GM3 Ganglioside Linked to Neurofibrillary Pathology in a Transgenic Rat Model for Tauopathy
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
18-0302
Slovak Research and Development Agency
CRP/19/016
International Centre for Genetic Engineering and Biotechnology
2/0129/21
Scientific Grant Agency of the Ministry of Education, Slovakia
2/0150/19
Scientific Grant Agency of the Ministry of Education, Slovakia
PubMed
34830461
PubMed Central
PMC8622195
DOI
10.3390/ijms222212581
PII: ijms222212581
Knihovny.cz E-resources
- Keywords
- aging, gangliosides, glycosphingolipids, liquid chromatography, mass spectrometry, neurodegeneration, sulfatides, tauopathy,
- MeSH
- Chromatography, Liquid MeSH
- G(M3) Ganglioside genetics MeSH
- Animals, Genetically Modified MeSH
- Hydrophobic and Hydrophilic Interactions drug effects MeSH
- Rats MeSH
- Acidic Glycosphingolipids genetics isolation & purification MeSH
- Humans MeSH
- Disease Models, Animal MeSH
- Brain metabolism pathology MeSH
- Neurofibrils genetics pathology MeSH
- tau Proteins genetics MeSH
- Aging genetics pathology MeSH
- Sulfoglycosphingolipids isolation & purification metabolism MeSH
- Tauopathies genetics metabolism pathology MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- G(M3) Ganglioside MeSH
- Acidic Glycosphingolipids MeSH
- tau Proteins MeSH
- Sulfoglycosphingolipids MeSH
Glycosphingolipids (GSLs) are amphipathic lipids composed of a sphingoid base and a fatty acyl attached to a saccharide moiety. GSLs play an important role in signal transduction, directing proteins within the membrane, cell recognition, and modulation of cell adhesion. Gangliosides and sulfatides belong to a group of acidic GSLs, and numerous studies report their involvement in neurodevelopment, aging, and neurodegeneration. In this study, we used an approach based on hydrophilic interaction liquid chromatography (HILIC) coupled to high-resolution tandem mass spectrometry (HRMS/MS) to characterize the glycosphingolipid profile in rat brain tissue. Then, we screened characterized lipids aiming to identify changes in glycosphingolipid profiles in the normal aging process and tau pathology. Thorough screening of acidic glycosphingolipids in rat brain tissue revealed 117 ganglioside and 36 sulfatide species. Moreover, we found two ganglioside subclasses that were not previously characterized-GT1b-Ac2 and GQ1b-Ac2. The semi-targeted screening revealed significant changes in the levels of sulfatides and GM1a gangliosides during the aging process. In the transgenic SHR24 rat model for tauopathies, we found elevated levels of GM3 gangliosides which may indicate a higher rate of apoptotic processes.
Institute of Neuroimmunology Slovak Academy of Sciences Dúbravská cesta 9 84510 Bratislava Slovakia
Waters Corporation Stamford Avenue Altrincham Road Wilmslow SK9 4AX UK
See more in PubMed
Belarbi K., Cuvelier E., Bonte M.-A., Desplanque M., Gressier B., Devos D., Chartier-Harlin M.-C. Glycosphingolipids and Neuroinflammation in Parkinson’s Disease. Mol. Neurodegener. 2020;15:59. doi: 10.1186/s13024-020-00408-1. PubMed DOI PMC
Bottai D., Adami R., Ghidoni R. The Crosstalk between Glycosphingolipids and Neural Stem Cells. J. Neurochem. 2019;148:698–711. doi: 10.1111/jnc.14600. PubMed DOI
