Microbiome-based approaches to personalized nutrition: from gut health to disease prevention

. 2025 Oct ; 70 (5) : 961-978. [epub] 20250924

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid40991166
Odkazy

PubMed 40991166
DOI 10.1007/s12223-025-01337-6
PII: 10.1007/s12223-025-01337-6
Knihovny.cz E-zdroje

A complex community of trillions of microorganisms, the human gut microbiome has become a major regulator of health, impacting immune system function, metabolism, digestion, and even brain activity. Recent findings demonstrate how the microbiota is significantly shaped by diet and how the microbiome in turn influences how each person reacts to nutrition. In order to promote disease prevention and long-term health outcomes, this review examines how microbiome-driven approaches are transforming personalized nutrition by going beyond traditional dietary models. The review addresses how dietary elements like fibre, polyphenols, prebiotics, and fermented foods support metabolic activity and microbial diversity. It also discusses the connections between microbial imbalances, or dysbiosis, and illnesses like diabetes, obesity, heart disease, inflammatory bowel disease, and mental health issues. Personalized dietary recommendations based on individual microbiome profiles are becoming more and more possible with the development of high-throughput sequencing, machine learning, and multi-omics tools. Aside from addressing ethical concerns like data protection, affordability, and fair access to individualized interventions, the review also emphasizes the creation of customized probiotics and synbiotics that are made to fit the unique microbiome profiles of each individual. In the end, this review emphasizes how crucial it is to incorporate microbiome science into customized nutrition in order to support preventive healthcare and enhance clinical results.

Zobrazit více v PubMed

Afzaal M, Saeed F, Shah YA, Hussain M, Rabail R, Socol CT, Hassoun A, Pateiro M, Lorenzo JM, Rusu AV, Aadil RM (2022) Human gut microbiota in health and disease: unveiling the relationship. Front Microbiol 13:999001. https://doi.org/10.3389/fmicb.2022.999001 PubMed DOI PMC

Atarashi K, Tanoue T, Shima T, Imaoka A, Kuwahara T, Momose Y, Cheng G, Yamasaki S, Saito T, Ohba Y, Taniguchi T, Takeda K, Hori S, Ivanov II, Umesaki Y, Itoh K, Honda K (2011) Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331(6015):337–341. https://doi.org/10.1126/science.1198469 PubMed DOI

Bäckhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI (2005) Host-bacterial mutualism in the human intestine. Science 307(5717):1915–1920. https://doi.org/10.1126/science.1104816 PubMed DOI

Battson ML, Lee DM, Weir TL, Gentile CL (2018) The gut microbiota as a novel regulator of cardiovascular function and disease. J Nutr Biochem 56:1–15. https://doi.org/10.1016/j.jnutbio.2017.12.010 PubMed DOI

Belkaid Y, Hand TW (2014) Role of the microbiota in immunity and inflammation. Cell 157(1):121–141. https://doi.org/10.1016/j.cell.2014.03.011 PubMed DOI PMC

Ben-Yacov O, Godneva A, Rein M, Shilo S, Kolobkov D, Koren N, Cohen Dolev N, Travinsky Shmul T, Wolf BC, Kosower N, Sagiv K, Lotan-Pompan M, Zmora N, Weinberger A, Elinav E, Segal E (2021) Personalized postprandial glucose response-targeting diet versus mediterranean diet for glycemic control in prediabetes. Diabetes Care 44(9):1980–1991. https://doi.org/10.2337/dc21-0162 PubMed DOI

Ben-Yacov O, Godneva A, Rein M, Shilo S, Lotan-Pompan M, Weinberger A, Segal E (2023) Gut microbiome modulates the effects of a personalised postprandial-targeting (PPT) diet on cardiometabolic markers: a diet intervention in pre-diabetes. Gut 72(8):1486–1496. https://doi.org/10.1136/gutjnl-2022-329201 PubMed DOI

Bernalier-Donadille A (2010) Activités métaboliques du microbioteintestinal humain [Fermentative metabolism by the human gut microbiota]. Gastroenterol Clin Biol 34(Suppl 1):S16-22. https://doi.org/10.1016/S0399-8320(10)70016-6 . (French) PubMed DOI

