae, pupariation, and adult emergence of the gallfly, Eurosta solidaginis. Cryobiol. 1989;26:285–289. doi: 10.1016/0011-2240(89)90024-2. PubMed DOI
Yocum GD, et al. Alteration of the eclosion rhythm and eclosion behavior in the flesh fly, Sarcophaga crassipalpis, by low and high temperature stress. J. Insect Physiol. 1994;40:13–21. doi: 10.1016/0022-1910(94)90107-4. DOI
Baust JG, Rojas RR. Review – Insect cold hardiness: facts and fancy. J. Insect Physiol. 1985;31:755–759. doi: 10.1016/0022-1910(85)90067-8. DOI
Bale JS. Insect cold hardiness: freezing and supercooling – an ecophysiological perspective. J. Insect Physiol. 1987;33:899–908. doi: 10.1016/0022-1910(87)90001-1. DOI
Coulson SC, Bale JS. Effect of rapid cold hardening on reproduction and survival of offspring in the housefly. Musca domestica. J. Insect Physiol. 1992;38:421–424. doi: 10.1016/0022-1910(92)90118-W. DOI
Hutchinson LA, Bale JS. Effects of sublethal cold stress on the aphid. Rhopalosiphum padi. J. Appl. Ecol. 1994;31:102–108. doi: 10.2307/2404603. DOI
Marshall KE, Sinclair BJ. Repeated stress exposure results in a survival-reproduction trade-off in Drosophila melanogaster. Proc. Royal Soc. B. 2010;277:963–969. doi: 10.1098/rspb.2009.1807. PubMed DOI PMC
Koštál V, Zahradníčková H, Šimek P. Hyperprolinemic larvae of the drosophilid fly, Chymomyza costata, survive cryopreservation in liquid nitrogen. Proc. Natl. Acad. Sci. USA. 2011;108:13035–13040. doi: 10.1073/pnas.1102561108. PubMed DOI PMC
Muldrew, K., Acker, J. P., Elliott, J. A. V. & McGann, L. E. The water to ice transition: implications for living cells in Life in the Frozen State (eds Fuller, B., Lane, N. & Benson, E. E.) 67−108 (CRC Press, 2004).
Hochachka PW. Defense strategies against hypoxia and hypothermia. Science. 1986;231:234–241. doi: 10.1126/science.2417316. PubMed DOI
Boutilier RG. Mechanisms of cell survival in hypoxia and hypothermia. J. Exp. Biol. 2001;204:3171–3181. PubMed
Koštál V, Vambera J, Bastl J. On the nature of pre-freeze mortality in insects: water balance, ion homeostasis and energy charge in the adults of Pyrrhocoris apterus. J. Exp. Biol. 2004;207:1509–1521. doi: 10.1242/jeb.00923. PubMed DOI
Zachariassen KE, Kristiansen E, Pedersen SA. Inorganic ions in cold-hardiness. Cryobiol. 2004;48:126–133. doi: 10.1016/j.cryobiol.2004.01.004. PubMed DOI
MacMillan HA, Sinclair BJ. The role of the gut in insect chilling injury: cold-induced disruption of osmoregulation in the fall field cricket, Gryllus pennsylvanicus. J. Exp. Biol. 2011;214:726–734. doi: 10.1242/jeb.051540. PubMed DOI
Kristiansen E, Zachariassen KE. Effect of freezing on the transmembrane distribution of ions in freeze-tolerant larvae of the wood fly Xylophagus cinctus (Diptera, Xylophagidae) J. Insect Physiol. 2001;47:585–892. doi: 10.1016/S0022-1910(00)00157-8. PubMed DOI
Koštál V, Yanagimoto M, Bastl J. Chilling-injury and disturbance of ion homeostasis in the coxal muscle of the tropical cockroach (Nauphoeta cinerea) Comp. Biochem. Physiol. B. 2006;143:171–179. doi: 10.1016/j.cbpb.2005.11.005. PubMed DOI
MacMillan HA, Andersen JL, Davies SA, Overgaard J. The capacity to maintain ion and water homeostasis underlies interspecific variation in Drosophila cold tolerance. Sci. Rep. 2015;5:18607. doi: 10.1038/srep18607. PubMed DOI PMC
Des Marteaux LE, Sinclair BJ. Ion and water balance in Gryllus crickets during the first twelve hours of cold exposure. J. Insect Physiol. 2016;89:19–27. doi: 10.1016/j.jinsphys.2016.03.007. PubMed DOI
Overgaard J, MacMillan HA. The integrative physiology of insect cold tolerance. Annu. Rev. Physiol. 2017;79:187–208. doi: 10.1146/annurev-physiol-022516-034142. PubMed DOI
Schmidt-Nielsen, K. Animal Physiology, fifth edition (Cambridge University Press, 1997).
Hochachka PW, Mustafa T. Invertebrate facultative anaerobiosis. Science. 1972;178:1056–1060. doi: 10.1126/science.178.4065.1056. PubMed DOI
Chinopoulos C. Which way does the citric acid cycle turn during hypoxia? The critical role of a-ketoglutarate dehydrogenase complex. J. Neurosci. Res. 2013;91:1030–1043. doi: 10.1002/jnr.23196. PubMed DOI
Dröge W. Oxidative stress and ageing: is ageing a cysteine deficiency syndrome? Phil. Trans. Royal Soc. B. 2005;360:2355–2372. doi: 10.1098/rstb.2005.1770. PubMed DOI PMC
Giustarini D, Dalle-Donne I, Milzani A, Rossi R. Oxidative stress induces a reversible flux of cysteine from tissues to blood in vivo in the rat. FEBS J. 2009;276:4946–4958. doi: 10.1111/j.1742-4658.2009.07197.x. PubMed DOI
Champe, P. C. & Harvey, R. A. Biochemistry, 2nd edition (Lippincott-Raven, 1994).
