Enzyme Replacement Therapy Ameliorates Multiple Symptoms of Murine Homocystinuria

. 2018 Mar 07 ; 26 (3) : 834-844. [epub] 20171219

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid29398487

Grantová podpora
U24 DK092993 NIDDK NIH HHS - United States
P30 EY002687 NEI NIH HHS - United States
T32 EY013360 NEI NIH HHS - United States
U24 DK059635 NIDDK NIH HHS - United States
R01 DK101404 NIDDK NIH HHS - United States
P30 CA046934 NCI NIH HHS - United States
UL1 TR001082 NCATS NIH HHS - United States
R01 EY024607 NEI NIH HHS - United States
U2C DK092993 NIDDK NIH HHS - United States

Odkazy

PubMed 29398487
PubMed Central PMC5910661
DOI 10.1016/j.ymthe.2017.12.014
PII: S1525-0016(17)30611-1
Knihovny.cz E-zdroje

Classical homocystinuria (HCU) is the most common inherited disorder of sulfur amino acid metabolism caused by deficiency in cystathionine beta-synthase (CBS) activity and characterized by severe elevation of homocysteine in blood and tissues. Treatment with dietary methionine restriction is not optimal, and poor compliance leads to serious complications. We developed an enzyme replacement therapy (ERT) and studied its efficacy in a severe form of HCU in mouse (the I278T model). Treatment was initiated before or after the onset of clinical symptoms in an effort to prevent or reverse the phenotype. ERT substantially reduced and sustained plasma homocysteine concentration at around 100 μM and normalized plasma cysteine for up to 9 months of treatment. Biochemical balance was also restored in the liver, kidney, and brain. Furthermore, ERT corrected liver glucose and lipid metabolism. The treatment prevented or reversed facial alopecia, fragile and lean phenotype, and low bone mass. In addition, structurally defective ciliary zonules in the eyes of I278T mice contained low density and/or broken fibers, while administration of ERT from birth partially rescued the ocular phenotype. In conclusion, ERT maintained an improved metabolic pattern and ameliorated many of the clinical complications in the I278T mouse model of HCU.

Zobrazit více v PubMed

Kraus J.P., Janosík M., Kozich V., Mandell R., Shih V., Sperandeo M.P., Sebastio G., de Franchis R., Andria G., Kluijtmans L.A. Cystathionine β-synthase mutations in homocystinuria. Hum. Mutat. 1999;13:362–375. PubMed

Finkelstein J.D. Methionine metabolism in mammals. J. Nutr. Biochem. 1990;1:228–237. PubMed

Mudd S.H., Levy H.L., Kraus J.P. Disorders of transsulfuration. In: Scriver C.R., Sly W.S., Childs B., Beaudet A.L., Valle D., Kinzler K.W., Vogelstein B., editors. The Metabolic and Molecular Bases of Inherited Disease. Eighth Edition. McGraw-Hill; 2001. pp. 2007–2056.

Barber G.W., Spaeth G.L. Pyridoxine therapy in homocystinuria. Lancet. 1967;289:337.

Chen X., Wang L., Fazlieva R., Kruger W.D. Contrasting behaviors of mutant cystathionine beta-synthase enzymes associated with pyridoxine response. Hum. Mutat. 2006;27:474–482. PubMed

Komrower G.M., Lambert A.M., Cusworth D.C., Westall R.G. Dietary treatment of homocystinuria. Arch. Dis. Child. 1966;41:666–671. PubMed PMC

Smolin L.A., Benevenga N.J., Berlow S. The use of betaine for the treatment of homocystinuria. J. Pediatr. 1981;99:467–472. PubMed

Morris A.A., Kožich V., Santra S., Andria G., Ben-Omran T.I., Chakrapani A.B., Crushell E., Henderson M.J., Hochuli M., Huemer M. Guidelines for the diagnosis and management of cystathionine beta-synthase deficiency. J. Inherit. Metab. Dis. 2017;40:49–74. PubMed PMC

Yap S., Naughten E. Homocystinuria due to cystathionine beta-synthase deficiency in Ireland: 25 years’ experience of a newborn screened and treated population with reference to clinical outcome and biochemical control. J. Inherit. Metab. Dis. 1998;21:738–747. PubMed

Yap S., Boers G.H., Wilcken B., Wilcken D.E., Brenton D.P., Lee P.J., Walter J.H., Howard P.M., Naughten E.R. Vascular outcome in patients with homocystinuria due to cystathionine beta-synthase deficiency treated chronically: a multicenter observational study. Arterioscler. Thromb. Vasc. Biol. 2001;21:2080–2085. PubMed

Walter J.H., Wraith J.E., White F.J., Bridge C., Till J. Strategies for the treatment of cystathionine β-synthase deficiency: the experience of the Willink Biochemical Genetics Unit over the past 30 years. Eur. J. Pediatr. 1998;157(Suppl 2):S71–S76. PubMed

