Long-term stability of sex chromosome gene content allows accurate qPCR-based molecular sexing across birds

. 2021 Aug ; 21 (6) : 2013-2021. [epub] 20210402

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33720488

Grantová podpora
PRIMUS/SCI/46 Charles University Primus Research Program
204069 Charles University Research Centre program
18-15020S Czech Science Foundation

Embryos, juveniles, and even adults of many bird species lack pronounced external sexually dimorphic characteristics. Accurate identification of sex is crucial for research (e.g., developmental, population, and evolutionary studies), management of wildlife species, and captive breeding programmes for both conservation and poultry. An accurate molecular sexing method applicable across the entire bird radiation is theoretically possible thanks to the long-term stability of their ZZ/ZW sex chromosomes, but current methods are not applicable in a wide range of bird lineages. Here, we developed a novel molecular sexing method based on the comparison of gene copy number variation by quantitative real-time PCR (qPCR) in conserved Z-specific genes (CHRNA6, DDX4, LPAR1, TMEM161B, VPS13A), i.e. genes linked to Z but absent from W chromosomes. We tested the method across three paleognath and 70 neognath species covering the avian phylogeny. In addition, we designed primers for four Z-specific genes (DOCK8, FUT10, PIGG and PSD3) for qPCR-based molecular sexing in three paleognath species. We have demonstrated that the genes DOCK8, FUT10, PIGG and PSD3 can identify sex in paleognath birds and the genes CHRNA6, DDX4, TMEM161B, and VPS13A can reveal sex in neognath birds. The gene LPAR1 can be used to accurately identify sex in both paleognath and neognath species. Along with outlining a novel method of practical importance for molecular sexing in birds, our study also documents in detail the conservation of sex chromosomes across the avian phylogeny.

Zobrazit více v PubMed

Alonso, J. C., Bautista, L. M., & Alonso, J. A. (2019). Sexual size dimorphism in the common crane, a monogamous, plumage-monomorphic bird. Ornis Fennica, 96, 194-204.

Bello, N., & Sanchez, A. (1999). The identification of a sex-specific DNA marker in the ostrich using a random amplified polymorphic DNA (RAPD) assay. Molecular Ecology, 8, 667-669.

Bercovitz, A. B., Czekala, N. M., & Lasley, B. L. (1978). A new method of sex determination in monomorphic birds. Journal of Zoo Animal Medicine, 9, 114-124.

Bermúdez-Humarán, L. G., Chávez-Zamarripa, P., Guzmán-Velasco, A., Leal-Garza, C. H., & Montes de Oca-Luna, R. (2002). Loss of restriction site DdeI, used for avian molecular sexing, in Oreophasis derbianus. Reproduction in Domestic Animals, 37, 321-323. https://doi.org/10.1046/j.1439-0531.2002.00362.x.

Billerman, S. M., Keeney, B. K., Rodewald, P. G., & Schulenberg, T. S. (2020). Birds of the World. Ithaca, NY, USA: Cornell Lab of Ornithology. https://birdsoftheworld.org/bow/home.

Boano, G., Tizzani, P., Rasero, R., Fasano, S. G., Centili, D., Silvano, F., Soglia, D., Sacchi, P., & Meneguz, P. G. (2020). Sex identification of Eurasian scops owl Otus scops using morphometric analysis. Ringing & Migration, 34, 45-51. https://doi.org/10.1080/03078698.2019.1759914.

Brubaker, J. L., Karouna-Renier, N. K., Chen, Y., Jenko, K., Sprague, D. T., & Henry, P. F. (2011). A noninvasive, direct real-time PCR method for sex determination in multiple avian species. Molecular Ecology Resources, 11, 415-417. https://doi.org/10.1111/j.1755-0998.2010.02951.x.

Çakmak, E., Akın Pekşen, Ç., & Bilgin, C. C. (2017). Comparison of three different primer sets for sexing birds. Journal of Veterinary Diagnostic Investigation, 29, 59-63. https://doi.org/10.1177/1040638716675197.

Cappello, C. D., & Boersma, P. D. (2018). Sexing Galápagos penguins Spheniscus mendiculus by morphological measurements. Endangered Species, 35, 169-173. https://doi.org/10.3354/esr00879.

