Seizure occurrence in FCD type II is predicted by lesion position and linked to cytoarchitectural alterations
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NW24-04-00041
Ministerstvo Zdravotnictví Ceské Republiky
NW24-08-00394
Ministerstvo Zdravotnictví Ceské Republiky
EU - Next Generation EU: LX22NPO5107
Ministerstvo Školství, Mládeže a Tělovýchovy
ERDF project Brain Dynamics (CZ.02.01.01/00/22_008/0004643)
Ministerstvo Školství, Mládeže a Tělovýchovy
EXCITE (UNCE24/MED/021)
Univerzita Karlova v Praze
PRIMUS/23/MED/011
Univerzita Karlova v Praze
PubMed
41366489
PubMed Central
PMC12690940
DOI
10.1186/s40478-025-02166-x
PII: 10.1186/s40478-025-02166-x
Knihovny.cz E-zdroje
- Klíčová slova
- Axonal varicosities, Cytoarchitecture, Focal cortical dysplasia type II, Lesion topography, Parvalbumin interneurons, Predictive parameters, Somatostatin interneurons,
- MeSH
- epilepsie MeSH
- malformace mozkové kůry, skupina I * patologie komplikace genetika patofyziologie MeSH
- modely nemocí na zvířatech MeSH
- mozek * patologie MeSH
- myši inbrední C57BL MeSH
- myši transgenní MeSH
- myši MeSH
- neurony patologie MeSH
- TOR serin-threoninkinasy genetika MeSH
- záchvaty * patologie etiologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- mTOR protein, mouse MeSH Prohlížeč
- TOR serin-threoninkinasy MeSH
Focal cortical dysplasia (FCD) is a common malformation of cortical development and a major cause of early-onset, drug-resistant epilepsy. FCD type II is defined by abnormal lamination, altered cellular composition, and pathological cells, notably dysmorphic neurons (DNs) and balloon cells. DNs are thought to drive epileptogenicity through both cell-autonomous and non-cell-autonomous mechanisms, the latter including not only aberrant connectivity but also indirect modulation of excitability in local cell populations. We performed a multiscale structural and morphological analysis to elucidate the basis of FCD epileptogenicity and the impact of somatic mTOR mutations during brain development. Using a mouse model of FCD type II, we show that lesions in frontal and motor cortical regions are the strongest predictors of spontaneous seizure occurrence. This localization-dependent epileptogenicity offers an experimental explanation for the higher clinical epileptogenicity of frontal FCDs and suggests that posterior lesions may remain silent-an open question in human pathology. In our model, FCD tissue displayed considerable expansion, with cortical thickness up to ~ 20% in seizure-bearing animals. This expansion coincided with an overall ~ 40% reduction in neuronal density, consistent with tissue hypertrophy. DN density did not differ between seizure and non-seizure animals, challenging the notion that higher DN load directly predicts epileptogenesis. At the microscopic level, we describe DN axonal pathologies, including giant varicosities. In the cortex, these appeared as vesicle-filled boutons, whereas along callosal axons they were frequent but largely empty. Bouton density was markedly reduced in FCD cortex. Together, these findings leave the net synaptic effect of dysmorphic neurons unresolved, challenging the assumption that axonal hypertrophy translates into increased excitatory drive. While morphological abnormalities in FCD type II are well documented, their functional consequences remain incompletely understood. Here, we used macro- and microscopic structural features of FCDII to assess seizure susceptibility, providing new insights into epileptogenesis.