Bublil E.M., Majtan T., Park I., Carrillo R.S., Hůlková H., Krijt J., Kožich V., Kraus J.P. Enzyme replacement with PEGylated cystathionine β-synthase ameliorates homocystinuria in murine model. J. Clin. Invest. 2016;126:2372–2384. PubMed PMC

Majtan T., Park I., Carrillo R.S., Bublil E.M., Kraus J.P. Engineering and characterization of an enzyme replacement therapy for classical homocystinuria. Biomacromolecules. 2017;18:1747–1761. PubMed

Watanabe M., Osada J., Aratani Y., Kluckman K., Reddick R., Malinow M.R., Maeda N. Mice deficient in cystathionine β-synthase: animal models for mild and severe homocyst(e)inemia. Proc. Natl. Acad. Sci. USA. 1995;92:1585–1589. PubMed PMC

Majtan T., Hůlková H., Park I., Krijt J., Kožich V., Bublil E.M., Kraus J.P. Enzyme replacement prevents neonatal death, liver damage, and osteoporosis in murine homocystinuria. FASEB J. 2017;31:5495–5506. PubMed PMC

Wang L., Chen X., Tang B., Hua X., Klein-Szanto A., Kruger W.D. Expression of mutant human cystathionine beta-synthase rescues neonatal lethality but not homocystinuria in a mouse model. Hum. Mol. Genet. 2005;14:2201–2208. PubMed PMC

Gupta S., Kruger W.D. Cystathionine beta-synthase deficiency causes fat loss in mice. PLoS ONE. 2011;6:e27598. PubMed PMC

Gupta S., Melnyk S.B., Kruger W.D. Cystathionine β-synthase-deficient mice thrive on a low-methionine diet. FASEB J. 2014;28:781–790. PubMed PMC

Perła-Kajan J., Utyro O., Rusek M., Malinowska A., Sitkiewicz E., Jakubowski H. N-Homocysteinylation impairs collagen cross-linking in cystathionine β-synthase-deficient mice: a novel mechanism of connective tissue abnormalities. FASEB J. 2016;30:3810–3821. PubMed

Kobayashi S., Sato M., Kasakoshi T., Tsutsui T., Sugimoto M., Osaki M., Okada F., Igarashi K., Hiratake J., Homma T. Cystathionine is a novel substrate of cystine/glutamate transporter: implications for immune function. J. Biol. Chem. 2015;290:8778–8788. PubMed PMC

Kožich V., Krijt J., Sokolová J., Melenovská P., Ješina P., Vozdek R., Majtán T., Kraus J.P. Thioethers as markers of hydrogen sulfide production in homocystinurias. Biochimie. 2016;126:14–20. PubMed

Majtan T., Krijt J., Sokolová J., Křížková M., Ralat M.A., Kent J., Gregory J.F., 3rd, Kožich V., Kraus J.P. Biogenesis of hydrogen sulfide and thioethers by cystathionine beta-synthase. Antioxid. Redox Signal. 2018;28:311–323. PubMed

Shi Y., Tu Y., De Maria A., Mecham R.P., Bassnett S. Development, composition, and structural arrangements of the ciliary zonule of the mouse. Invest. Ophthalmol. Vis. Sci. 2013;54:2504–2515. PubMed PMC

Gupta S., Kühnisch J., Mustafa A., Lhotak S., Schlachterman A., Slifker M.J., Klein-Szanto A., High K.A., Austin R.C., Kruger W.D. Mouse models of cystathionine beta-synthase deficiency reveal significant threshold effects of hyperhomocysteinemia. FASEB J. 2009;23:883–893. PubMed PMC

Maclean K.N., Sikora J., Kožich V., Jiang H., Greiner L.S., Kraus E., Krijt J., Overdier K.H., Collard R., Brodsky G.L. A novel transgenic mouse model of CBS-deficient homocystinuria does not incur hepatic steatosis or fibrosis and exhibits a hypercoagulative phenotype that is ameliorated by betaine treatment. Mol. Genet. Metab. 2010;101:153–162. PubMed PMC

Chiku T., Padovani D., Zhu W., Singh S., Vitvitsky V., Banerjee R. H2S biogenesis by human cystathionine gamma-lyase leads to the novel sulfur metabolites lanthionine and homolanthionine and is responsive to the grade of hyperhomocysteinemia. J. Biol. Chem. 2009;284:11601–11612. PubMed PMC

Kabil O., Vitvitsky V., Xie P., Banerjee R. The quantitative significance of the transsulfuration enzymes for H2S production in murine tissues. Antioxid. Redox Signal. 2011;15:363–372. PubMed PMC