Carbajo, E. (2006). Ostrich production to mature in more countries. In 3rd International Ratite Science Symposium, Madrid. World Poultry, 22, 24-26.

Casey, A. E., Jones, K. L., Sandercock, B. K., & Wisely, S. M. (2009). Heteroduplex molecules cause sexing errors in a standard molecular protocol for avian sexing. Molecular Ecology Resources, 9, 61-65. https://doi.org/10.1111/j.1755-0998.2008.02307.x.

Centeno-Cuadros, A., Tella, J. L., Delibes, M., Edelaar, P., & Carrete, M. (2018). Validation of loop-mediated isothermal amplification for fast and portable sex determination across the phylogeny of birds. Molecular Ecology Resources, 18, 251-263. https://doi.org/10.1111/1755-0998.12732.

Chang, H. W., Cheng, C. A., Gu, D. L., Chang, C. C., Su, S. H., Wen, C. H., Chou, Y. C., Chou, T. C., Yao, C. T., Tsai, C. L., & Cheng, C. C. (2008). High-throughput avian molecular sexing by SYBR green-based real-time PCR combined with melting curve analysis. BMC Biotechnology, 8, 12. https://doi.org/10.1186/1472-6750-8-12.

Chang, H. W., Gu, D. L., Su, S. H., Chang, C. C., Cheng, C. A., Huang, H. W., Yao, C. T., Chou, T. C., Chuang, L. Y., & Cheng, C. C. (2008). High-throughput gender identification of Accipitridae eagles with real-time PCR using TaqMan probes. Theriogenology, 70, 83-90. https://doi.org/10.1016/j.theriogenology.2008.02.011.

Chen, C. C., Liu, Y. S., Cheng, C. C., Wang, C. L., Liao, M. H., Tseng, C. N., & Chang, H. W. (2012). High-throughput sex identification by melting curve analysis in blue-breasted quail and chicken. Theriogenology, 77, 1951-1958. https://doi.org/10.1016/j.theriogenology.2011.12.004.

Chou, T. C., Yao, C. T., Su, S. H., Hung, Y. C., Chen, W. S., Cheng, C. C., Tseng, C. N., Wang, H. M., Chou, Y. C., Li, S. S. L., Gu, D. L., & Chang, H. W. (2010). Validation of Spilornis cheela hoya TaqMan probes for potential gender identification of many Accipitridae species. Theriogenology, 73, 404-411. https://doi.org/10.1016/j.theriogenology.2009.09.024.

Cortés, O., Barroso, A., & Dunner, S. (1999). Avian sexing: an optimized protocol using polymerase chain reaction-single-strand conformation polymorphism. Journal of Veterinary Diagnostic Investigation, 11, 297-299. https://doi.org/10.1177/104063879901100318.

Dawson, D. A., Brekke, P., Dos Remedios, N., & Horsburgh, G. J. (2015). A marker suitable for sex-typing birds from degraded samples. Conservation Genetics Resources, 7, 337-343. https://doi.org/10.1007/s12686-015-0429-3.

Dawson, D. A., Darby, S., Hunter, F. M., Krupa, A. P., Jones, I. L., & Burke, T. (2001). A critique of avian CHD-based molecular sexing protocols illustrated by a Z-chromosome polymorphism detected in auklets. Molecular Ecology Notes, 1, 201-204. https://doi.org/10.1046/j.1471-8278.2001.00060.x.

Derjusheva, S., Kurganova, A., Habermann, F., & Gaginskaya, E. (2004). High chromosome conservation detected by comparative chromosome painting in chicken, pigeon and passerine birds. Chromosome Research, 12, 715-723. https://doi.org/10.1023/B:CHRO.0000045779.50641.00.

Dierickx, E. G., Sin, S., van Veelen, H., Brooke, M. L., Liu, Y., Edwards, S. V., & Martin, S. H. (2020). Genetic diversity, demographic history and neo-sex chromosomes in the critically endangered Raso lark. Proceedings of the Royal Society B: Biological Sciences, 287, 20192613. https://doi.org/10.1098/rspb.2019.2613.