Zobrazit více v PubMed
Tassi L, Garbelli R, Colombo N, Bramerio M, Lo Russo G, Deleo F et al (2010) Type I focal cortical dysplasia: surgical outcome is related to histopathology. Epileptic Disord 12(3):181–191. 10.1684/epd.2010.0327 PubMed DOI
Guerrini R, Duchowny M, Jayakar P, Krsek P, Kahane P, Tassi L et al (2015) Diagnostic methods and treatment options for focal cortical dysplasia. Epilepsia 56(11):1669–1686. 10.1111/epi.13200 PubMed DOI
Tassi L, Colombo N, Garbelli R, Francione S, Lo Russo G, Mai R et al (2002) Focal cortical dysplasia: neuropathological subtypes, EEG, neuroimaging and surgical outcome. Brain 125:1719–1732 PubMed DOI
Desikan R, Barkovich A (2016) Malformations of cortical development. Ann Neurol 80(6):797–810. 10.1002/ana.24793 PubMed DOI PMC
Blumcke I, Spreafico R, Haaker G, Coras R, Kobow K, Bien C et al (2017) Histopathological findings in brain tissue obtained during epilepsy surgery. N Engl J Med 377(17):1648–1656. 10.1056/NEJMoa1703784 PubMed DOI
Crino P (2015) Focal cortical dysplasia. Semin Neurol 35(3):201–208. 10.1055/s-0035-1552617 PubMed DOI PMC
Blümcke I, Thom M, Aronica E, Armstrong D, Vinters H, Palmini A et al (2011) The clinicopathologic spectrum of focal cortical dysplasias: a consensus classification proposed by an ad hoc Task Force of the ILAE Diagnostic Methods Commission. Epilepsia 52(1):158–174. 10.1111/j.1528-1167.2010.02777.x PubMed DOI PMC
Blümcke I, Coras R, Busch R, Morita-Sherman M, Lal D, Prayson R et al (2021) Toward a better definition of focal cortical dysplasia: an iterative histopathological and genetic agreement trial. Epilepsia 62(6):1416–1428. 10.1111/epi.16899 PubMed DOI
Najm I, Lal D, Vanegas M, Cendes F, Lopes-Cendes I, Palmini A et al (2022) The ILAE consensus classification of focal cortical dysplasia: An update proposed by an ad hoc task force of the ILAE diagnostic methods commission. Epilepsia 63(8):1899–1919. 10.1111/epi.17301 PubMed DOI PMC
Nakashima M, Saitsu H, Takei N, Tohyama J, Kato M, Kitaura H et al (2015) Somatic mutations in the MTOR gene cause focal cortical dysplasia type IIb. Ann Neurol 78(3):375–386. 10.1002/ana.24444 PubMed DOI
Lim J, Kim W, Kang H, Kim S, Park A, Park E et al (2015) Brain somatic mutations in MTOR cause focal cortical dysplasia type II leading to intractable epilepsy. Nat Med 21(4):395–400. 10.1038/nm.3824 PubMed DOI
Zamecnik J, Homola A, Cicanic M, Kuncova K, Marusic P, Krsek P et al (2012) The extracellular matrix and diffusion barriers in focal cortical dysplasias. Eur J Neurosci 36(1):2017–2024. 10.1111/j.1460-9568.2012.08107.x PubMed DOI
Rossini L, De Santis D, Mauceri R, Tesoriero C, Bentivoglio M, Maderna E et al (2021) Dendritic pathology, spine loss and synaptic reorganization in human cortex from epilepsy patients. Brain 144:251–265. 10.1093/brain/awaa387 PubMed DOI
Rossini L, De Santis D, Cecchini E, Cagnoli C, Maderna E, Cartelli D et al (2023) Dendritic spine loss in epileptogenic type II focal cortical dysplasia: role of enhanced classical complement pathway activation. Brain Pathol. 10.1111/bpa.13141 PubMed DOI PMC
Krsek P, Tichy M, Belsan T, Zámecník J, Paulas L, Faladová L et al (2002) Life-saving epilepsy surgery for status epilepticus caused by cortical dysplasia. Epileptic Disord 4(3):203–208 PubMed DOI