Cummings R.D. Stuck on Sugars—How Carbohydrates Regulate Cell Adhesion, Recognition, and Signaling. Glycoconj. J. 2019;36:241–257. doi: 10.1007/s10719-019-09876-0. PubMed DOI PMC
Saito M., Chakraborty G., Shah R., Mao R.-F., Kumar A., Yang D.-S., Dobrenis K., Saito M. Elevation of GM2 Ganglioside during Ethanol-induced Apoptotic Neurodegeneration in the Developing Mouse Brain. J. Neurochem. 2012;121:649–661. doi: 10.1111/j.1471-4159.2012.07710.x. PubMed DOI PMC
Boutry M., Branchu J., Lustremant C., Pujol C., Pernelle J., Matusiak R., Seyer A., Poirel M., Chu-Van E., Pierga A., et al. Inhibition of Lysosome Membrane Recycling Causes Accumulation of Gangliosides That Contribute to Neurodegeneration. Cell Rep. 2018;23:3813–3826. doi: 10.1016/j.celrep.2018.05.098. PubMed DOI PMC
Ohmi Y., Ohkawa Y., Tajima O., Sugiura Y., Furukawa K., Furukawa K. Ganglioside Deficiency Causes Inflammation and Neurodegeneration via the Activation of Complement System in the Spinal Cord. J. Neuroinflamm. 2014;11:61. doi: 10.1186/1742-2094-11-61. PubMed DOI PMC
Cheng H., Zhou Y., Holtzman D.M., Han X. Apolipoprotein E Mediates Sulfatide Depletion in Animal Models of Alzheimer’s Disease. Neurobiol. Aging. 2010;31:1188–1196. doi: 10.1016/j.neurobiolaging.2008.07.020. PubMed DOI PMC
Marbois B.N., Faull K.F., Fluharty A.L., Raval-Fernandes S., Rome L.H. Analysis of Sulfatide from Rat Cerebellum and Multiple Sclerosis White Matter by Negative Ion Electrospray Mass Spectrometry. Biochim. Biophys. Acta (BBA) Cell Biol. Lipids. 2000;1484:59–70. doi: 10.1016/S1388-1981(99)00201-2. PubMed DOI
Cheng H., Wang M., Li J.-L., Cairns N.J., Han X. Specific Changes of Sulfatide Levels in Individuals with Pre-Clinical Alzheimer’s Disease: An Early Event in Disease Pathogenesis. J. Neurochem. 2013;127:733–738. doi: 10.1111/jnc.12368. PubMed DOI PMC
Mansson J.-E., Vanier M.-T., Svennerholm L. Changes in the Fatty Acid and Sphingosine Composition of the Major Gangliosides of Human Brain with Age. J. Neurochem. 1978;30:273–275. doi: 10.1111/j.1471-4159.1978.tb07064.x. PubMed DOI
Rosenberg A., Stern N. Changes in Sphingosine and Fatty Acid Components of the Gangliosides in Developing Rat and Human Brain. J. Lipid Res. 1966;7:122–131. doi: 10.1016/S0022-2275(20)39594-8. PubMed DOI
Strang K.H., Golde T.E., Giasson B.I. MAPT Mutations, Tauopathy, and Mechanisms of Neurodegeneration. Lab. Investig. 2019;99:912–928. doi: 10.1038/s41374-019-0197-x. PubMed DOI PMC
Arendt T., Stieler J.T., Holzer M. Tau and Tauopathies. Brain Res. Bull. 2016;126:238–292. doi: 10.1016/j.brainresbull.2016.08.018. PubMed DOI
Chang H.-Y., Sang T.-K., Chiang A.-S. Untangling the Tauopathy for Alzheimer’s Disease and Parkinsonism. J. Biomed. Sci. 2018;25:54. doi: 10.1186/s12929-018-0457-x. PubMed DOI PMC
Hájek R., Jirásko R., Lísa M., Cífková E., Holčapek M. Hydrophilic Interaction Liquid Chromatography—Mass Spectrometry Characterization of Gangliosides in Biological Samples. Anal. Chem. 2017;89:12425–12432. doi: 10.1021/acs.analchem.7b03523. PubMed DOI
Ovsepyan L.M., Kazaryan G.S., Akopdzhanyan A.A., Lvov M.V. Age-Dependent Changes in Phospholipid Content and Neutral Lipid Contents during Aging. Adv. Gerontol. 2013;3:42–45. doi: 10.1134/S2079057013010104. PubMed DOI