Ellegren, H. (1996). First gene on the avian W chromosome (CHD) provides a tag for universal sexing of non-ratite birds. Proceedings of the Royal Society B: Biological Sciences, 263, 1635-1641. https://doi.org/10.1098/rspb.1996.0239.

Ellegren, H., & Sheldon, B. C. (1997). New tools for sex identification and the study of sex allocation in birds. Trends in Ecology & Evolution, 12, 255-259. https://doi.org/10.1016/s0169-5347(97)01061-6.

Faux, C. E., McInnes, J. C., & Jarman, S. N. (2014). High-throughput real-time PCR and melt curve analysis for sexing Southern Ocean seabirds using fecal samples. Theriogenology, 81, 870-874. https://doi.org/10.1016/j.theriogenology.2013.12.021.

Feng, S., Stiller, J., Deng, Y., Armstrong, J., Fang, Q. I., Reeve, A. H., Xie, D., Chen, G., Guo, C., Faircloth, B. C., Petersen, B., Wang, Z., Zhou, Q. I., Diekhans, M., Chen, W., Andreu-Sánchez, S., Margaryan, A., Howard, J. T., Parent, C., … Zhang, G. (2020). Dense sampling of bird diversity increases power of comparative genomics. Nature, 587, 252-257. https://doi.org/10.1038/s41586-020-2873-9.

Fridolfsson, A. K., & Ellegren, H. (1999). A simple and universal method for molecular sexing of non-ratite birds. Journal of Avian Biology, 30, 116-121.

Gan, H. M., Falk, S., Morales, H. E., Austin, C. M., Sunnucks, P., & Pavlova, A. (2019). Genomic evidence of neo-sex chromosomes in the eastern yellow robin. GigaScience, 8, giz111. https://doi.org/10.1093/gigascience/giz111.

Gray, C. M., & Hamer, K. C. (2001). Food-provisioning behaviour of male and female Manx shearwaters, Puffinus puffinus. Animal Behaviour, 62, 117-121. https://doi.org/10.1006/anbe.2001.1717.

Griffiths, R., Daan, S., & Dijkstra, C. (1996). Sex identification in birds using two CHD genes. Proceedings of the Royal Society B: Biological Sciences, 263, 1251-1256. https://doi.org/10.1098/rspb.1996.0184.

Griffiths, R., Double, M. C., Orr, K., & Dawson, R. J. (1998). A DNA test to sex most birds. Molecular Ecology, 7, 1071-1075. https://doi.org/10.1046/j.1365-294x.1998.00389.x.

Griffiths, R., & Korn, R. M. (1997). A CHD1 gene is Z chromosome linked in the chicken Gallus domesticus. Gene, 197, 225-229. https://doi.org/10.1016/s0378-1119(97)00266-7.

Griffiths, R., & Phil, D. (2000). Sex identification in birds. Seminars in Avian and Exotic Pet Medicine, 9, 14-26. https://doi.org/10.1016/S1055-937X(00)80012-2.

Griffiths, R., & Tiwari, B. (1993). The isolation of molecular genetic markers for the identification of sex. Proceedings of the National Academy of Sciences, 90, 8324-8326. https://doi.org/10.1073/pnas.90.18.8324.

Griffiths, R., & Tiwari, B. (1995). Sex of the last wild Spix's macaw. Nature, 375, 454.

Gunski, R. J., Cañedo, A. D., Garnero, A., Ledesma, M. A., Coria, N., Montalti, D., & Degrandi, T. M. (2017). Multiple sex chromosome system in penguins (Pygoscelis, Spheniscidae). Comparative Cytogenetics, 11, 541-552. https://doi.org/10.3897/CompCytogen.v11i3.13795.

Harris, T., & Walters, C. (1982). Chromosomal sexing of the Black shouldered kite (Elanus caeruleus) (Aves: Accipitridae). Genetica, 60, 19-20. https://doi.org/10.1007/BF00121451.

He, P. J., Yu, J. Q., & Fang, S. G. (2005). Sex identification of the black swan (Cygnus atratus) using the locus-specific PCR and implications for its reproduction. Reproduction in Domestic Animals, 40, 196-198. https://doi.org/10.1111/j.1439-0531.2005.00562.x.