Proietti Onori M, Koene L, Schäfer C, Nellist M, de Brito van Velze M, Gao Z et al (2021) RHEB/mTOR hyperactivity causes cortical malformations and epileptic seizures through increased axonal connectivity. Plos Biol 19:5. 10.1371/journal.pbio.3001279 PubMed DOI PMC
Krsek P, Jahodova A, Kyncl M, Kudr M, Komarek V, Jezdik P et al (2013) Predictors of seizure-free outcome after epilepsy surgery for pediatric tuberous sclerosis complex. Epilepsia 54(11):1913–1921. 10.1111/epi.12371 PubMed DOI
Saito T, Nakatsuji N (2001) Efficient gene transfer into the embryonic mouse brain using in vivo electroporation. Dev Biol 240(1):237–246. 10.1006/dbio.2001.0439 PubMed DOI
Tabata H, Nakajima K (2001) Efficient in utero gene transfer system to the developing mouse brain using electroporation: visualization of neuronal migration in the developing cortex. Neuroscience 103(4):865–872 PubMed DOI
Procházková N, Nguyenová M, Rehorová M, Kudlácek J, Chvojka J, Ziak J et al (2024) NeuroPorator: an open-source, current-limited electroporator for safe in utero gene transfer. J Neurosci Methods. 10.1016/j.jneumeth.2024.110126 PubMed DOI
Susaki E, Tainaka K, Perrin D, Yukinaga H, Kuno A, Ueda H (2015) Advanced cubic protocols for whole-brain and whole-body clearing and imaging. Nat Protoc 10(11):1709–1727. 10.1038/nprot.2015.085 PubMed DOI
Janca R, Jezdik P, Cmejla R, Tomasek M, Worrell G, Stead M et al (2015) Detection of interictal epileptiform discharges using signal envelope distribution modelling: application to epileptic and non-epileptic intracranial recordings. Brain Topogr 28(1):172–183. 10.1007/s10548-014-0379-1 PubMed DOI
Kirkcaldie M (2012) The mouse nervous system. Academic Press, San Diego
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682. 10.1038/NMETH.2019 PubMed DOI PMC
Pachitariu M, Stringer C (2022) Cellpose 2.0: how to train your own model. Nat Methods 19(12):1634. 10.1038/s41592-022-01663-4 PubMed DOI PMC
Chvojka J, Prochazkova N, Rehorova M, Kudlacek J, Kylarova S, Kralikova M et al (2024) Mouse model of focal cortical dysplasia type II generates a wide spectrum of high-frequency activities. Neurobiol Dis. 10.1016/j.nbd.2023.106383 PubMed DOI
Hsieh L, Wen J, Claycomb K, Huang Y, Harrsch F, Naegele J et al (2016) Convulsive seizures from experimental focal cortical dysplasia occur independently of cell misplacement. Nat Commun. 10.1038/ncomms11753 PubMed DOI PMC
Nguyen L, Mahadeo T, Bordey A (2019) mTOR hyperactivity levels influence the severity of epilepsy and associated neuropathology in an experimental model of Tuberous Sclerosis Complex and focal cortical dysplasia. J Neurosci 39(14):2762–2773. 10.1523/JNEUROSCI.2260-18.2019 PubMed DOI PMC
Hoeffer C, Klann E (2010) mTOR signaling: at the crossroads of plasticity, memory and disease. Trends Neurosci 33(2):67–75. 10.1016/j.tins.2009.11.003 PubMed DOI PMC
Baek S, Copeland B, Yun E, Kwon S, Guemez-Gamboa A, Schaffer A et al (2015) An AKT3-FOXG1-reelin network underlies defective migration in human focal malformations of cortical development. Nat Med 21(12):1445. 10.1038/nm.3982 PubMed DOI PMC