Vos J.P., Lopes-Cardozo M., Gadella B.M. Metabolic and Functional Aspects of Sulfogalactolipids. Biochim. Biophys. Acta (BBA) Lipids Lipid Metab. 1994;1211:125–149. doi: 10.1016/0005-2760(94)90262-3. PubMed DOI
Svennerholm L., Boström K., Fredman P., Jungbjer B., Månsson J.-E., Rynmark B.-M. Membrane Lipids of Human Peripheral Nerve and Spinal Cord. Biochim. Biophys. Acta (BBA) Lipids Lipid Metab. 1992;1128:1–7. doi: 10.1016/0005-2760(92)90250-Y. PubMed DOI
Marcus J., Honigbaum S., Shroff S., Honke K., Rosenbluth J., Dupree J.L. Sulfatide Is Essential for the Maintenance of CNS Myelin and Axon Structure. Glia. 2006;53:372–381. doi: 10.1002/glia.20292. PubMed DOI
Han X. Potential Mechanisms Contributing to Sulfatide Depletion at the Earliest Clinically Recognizable Stage of Alzheimer’s Disease: A Tale of Shotgun Lipidomics. J. Neurochem. 2007;103:171–179. doi: 10.1111/j.1471-4159.2007.04708.x. PubMed DOI PMC
Han X., Holtzman D.M., McKeel D.W., Kelley J., Morris J.C. Substantial Sulfatide Deficiency and Ceramide Elevation in Very Early Alzheimer’s Disease: Potential Role in Disease Pathogenesis. J. Neurochem. 2002;82:809–818. doi: 10.1046/j.1471-4159.2002.00997.x. PubMed DOI
Couttas T.A., Kain N., Suchowerska A.K., Quek L.-E., Turner N., Fath T., Garner B., Don A.S. Loss of Ceramide Synthase 2 Activity, Necessary for Myelin Biosynthesis, Precedes Tau Pathology in the Cortical Pathogenesis of Alzheimer’s Disease. Neurobiol. Aging. 2016;43:89–100. doi: 10.1016/j.neurobiolaging.2016.03.027. PubMed DOI
Strnad Š., Pražienková V., Sýkora D., Cvačka J., Maletínská L., Popelová A., Vrkoslav V. The Use of 1,5-Diaminonaphthalene for Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging of Brain in Neurodegenerative Disorders. Talanta. 2019;201:364–372. doi: 10.1016/j.talanta.2019.03.117. PubMed DOI
Skaper S.D., Facci L., Milani D., Leon A. Monosialoganglioside GM1 Protects against Anoxia-Induced Neuronal Death in Vitro. Exp. Neurol. 1989;106:297–305. doi: 10.1016/0014-4886(89)90163-5. PubMed DOI
Favaron M., Manev H., Alho H., Bertolino M., Ferret B., Guidotti A., Costa E. Gangliosides Prevent Glutamate and Kainate Neurotoxicity in Primary Neuronal Cultures of Neonatal Rat Cerebellum and Cortex. Proc. Natl. Acad. Sci. USA. 1988;85:7351–7355. doi: 10.1073/pnas.85.19.7351. PubMed DOI PMC
Park D.H., Wang L., Pittock P., Lajoie G., Whitehead S.N. Increased Expression of GM1 Detected by Electrospray Mass Spectrometry in Rat Primary Embryonic Cortical Neurons Exposed to Glutamate Toxicity. Anal. Chem. 2016;88:7844–7852. doi: 10.1021/acs.analchem.6b01940. PubMed DOI
Benady A., Freidin D., Pick C.G., Rubovitch V. GM1 Ganglioside Prevents Axonal Regeneration Inhibition and Cognitive Deficits in a Mouse Model of Traumatic Brain Injury. Sci. Rep. 2018;8:13340. doi: 10.1038/s41598-018-31623-y. PubMed DOI PMC
Caughlin S., Maheshwari S., Weishaupt N., Yeung K.K.C., Cechetto D.F., Whitehead S.N. Age-Dependent and Regional Heterogeneity in the Long-Chain Base of A-Series Gangliosides Observed in the Rat Brain Using MALDI Imaging. Sci. Rep. 2017;7:16135. doi: 10.1038/s41598-017-16389-z. PubMed DOI PMC