Hinckley, J. D., Park, R. L., Xiong, S., Andersen, W. R., & Kooyman, D. L. (2005). Identification and development of sex specific DNA markers in the ostrich using polymerase chain reaction. International Journal of Poultry Science, 4, 663-669.

Huang, H. W., Su, Y. F., Yao, C. T., Hung, Y. C., Chen, C. C., Cheng, C. C., Li, S. S. L., & Chang, H. W. (2011). High-throughput gender identification of three Columbidae species using melting curve analysis. Theriogenology, 75, 73-79.e4. https://doi.org/10.1016/j.theriogenology.2010.07.012.

Huynen, L., Millar, C. D., & Lambert, D. M. (2002). A DNA test to sex ratite birds. Molecular Ecology, 11, 851-856. https://doi.org/10.1046/j.1365-294x.2002.01483.x.

International Chicken Genome Sequencing Consortium (2004). Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature, 432, 695-716. https://doi.org/10.1038/nature03154.

Ito, H., Sudo-Yamaji, A., Abe, M., Murase, T., & Tsubota, T. (2003). Sex identification by alternative polymerase chain reaction methods in falconiformes. Zoological Science, 20, 339-344. https://doi.org/10.2108/zsj.20.339.

Jarvis, E. D., Mirarab, S., Aberer, A. J., Li, B., Houde, P., Li, C., Ho, S. Y. W., Faircloth, B. C., Nabholz, B., Howard, J. T., Suh, A., Weber, C. C., da Fonseca, R. R., Li, J., Zhang, F., Li, H., Zhou, L., Narula, N., Liu, L., … Zhang, G. (2014). Whole-genome analyses resolve early branches in the tree of life of modern birds. Science, 346, 1320-1331.

Kahn, N.W., St. John, J., & Quinn, T. W. (1998). Chromosome-specific intron size differences in the avian CHD gene provide an efficient method for sex identification in birds. Auk, 115, 1074-1078.

Koch, H. R., Blohm-Sievers, E., & Liedvogel, M. (2019). Rapid sex determination of a wild passerine species using loop-mediated isothermal amplification (LAMP). Ecology and Evolution, 9, 5849-5858. https://doi.org/10.1002/ece3.5168.

Kostmann, A., Kratochvíl, L., & Rovatso, M. (2021). Poorly differentiated XX/XY sex chromosomes are widely shared across skink radiation. Proceedings of the Royal Society B: Biological sciences, 288, 20202139. https://doi.org/10.1098/rspb.2020.2139.

Lee, J. C., Tsai, L. C., Hwa, P. Y., Chan, C. L., Huang, A., Chin, S. C., Wang, L. I., Lin, J. T., Linacre, A., & Hsieh, H. M. (2010). A novel strategy for avian species and gender identification using the CHD gene. Molecular and Cellular Probes, 24, 27-31.

Lee, M. Y., Hong, Y. J., Park, S. K., Kim, Y. J., Choi, T. Y., Lee, H., & Min, M. S. (2008). Application of two complementary molecular sexing methods for East Asian bird species. Genes & Genomics, 30, 365-372.

Li, H., Hu, Y., Song, C., Ji, G., Liu, H., Xu, W., & Ding, J. (2015). A new primer for sex identification of ducks and a minimally invasive technique for sampling of allantoic fluid to detect sex during bird embryo development. Sexual Development, 9, 173-181. https://doi.org/10.1159/000381075.

Mank, J. E., & Ellegren, H. (2007). Parallel divergence and degradation of the avian W sex chromosome. Trends in Ecology & Evolution, 22, 389-391. https://doi.org/10.1016/j.tree.2007.05.003.

Medeiros, R. T., Chaves, F. G., Vecchi, M. B., Nogueira, D. M., & Alves, M. A. S. (2019). Molecular sexing and intersexual differences in the morphometry of the Hangnest tody-tyrant Hemitriccus nidipendulus (Passeriformes: Rhynchocyclidae). Zoologia (Curitiba), 36, e32771. https://doi.org/10.3897/zoologia.36.e32771.