Garbelli R, Munari C, De Biasi S, Vitellaro-Zuccarello L, Galli C, Bramerio M et al (1999) Taylor’s cortical dysplasia: a confocal and ultrastructural immunohistochemical study. Brain Pathol 9(3):445–461 PubMed DOI PMC
Krsek P, Maton B, Korman B, Pacheco-Jacome E, Jayakar P, Dunoyer C et al (2008) Different features of histopathological subtypes of pediatric focal cortical dysplasia. Ann Neurol 63(6):758–769 PubMed DOI
Zhong S, Zhao Z, Xie W, Cai Y, Zhang Y, Ding J et al (2021) GABAergic interneuron and neurotransmission are mTOR-dependently disturbed in experimental focal cortical dysplasia. Mol Neurobiol 58(1):156–169. 10.1007/s12035-020-02086-y PubMed DOI
Ribierre T, Deleuze C, Bacq A, Baldassari S, Marsan E, Chipaux M et al (2018) Second-hit mosaic mutation in mTORC1 repressor DEPDC5 causes focal cortical dysplasia-associated epilepsy. J Clin Invest 128(6):2452–2458. 10.1172/JCI99384 PubMed DOI PMC
Nowakowski T, Pollen A, Sandoval-Espinosa C, Kriegstein A (2016) Transformation of the radial glia scaffold demarcates two stages of human cerebral cortex development. Neuron 91(6):1219–1227. 10.1016/j.neuron.2016.09.005 PubMed DOI PMC
Pollen A, Nowakowski T, Chen J, Retallack H, Sandoval-Espinosa C, Nicholas C et al (2015) Molecular identity of human outer radial glia during cortical development. Cell 163(1):55–67. 10.1016/j.cell.2015.09.004 PubMed DOI PMC
Lim JS, Gopalappa R, Kim SH, Ramakrishna S, Lee M, Kim WI et al (2017) Somatic mutations in TSC1 and TSC2 cause focal cortical dysplasia. Am J Hum Genet 100(3):454–472. 10.1016/j.ajhg.2017.01.030 PubMed DOI PMC
Goto J, Talos D, Klein P, Qin W, Chekaluk Y, Anderl S et al (2011) Regulable neural progenitor-specific Tsc1 loss yields giant cells with organellar dysfunction in a model of tuberous sclerosis complex. Proc Natl Acad Sci U S A 108(45):E1070–E1079. 10.1073/pnas.1106454108 PubMed DOI PMC
Reijnders M, Kousi M, van Woerden G, Klein M, Bralten J, Mancini G et al (2017) Variation in a range of mTOR-related genes associates with intracranial volume and intellectual disability. Nat Commun. 10.1038/s41467-017-00933-6 PubMed DOI PMC
Kudlacek J, Chvojka J, Kralikova M, Kylarova S, Ravi T, Novak O et al (2025) Interictal activity fluctuations follow rather than precede seizures on multiple time scales in a mouse model of focal cortical dysplasia. Neurobiol Dis 216:107102. 10.1016/j.nbd.2025.107102 PubMed DOI
Lagarde S, Bonini F, McGonigal A, Chauvel P, Gavaret M, Scavarda D et al (2016) Seizure-onset patterns in focal cortical dysplasia and neurodevelopmental tumors: relationship with surgical prognosis and neuropathologic subtypes. Epilepsia 57(9):1426–1435. 10.1111/epi.13464 PubMed DOI
Wagstyl K, Whitaker K, Raznahan A, Seidlitz J, Vértes P, Foldes S et al (2022) Atlas of lesion locations and postsurgical seizure freedom in focal cortical dysplasia: a MELD study. Epilepsia 63(1):61–74. 10.1111/epi.17130 PubMed DOI PMC
Maynard L, Leach J, Horn P, Spaeth C, Mangano F, Holland K et al (2017) Epilepsy prevalence and severity predictors in MRI-identified focal cortical dysplasia. Epilepsy Res 132:41–49. 10.1016/j.eplepsyres.2017.03.001 PubMed DOI