Karmen A, Wroblewski F, LaDue JS. Transaminase activity in human blood. J. Clin. Invest. 1955;34:126–131. doi: 10.1172/JCI103055. PubMed DOI PMC
Lloyd SM, Arnold J, Sreekumar A. Metabolomic profiling of hormone-dependent cancers: a bird’s eye view. Trends Endocrinol. Metabol. 2015;26:477–485. doi: 10.1016/j.tem.2015.07.001. PubMed DOI PMC
Burnette, M. & Zartman, J. Spatiotemporal patterning of polyamines in Drosophila development. Amino Acids47, 2665–2670. PubMed
Rojas RR, Leopold RA. Chilling injury in the housefly: evidence for the role of oxidative stress between pupariation and emergence. Cryobiol. 1996;33:447–458. doi: 10.1006/cryo.1996.0045. DOI
Koštál V, et al. Physiological basis for low-temperature survival and storage of quiescent larvae of the fruit fly. Drosophila melanogaster. Sci. Rep. 2016;6:32346. PubMed PMC
Hayakawa Y, Chino H. Temperature-dependent interconversion between glycogen and trehalose in diapausing pupae of Philosamia cynthia ricini and pryeri. Insect Biochem. 1981;11:41–47. doi: 10.1016/0020-1790(81)90039-1. DOI
Morrow G, Heikkila JJ, Tanguay RM. Differences in the chaperone-like activities of the four main small heat shock proteins of Drosophila melanogaster. Cell Stress Chap. 2006;11:51–60. doi: 10.1379/CSC-166.1. PubMed DOI PMC
Morrow G, Inaguma Y, Kato K, Tanguay RM. The small heat shock protein Hsp22 of Drosophila melanogaster is a mitochondrial protein displaying oligomeric organization. J. Biol. Chem. 2000;275:31204–31210. doi: 10.1074/jbc.M002960200. PubMed DOI
Zirin J, Perrimon N. Drosophila as a model system to study autophagy. Semin. Immunopathol. 2010;32:363–372. doi: 10.1007/s00281-010-0223-y. PubMed DOI PMC
Nagy P, Varga A, Kovács AL, Takáts S, Juhász G. How and why to study autophagy in Drosophila: It’s more than just a garbage chute. Methods. 2015;75:151–161. doi: 10.1016/j.ymeth.2014.11.016. PubMed DOI PMC
Juhász G, et al. Gene expression profiling identifies FKBP39 as an inhibitor of autophagy in larval Drosophila fat body. Cell Death Differ. 2007;14:1181–1190. doi: 10.1038/sj.cdd.4402123. PubMed DOI PMC
Denton D, Shravage B, Simin R, Baehrecke EH, Kumar S. Larval midgut destruction in Drosophila: not dependent on caspases but suppressed by the loss of autophagy. Autophagy. 2010;6:163–5. doi: 10.4161/auto.6.1.10601. PubMed DOI PMC
Lakovaara S. Malt as a culture medium for Drosophila species. Drosoph. Inf. Serv. 1969;44:128.
Riihimaa AJ, Kimura MT. A mutant strain of Chymomyza costata (Diptera, Drosophilidae) insensitive to diapause-inducing action of photoperiod. Physiol. Entomol. 1988;13:441–445. doi: 10.1111/j.1365-3032.1988.tb01128.x. DOI
Koštál V, Shimada K, Hayakawa Y. Induction and development of winter larval diapause in a drosophilid fly, Chymomyza costata. J. Insect Physiol. 2000;46:417–428. doi: 10.1016/S0022-1910(99)00124-9. PubMed DOI
Koštál V, Mollaei M, Schöttner K. Diapause induction as an interplay between seasonal token stimuli, and modifying and directly limiting factors: hibernation in. Chymomyza costata. Physiol. Entomol. 2016;41:344–357. doi: 10.1111/phen.12159. DOI
Koštál V, Štětina T, Poupardin R, Korbelová J, Bruce AW. Conceptual framework of the ecophysiological phases of insect diapause development justified by transcriptomic profiling. Proc. Natl. Acad. Sci. USA. 2017;114:8532–8537. doi: 10.1073/pnas.1707281114. PubMed DOI PMC
Lomb N. Least-squares frequency analysis of unequally spaced data. Astrophys. Space Sci. 1976;39:447–462. doi: 10.1007/BF00648343. DOI
Scargle J. Studies in astronomical time series analysis. II - Statistical aspects of spectral analysis of unevenly spaced data. Astrophys. J. 1982;263:835–853. doi: 10.1086/160554. DOI
Hušek P, Šimek P. Advances in amino acid analysis. LC-GC North Am. 2001;19:986–999.
Ter Braak, C. J. F. & Šmilauer, P. Canoco reference manual and user’s guide: software for ordination, version 5.0 (MicrocomputerPower, Ithaca, USA, 2012).
Van den Brink PJ, Ter Braak CJF. Principal response curves: analysis of time-dependent multivariate responses of biological community to stress. Environ. Toxicol. Chem. 1999;18:138–148. doi: 10.1002/etc.5620180207. DOI
Poupardin R, et al. Early transcriptional events linked to induction of diapause revealed by RNAseq in larvae of drosophilid fly, Chymomyza costata. BMC Genomics. 2015;16:720. doi: 10.1186/s12864-015-1907-4. PubMed DOI PMC
Ritchie ME, et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acid Res. 2015;43:e47. doi: 10.1093/nar/gkv007. PubMed DOI PMC
Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acid Res. 2001;29:e45. doi: 10.1093/nar/29.9.e45. PubMed DOI PMC
Insect mitochondria as targets of freezing-induced injury