Medeiros, R. J., King, R. A., Symondson, W. O., Cadiou, B., Zonfrillo, B., Bolton, M., Morton, R., Howell, S., Clinton, A., Felgueiras, M., & Thomas, R. J. (2012). Molecular evidence for gender differences in the migratory behaviour of a small seabird. PLoS One, 7, e46330.

Morinha, F., Bautista, L. M., Monteiro, M., & Alonso, J. C. (2019). A simple strategy for improving bird sexing from highly degraded DNA samples. Conservation Genetics Resourches, 11, 393-396. https://doi.org/10.1007/s12686-018-1030-3.

Morinha, F., Cabral, J. A., & Bastos, E. (2012). Molecular sexing of birds: A comparative review of polymerase chain reaction (PCR)-based methods. Theriogenology, 78, 703-714. https://doi.org/10.1016/j.theriogenology.2012.04.015.

Morinha, F., Cabral, J. A., Martins, S., Cruz, E., Alvura, N., Nunes, P., Direitinho, J., Magalhães, P., & Bastos, E. (2015). (R)evolution in the molecular sexing of ratite birds: identification and analysis of new candidate sex-linked markers. Avian Biology Research, 8, 145-159.

Morinha, F., Magalhães, P., Ferro, A., Guedes-Pinto, H., Rodrigues, R., & Bastos, E. (2011). Advances in molecular sexing of birds: a high-resolution melting-curve analysis based on CHD1 gene applied to Coturnix spp. Annales Zoologici Fennici, 48, 371-375. https://doi.org/10.5735/086.048.0605.

Morinha, F., Travassos, P., Seixas, F., Santos, N., Sargo, R., Sousa, L., Magalhães, P., Cabral, J. A., & Bastos, E. (2013). High-resolution melting analysis for bird sexing: a successful approach to molecular sex identification using different biological samples. Molecular Ecology Resources, 13, 473-483. https://doi.org/10.1111/1755-0998.12081.

Nanda, I., Schlegelmilch, K., Haaf, T., Schartl, M., & Schmid, M. (2008). Synteny conservation of the Z chromosome in 14 avian species (11 families) supports a role for Z dosage in avian sex determination. Cytogenetic and Genome Research, 122, 150-156. https://doi.org/10.1159/000163092.

Nishida, C., Ishijima, J., Kosaka, A., Tanabe, H., Habermann, F. A., Griffin, D. K., & Matsuda, Y. (2008). Characterization of chromosome structures of Falconinae (Falconidae, Falconiformes, Aves) by chromosome painting and delineation of chromosome rearrangements during their differentiation. Chromosome Research, 16, 171-181. https://doi.org/10.1007/s10577-007-1210-6.

Nishida-Umehara, C., Tsuda, Y., Ishijima, J., Ando, J., Fujiwara, A., Matsuda, Y., & Griffin, D. K. (2007). The molecular basis of chromosome orthologies and sex chromosomal differentiation in palaeognathous birds. Chromosome Research, 15, 721-734. https://doi.org/10.1007/s10577-007-1157-7.

Pala, I., Naurin, S., Stervander, M., Hasselquist, D., Bensch, S., & Hansson, B. (2012). Evidence of a neo-sex chromosome in birds. Heredity, 108, 264-272. https://doi.org/10.1038/hdy.2011.70.

Patiño, L., Cruz, M., Martínez, P., & Cedeño-Escobar, V. (2013). Using PCR-RFLP for sexing of the endangered Galápagos petrel (Pterodroma phaeopygia). Genetics and Molecular Research, 12, 4760-4767. https://doi.org/10.4238/2013.October.18.13.

Prum, R. O., Berv, J. S., Dornburg, A., Field, D. J., Townsend, J. P., Lemmon, E. M., & Lemmon, A. R. (2015). A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature, 526, 569-573. https://doi.org/10.1038/nature15697.

Quinn, T. W., Cooke, F., & White, B. N. (1990). Molecular sexing of geese using a cloned Z chromosomal sequence with homology to the W chromosome. Auk, 107, 199-202.

Ramos, P. S., Bastos, E., Mannan, R. W., & Guedes-Pinto, H. (2009). Polymerase chain reaction-single strand conformation polymorphism applied to sex identification of Accipiter cooperii. Molecular and Cellular Probes, 23, 115-118. https://doi.org/10.1016/j.mcp.2008.12.002.