Macdonald-Laurs E, Warren A, Francis P, Mandelstam S, Lee W, Coleman M et al (2024) The clinical, imaging, pathological and genetic landscape of bottom-of-sulcus dysplasia. Brain 147(4):1264–1277. 10.1093/brain/awad379 PubMed DOI
Oh S, Harris J, Ng L, Winslow B, Cain N, Mihalas S et al (2014) A mesoscale connectome of the mouse brain. Nature 508:7495. 10.1038/nature13186 PubMed DOI PMC
Harris J, Mihalas S, Hirokawa K, Whitesell J, Choi H, Bernard A et al (2019) Hierarchical organization of cortical and thalamic connectivity. Nature 575(7781):195. 10.1038/s41586-019-1716-z PubMed DOI PMC
Sydnor V, Larsen B, Bassett D, Alexander-Bloch A, Fair D, Liston C et al (2021) Neurodevelopment of the association cortices: patterns, mechanisms, and implications for psychopathology. Neuron 109(18):2820–2846. 10.1016/j.neuron.2021.06.016 PubMed DOI PMC
Baldassari S, Klingler E, Teijeiro L, Doladilhe M, Raoux C, Roig-Puiggros S et al (2025) Single-cell genotyping and transcriptomic profiling of mosaic focal cortical dysplasia. Nat Neurosci. 10.1038/s41593-025-01936-z PubMed DOI PMC
Macdonald-Laurs E, Warren A, Lee W, Yang J, MacGregor D, Lockhart P et al (2023) Intrinsic and secondary epileptogenicity in focal cortical dysplasia type II. Epilepsia 64(2):348–363. 10.1111/epi.17495 PubMed DOI PMC
Thom M, Martinian L, Sen A, Cross J, Harding B, Sisodiya S (2005) Cortical neuronal densities and lamination in focal cortical dysplasia. Acta Neuropathol 110(4):383–392. 10.1007/s00401-005-1062-0 PubMed DOI
Finardi A, Colciaghi F, Castana L, Locatelli D, Marras C, Nobili P et al (2013) Long-duration epilepsy affects cell morphology and glutamatergic synapses in type IIB focal cortical dysplasia. Acta Neuropathol 126(2):219–235. 10.1007/s00401-013-1143-4 PubMed DOI
Nakagawa J, Donkels C, Fauser S, Schulze-Bonhage A, Prinz M, Zentner J et al (2017) Characterization of focal cortical dysplasia with balloon cells by layer-specific markers: evidence for differential vulnerability of interneurons. Epilepsia 58(4):635–645. 10.1111/epi.13690 PubMed DOI
Andrews M, Subramanian L, Kriegstein A (2020) mTOR signaling regulates the morphology and migration of outer radial glia in developing human cortex. Elife. 10.7554/eLife.58737 PubMed DOI PMC
Herculano-Houzel S, Watson C, Paxinos G (2013) Distribution of neurons in functional areas of the mouse cerebral cortex reveals quantitatively different cortical zones. Front Neuroanat. 10.3389/fnana.2013.00035 PubMed DOI PMC
Keller D, Erö C, Markram H (2018) Cell densities in the mouse brain: a systematic review. Front Neuroanat. 10.3389/fnana.2018.00083 PubMed DOI PMC
Zhao S, Li Z, Zhang M, Zhang L, Zheng H, Ning J et al (2019) A brain somatic RHEB doublet mutation causes focal cortical dysplasia type II. Exp Mol Med. 10.1038/s12276-019-0277-4 PubMed DOI PMC
Wang Y (2022) Not so innocent bystanders in focal cortical dysplasia. Epilepsy Curr 22(1):75–77. 10.1177/15357597211049051 PubMed DOI PMC
Koh H, Jang J, Ju S, Kim R, Cho G, Kim D et al (2021) Non-cell autonomous epileptogenesis in focal cortical dysplasia. Ann Neurol 90(2):285–299. 10.1002/ana.26149 PubMed DOI
D’Gama A, Woodworth M, Hossain A, Bizzotto S, Hatem N, LaCoursiere C et al (2017) Somatic mutations activating the mTOR pathway in dorsal telencephalic progenitors cause a continuum of cortical dysplasias. Cell Rep 21(13):3754–3766. 10.1016/j.celrep.2017.11.106 PubMed DOI PMC