Palestini P., Masserini M., Fiorilli A., Calappi E., Tettamanti G. Age-Related Changes in the Ceramide Composition of the Major Gangliosides Present in Rat Brain Subcellular Fractions Enriched in Plasma Membranes of Neuronal and Myelin Origin. J. Neurochem. 1993;61:955–960. doi: 10.1111/j.1471-4159.1993.tb03608.x. PubMed DOI
Shin M.-K., Choi M.-S., Chae H.-J., Kim J.-W., Kim H.-G., Kim K.-L. Ganglioside GQ1b Ameliorates Cognitive Impairments in an Alzheimer’s Disease Mouse Model, and Causes Reduction of Amyloid Precursor Protein. Sci. Rep. 2019;9:8512. doi: 10.1038/s41598-019-44739-6. PubMed DOI PMC
Caughlin S., Maheshwari S., Agca Y., Agca C., Harris A.J., Jurcic K., Yeung K.K.-C., Cechetto D.F., Whitehead S.N. Membrane-Lipid Homeostasis in a Prodromal Rat Model of Alzheimer’s Disease: Characteristic Profiles in Ganglioside Distributions during Aging Detected Using MALDI Imaging Mass Spectrometry. Biochim. Biophys. Acta (BBA) Gen. Subj. 2018;1862:1327–1338. doi: 10.1016/j.bbagen.2018.03.011. PubMed DOI
Kaya I., Brinet D., Michno W., Syvänen S., Sehlin D., Zetterberg H., Blennow K., Hanrieder J. Delineating Amyloid Plaque Associated Neuronal Sphingolipids in Transgenic Alzheimer’s Disease Mice (TgArcSwe) Using MALDI Imaging Mass Spectrometry. ACS Chem. Neurosci. 2017;8:347–355. doi: 10.1021/acschemneuro.6b00391. PubMed DOI PMC
Matsuzaki K. Aβ–Ganglioside Interactions in the Pathogenesis of Alzheimer’s Disease. Biochim. Biophys. Acta (BBA) Biomembr. 2020;1862:183233. doi: 10.1016/j.bbamem.2020.183233. PubMed DOI
Yanagisawa K., Ihara Y. GM1 Ganglioside-Bound Amyloid β-Protein in Alzheimer’s Disease Brain. Neurobiol. Aging. 1998;19:S65–S67. doi: 10.1016/S0197-4580(98)00032-3. PubMed DOI
Tooyama I., Yamada T., Kim S.U., McGeer P.L. Immunohistochemical Study of A2B5-Positive Ganglioside in Postmortem Human Brain Tissue of Alzheimer Disease, Amyotrophic Lateral Sclerosis, Progressive Supranuclear Palsy and Control Cases. Neurosci. Lett. 1992;136:91–94. doi: 10.1016/0304-3940(92)90655-Q. PubMed DOI
Yasuhara O., Matsuo A., Tooyama I., Kimura H., McGeer E.G., McGeer P.L. Pick’s Disease Immunohistochemistry: New Alterations and Alzheimer’s Disease Comparisons. Acta Neuropathol. 1995;89:322–330. doi: 10.1007/BF00309625. PubMed DOI
Chan R.B., Oliveira T.G., Cortes E.P., Honig L.S., Duff K.E., Small S.A., Wenk M.R., Shui G., Di Paolo G. Comparative Lipidomic Analysis of Mouse and Human Brain with Alzheimer Disease. J. Biol. Chem. 2012;287:2678–2688. doi: 10.1074/jbc.M111.274142. PubMed DOI PMC
Sohn H., Kim Y.-S., Kim H.-T., Kim C.-H., Cho E.-W., Kang H.-Y., Kim N.-S., Kim C.-H., Ryu S.E., Lee J.-H., et al. Ganglioside GM3 Is Involved in Neuronal Cell Death. FASEB J. 2006;20:1248–1250. doi: 10.1096/fj.05-4911fje. PubMed DOI
Adams K.J., Pratt B., Bose N., Dubois L.G., St. John-Williams L., Perrott K.M., Ky K., Kapahi P., Sharma V., MacCoss M.J., et al. Skyline for Small Molecules: A Unifying Software Package for Quantitative Metabolomics. J. Proteome Res. 2020;19:1447–1458. doi: 10.1021/acs.jproteome.9b00640. PubMed DOI PMC
Gardlo A., Friedecký D., Hron K., Najdekr L., Karlíková R., Adam T. Package ‘Metabol’. Palacky University; Olomouc, Czech Republic: 2019. [(accessed on 15 August 2021)]. Available online: https://github.com/AlzbetaG/Metabol/
Team R.C. R: A Language and Environment for Statistical Computing. R Project for Statistical Computing; Vienna, Austria: 2008.