Reddy, A., Prakash, V., & Shivaji, S. (2007). A rapid, non-invasive, PCR-based method for identification of sex of the endangered Old World vultures (white-backed and long-billed vultures)-Implications for captive breeding programmes. Current Science, 92, 659-662.

Reynolds, S. J., Martin, G. R., Wallace, L. L., Wearn, C. P., & Hughes, B. J. (2008). Sexing sooty terns on Ascension Island from morphometric measurements. Journal of Zoology, 274, 2-8. https://doi.org/10.1111/j.1469-7998.2007.00350.x.

Richner, H. (1989). Avian laparoscopy as a field technique for sexing birds and an assessment of its effects on wild birds. Journal of Field Ornithology, 60, 137-142.

Rosenthal, N. F., Ellis, H., Shioda, K., Mahoney, C., Coser, K. R., & Shioda, T. (2010). High-throughput applicable genomic sex typing of chicken by TaqMan real-time quantitative polymerase chain reaction. Poultry Science, 89, 1451-1456. https://doi.org/10.3382/ps.2010-00638.

Rovatsos, M., Farkačová, K., Altmanová, M., Johnson Pokorná, M., & Kratochvíl, L. (2019). The rise and fall of differentiated sex chromosomes in geckos. Molecular Ecology, 28, 3042-3052. https://doi.org/10.1111/mec.15126.

Rovatsos, M., & Kratochvíl, L. (2017). Molecular sexing applicable in 4000 species of lizards and snakes? From dream to real possibility. Methods in Ecology and Evolution, 8, 902-s906. https://doi.org/10.1111/2041-210X.12714.

Rovatsos, M., Pokorná, M., Altmanová, M., & Kratochvíl, L. (2014). Cretaceous park of sex determination: sex chromosomes are conserved across iguanas. Biology Letters, 10, 20131093. https://doi.org/10.1098/rsbl.2013.1093.

Rovatsos, M., Praschag, P., Fritz, U., & Kratochvíl, L. (2017). Stable Cretaceous sex chromosomes enable molecular sexing in softshell turtles (Testudines: Trionychidae). Scientific Reports, 7, 42150. https://doi.org/10.1038/srep42150.

Rovatsos, M., Rehák, I., Velenský, P., & Kratochvíl, L. (2019). Shared ancient sex chromosomes in varanids, beaded lizards, and alligator lizards. Molecular Biology and Evolution, 36, 1113-1120. https://doi.org/10.1093/molbev/msz024.

Rovatsos, M., Vukić, J., Altmanová, M., Johnson Pokorná, M., Moravec, J., & Kratochvíl, L. (2015). Conservation of sex chromosomes in lacertid lizards. Molecular Ecology, 25, 3120-3126. https://doi.org/10.1111/mec.13635.

Rovatsos, M., Vukić, J., Lymberakis, P., & Kratochvíl, L. (2015). Evolutionary stability of sex chromosomes in snakes. Proceedings of the Royal Society B: Biological Sciences, 282, 20151992. https://doi.org/10.1098/rspb.2015.1992.

Rutkowska, J., Lagisz, M., & Nakagawa, S. (2012). The long and the short of avian W chromosomes: no evidence for gradual W shortening. Biology Letters, 8, 636-638. https://doi.org/10.1098/rsbl.2012.0083.

Sales, J. (2007). The emu (Dromaius novaehollandiae): a review of its biology and commercial products. Avian and Poultry Biology Reviews, 18, 1-20.

Seyer, Y., Gauthier, G., Bernatchez, L., & Therrien, J. F. (2020). Sexing a monomorphic plumage seabird using morphometrics and assortative mating. Waterbirds, 42, 380-392. https://doi.org/10.1675/063.042.0403.

Shetty, S., Griffin, D. K., & Graves, J. A. (1999). Comparative painting reveals strong chromosome homology over 80 million years of bird evolution. Chromosome Research, 7, 289-295. https://doi.org/10.1023/a:1009278914829.