Ribierre T, Bacq A, Donneger F, Doladilhe M, Maletic M, Roussel D et al (2024) Targeting pathological cells with senolytic drugs reduces seizures in neurodevelopmental mTOR-related epilepsy. Nat Neurosci 27(6):1125–1136. 10.1038/s41593-024-01634-2 PubMed DOI PMC
Choi Y, Di Nardo A, Kramvis I, Meikle L, Kwiatkowski D, Sahin M et al (2008) Tuberous sclerosis complex proteins control axon formation. Genes Dev 22(18):2485–2495. 10.1101/gad.1685008 PubMed DOI PMC
Donkels C, Häussler U, Huber S, Tiesmeyer N, Demerath T, Scheiwe C et al (2025) Dysregulation of myelination in focal cortical dysplasia type II of the human Frontal lobe. Glia 73(5):928–947. 10.1002/glia.24662 PubMed DOI PMC
Mendoza-Torreblanca J, Vanoye-Carlo A, Phillips-Farfán B, Carmona-Aparicio L, Gómez-Lira G (2013) Synaptic vesicle protein 2A: basic facts and role in synaptic function. Eur J Neurosci 38(11):3529–3539. 10.1111/ejn.12360 PubMed DOI
Hanaya R, Hosoyama H, Sugata S, Tokudome M, Hirano H, Tokimura H et al (2012) Low distribution of synaptic vesicle protein 2A and synaptotagimin-1 in the cerebral cortex and hippocampus of spontaneously epileptic rats exhibiting both tonic convulsion and absence seizure. Neuroscience 221:12–20. 10.1016/j.neuroscience.2012.06.058 PubMed DOI
Serrano M, Bahri M, Becker G, Seret A, Germonpré C, Lemaire C et al (2020) Exploring with [18F]UCB-H the in vivo variations in SV2A expression through the kainic acid rat model of temporal lobe epilepsy. Mol Imaging Biol 22(5):1197–1207. 10.1007/s11307-020-01488-7 PubMed DOI PMC
Tang Y, Yu J, Zhou M, Li J, Long T, Li Y et al (2022) Cortical abnormalities of synaptic vesicle protein 2A in focal cortical dysplasia type II identified in vivo with 18F-SynVesT-1 positron emission tomography imaging. Eur J Nucl Med Mol Imaging 49(10):3482–3491. 10.1007/s00259-021-05665-w PubMed DOI PMC
Zipp F, Bittner S, Schafer D (2023) Cytokines as emerging regulators of central nervous system synapses. Immunity 56(5):914–925. 10.1016/j.immuni.2023.04.011 PubMed DOI PMC
Liang C, Zhang C, Chen X, Wang L, Yue J, An N et al (2020) Differential expression hallmarks of interneurons in different types of focal cortical dysplasia. J Mol Neurosci 70(5):796–805. 10.1007/s12031-020-01492-0 PubMed DOI
Medici V, Rossini L, Deleo F, Tringali G, Tassi L, Cardinale F et al (2016) Different parvalbumin and GABA expression in human epileptogenic focal cortical dysplasia. Epilepsia 57(7):1109–1119. 10.1111/epi.13405 PubMed DOI
Galvao I, Lemoine M, Messias L, Araújo P, Geraldis J, Yasuda C et al (2024) Multimodal single-cell profiling reveals neuronal vulnerability and pathological cell states in focal cortical dysplasia. iscience. 10.1016/j.isci.2024.111337 PubMed DOI PMC
Calcagnotto M, Paredes M, Tihan T, Barbaro N, Baraban S (2005) Dysfunction of synaptic inhibition in epilepsy associated with focal cortical dysplasia. J Neurosci 25(42):9649–9657. 10.1523/JNEUROSCI.2687-05.2005 PubMed DOI PMC
Tremblay R, Lee S, Rudy B (2016) Gabaergic interneurons in the neocortex: from cellular properties to circuits. Neuron 91(2):260–292. 10.1016/j.neuron.2016.06.033 PubMed DOI PMC