Zhang L., Yang G., Untereiner A., Ju Y., Wu L., Wang R. Hydrogen sulfide impairs glucose utilization and increases gluconeogenesis in hepatocytes. Endocrinology. 2013;154:114–126. PubMed

Golbahar J., Aminzadeh M.A., Kassab S.E., Omrani G.R. Hyperhomocysteinemia induces insulin resistance in male Sprague-Dawley rats. Diabetes Res. Clin. Pract. 2007;76:1–5. PubMed

Orendác M., Zeman J., Stabler S.P., Allen R.H., Kraus J.P., Bodamer O., Stöckler-Ipsiroglu S., Kvasnicka J., Kozich V. Homocystinuria due to cystathionine β-synthase deficiency: novel biochemical findings and treatment efficacy. J. Inherit. Metab. Dis. 2003;26:761–773. PubMed

Elshorbagy A.K., Nurk E., Gjesdal C.G., Tell G.S., Ueland P.M., Nygård O., Tverdal A., Vollset S.E., Refsum H. Homocysteine, cysteine, and body composition in the Hordaland Homocysteine Study: does cysteine link amino acid and lipid metabolism? Am. J. Clin. Nutr. 2008;88:738–746. PubMed

Elshorbagy A.K., Kozich V., Smith A.D., Refsum H. Cysteine and obesity: consistency of the evidence across epidemiologic, animal and cellular studies. Curr. Opin. Clin. Nutr. Metab. Care. 2012;15:49–57. PubMed

Namekata K., Enokido Y., Ishii I., Nagai Y., Harada T., Kimura H. Abnormal lipid metabolism in cystathionine beta-synthase-deficient mice, an animal model for hyperhomocysteinemia. J. Biol. Chem. 2004;279:52961–52969. PubMed

Majtan T., Park I., Bublil E.M., Kraus J.P. Enzyme replacement therapy prevents loss of bone and fat mass in murine homocystinuria. Hum. Mutat. 2017 Published online October 16, 2017. PubMed

Flowers M.T., Ntambi J.M. Role of stearoyl-coenzyme A desaturase in regulating lipid metabolism. Curr. Opin. Lipidol. 2008;19:248–256. PubMed PMC

Parrot F., Redonnet-Vernhet I., Lacombe D., Gin H. Osteoporosis in late-diagnosed adult homocystinuric patients. J. Inherit. Metab. Dis. 2000;23:338–340. PubMed

Gupta S., Wang L., Kruger W.D. Betaine supplementation is less effective than methionine restriction in correcting phenotypes of CBS deficient mice. J. Inherit. Metab. Dis. 2016;39:39–46. PubMed PMC

Mudd S.H., Skovby F., Levy H.L., Pettigrew K.D., Wilcken B., Pyeritz R.E., Andria G., Boers G.H., Bromberg I.L., Cerone R. The natural history of homocystinuria due to cystathionine β-synthase deficiency. Am. J. Hum. Genet. 1985;37:1–31. PubMed PMC

De Maria A., Wilmarth P.A., David L.L., Bassnett S. Proteomic analysis of the bovine and human ciliary zonule. Invest. Ophthalmol. Vis. Sci. 2017;58:573–585. PubMed PMC

Ramsey M.S., Yanoff M., Fine B.S. The ocular histopathology of homocystinuria. A light and electron microscopic study. Am. J. Ophthalmol. 1972;74:377–385. PubMed

Kraus J.P., Hasek J., Kozich V., Collard R., Venezia S., Janosíková B., Wang J., Stabler S.P., Allen R.H., Jakobs C. Cystathionine gamma-lyase: clinical, metabolic, genetic, and structural studies. Mol. Genet. Metab. 2009;97:250–259. PubMed PMC

Allen R.H., Stabler S.P., Lindenbaum J. Serum betaine, N,N-dimethylglycine and N-methylglycine levels in patients with cobalamin and folate deficiency and related inborn errors of metabolism. Metabolism. 1993;42:1448–1460. PubMed

Krijt J., Vacková M., Kozich V. Measurement of homocysteine and other aminothiols in plasma: advantages of using tris(2-carboxyethyl)phosphine as reductant compared with tri-n-butylphosphine. Clin. Chem. 2001;47:1821–1828. PubMed

Krijt J., Dutá A., Kozich V. Determination of S-Adenosylmethionine and S-Adenosylhomocysteine by LC-MS/MS and evaluation of their stability in mice tissues. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2009;877:2061–2066. PubMed PMC

Serkova N., Litt L., James T.L., Sadée W., Leibfritz D., Benet L.Z., Christians U. Evaluation of individual and combined neurotoxicity of the immunosuppressants cyclosporine and sirolimus by in vitro multinuclear NMR spectroscopy. J. Pharmacol. Exp. Ther. 1999;289:800–806. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...