Shibusawa, M., Nishida-Umehara, C., Tsudzuki, M., Masabanda, J., Griffin, D. K., & Matsuda, Y. (2004). A comparative karyological study of the blue-breasted quail (Coturnix chinensis, Phasianidae) and California quail (Callipepla californica, Odontophoridae). Cytogenetic and Genome Research, 106, 82-90. https://doi.org/10.1159/000078569.

Sigeman, H., Ponnikas, S., Chauhan, P., Dierickx, E., Brooke, M. L., & Hansson, B. (2019). Repeated sex chromosome evolution in vertebrates supported by expanded avian sex chromosomes. Proceedings of the Royal Society B: Biological Sciences, 286, 20192051. https://doi.org/10.1098/rspb.2019.2051.

Sigeman, H., Ponnikas, S., & Hansson, B. (2020). Whole-genome analysis across 10 songbird families within Sylvioidea reveals a novel autosome-sex chromosome fusion. Biology Letters, 16, 20200082. https://doi.org/10.1098/rsbl.2020.0082.

Stock, A. D., & Bunch, T. D. (1982). The evolutionary implications of chromosome banding pattern homologies in the bird order Galliformes. Cytogenetics and Cell Genetics, 34, 136-148. https://doi.org/10.1159/000131802.

Sulandart, S., & Zein, M. S. A. (2012). Application of two molecular sexing methods for Indonesian bird species: Implication for captive breeding programs in Indonesia. HAYATI Journal of Biosciences, 19, 183-190. https://doi.org/10.4308/hjb.19.4.183.

Tsuda, Y., Nishida-Umehara, C., Ishijima, J., Yamada, K., & Matsuda, Y. (2007). Comparison of the Z and W sex chromosomal architectures in elegant crested tinamou (Eudromia elegans) and ostrich (Struthio camelus) and the process of sex chromosome differentiation in palaeognathous birds. Chromosoma, 116, 159-173. https://doi.org/10.1007/s00412-006-0088-y.

Volodin, I., Kaiser, M., Matrosova, V., Volodina, E., Klenova, A., Filatova, O., & Kholodova, M. (2009). The technique of noninvasive distant sexing for four monomorphic Dendrocygna whistling duck species by their loud whistles. Bioacoustics, 18, 277-290.

Wang, L. C., Chen, C. T., Lee, H. Y., Li, S. H., Lir, J. T., Chin, S. C., Pu, C. E., & Wang, C. H. (2007). Sexing a wider range of avian species based on two CHD1 introns with a unified reaction condition. Zoo Biology, 26, 425-431. https://doi.org/10.1002/zoo.20149.

Wang, N., & Zhang, Z. W. (2009). The novel primers for sex identification in the brown eared-pheasant and their application to other species. Molecular Ecology Resources, 9, 186-188. https://doi.org/10.1111/j.1755-0998.2008.02177.x.

Wang, Z., Zhou, X., Lin, Q., Fang, W., & Chen, X. (2011). New primers for sex identification in the Chinese egret and other ardeid species. Molecular Ecology Resources, 11, 176-179. https://doi.org/10.1111/j.1755-0998.2010.02879.x.

Wolfson, A. (1952). The cloacal protuberance: A means for determining breeding condition in live male passerines. Bird-Banding, 23, 159-165. https://doi.org/10.2307/4510381.

Wu, C. P., Horng, Y. M., Yang, K. T., Huang, C. W., & Huang, M. C. (2006). Female-specific DNA sequences in ostriches. Molecular and Cellular Probes, 20, 307-310. https://doi.org/10.1016/j.mcp.2006.03.002.

Ye, J., Coulouris, G., Zaretskaya, I., Cutcutache, I., Rozen, S., & Madden, T. L. (2012). Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics, 13, 134. https://doi.org/10.1186/1471-2105-13-134.

Zhang, P., Han, J., Liu, Q., Zhang, J., & Zhang, X. (2013). Sex identification of four penguin species using locus-specific PCR. Zoo Biology, 32, 257-261. https://doi.org/10.1002/zoo.21005.

Zhou, Q., Zhang, J., Bachtrog, D., An, N., Huang, Q., Jarvis, E. D., Gilbert, M. T., & Zhang, G. (2014). Complex evolutionary trajectories of sex chromosomes across bird taxa. Science, 346, 1246338. https://doi.org/10.1126/science.1246338.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...