Berry SE, Valdes AM, Drew DA, Asnicar F, Mazidi M, Wolf J, Capdevila J, Hadjigeorgiou G, Davies R, Al Khatib H, Bonnett C, Ganesh S, Bakker E, Hart D, Mangino M, Merino J, Linenberg I, Wyatt P, Ordovas JM, Gardner CD, Delahanty LM, Chan AT, Segata N, Franks PW, Spector TD (2020) Human postprandial responses to food and potential for precision nutrition. Nat Med 26(6):964–973. https://doi.org/10.1038/s41591-020-0934-0 . (Erratum.In:NatMed.2020Nov;26(11):1802.doi:10.1038/s41591-020-1130-y) PubMed DOI PMC

Blekhman R, Goodrich JK, Huang K, Sun Q, Bukowski R, Bell JT, Spector TD, Keinan A, Ley RE, Gevers D, Clark AG (2015) Host genetic variation impacts microbiome composition across human body sites. Genome Biol 16(1):191. https://doi.org/10.1186/s13059-015-0759-1 PubMed DOI PMC

Cani PD, Delzenne NM (2009) The role of the gut microbiota in energy metabolism and metabolic disease. Curr Pharm Des 15(13):1546–1558. https://doi.org/10.2174/138161209788168164 PubMed DOI

Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, Neyrinck AM, Fava F, Tuohy KM, Chabo C, Waget A, Delmée E, Cousin B, Sulpice T, Chamontin B, Ferrières J, Tanti JF, Gibson GR, Casteilla L, Delzenne NM, Alessi MC, Burcelin R (2007) Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56(7):1761–1772. https://doi.org/10.2337/db06-1491 PubMed DOI

Carding S, Verbeke K, Vipond DT, Corfe BM, Owen LJ (2015) Dysbiosis of the gut microbiota in disease. Microb Ecol Health Dis 26:26191. https://doi.org/10.3402/mehd.v26.26191 PubMed DOI

Cardona F, Andrés-Lacueva C, Tulipani S, Tinahones FJ, Queipo-Ortuño MI (2013) Benefits of polyphenols on gut microbiota and implications in human health. J Nutr Biochem 24(8):1415–1422. https://doi.org/10.1016/j.jnutbio.2013.05.001 PubMed DOI

Chan JCN, Yang A, Chu N, Chow E (2024) Current type 2 diabetes guidelines: individualized treatment and how to make the most of metformin. Diabetes Obes Metab 26(Suppl 3):55–74. https://doi.org/10.1111/dom.15700 PubMed DOI

Chattopadhyay A, Lee CY, Lee YC, Liu CL, Chen HK, Li YH, Lai LC, Tsai MH, Ni YH, Chiu HM, Lu TP, Chuang EY (2023) Twnbiome: a public database of the healthy Taiwanese gut microbiome. BMC Bioinformatics 24(1):474. https://doi.org/10.1186/s12859-023-05585-6 PubMed DOI PMC

Chumpitazi BP, Cope JL, Hollister EB, Tsai CM, McMeans AR, Luna RA, Versalovic J, Shulman RJ (2015) Randomised clinical trial: gut microbiome biomarkers are associated with clinical response to a low FODMAP diet in children with the irritable bowel syndrome. Aliment Pharmacol Ther 42(4):418–427. https://doi.org/10.1111/apt.13286 PubMed DOI PMC

Clarke G, Grenham S, Scully P, Fitzgerald P, Moloney RD, Shanahan F, Dinan TG, Cryan JF (2013) The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatry 18(6):666–673. https://doi.org/10.1038/mp.2012.77 PubMed DOI

Costello SP, Hughes PA, Waters O, Bryant RV, Vincent AD, Blatchford P, Katsikeros R, Makanyanga J, Campaniello MA, Mavrangelos C, Rosewarne CP, Bickley C, Peters C, Schoeman MN, Conlon MA, Roberts-Thomson IC, Andrews JM (2019) Effect of fecal microbiota transplantation on 8-week remission in patients with ulcerative colitis: a randomized clinical trial. JAMA 321(2):156–164. https://doi.org/10.1001/jama.2018.20046 PubMed DOI PMC

Dinan TG, Cryan JF (2017) The microbiome-gut-brain axis in health and disease. Gastroenterol Clin North Am 46(1):77–89. https://doi.org/10.1016/j.gtc.2016.09.007 PubMed DOI

Etxeberria U, Arias N, Boqué N, Macarulla MT, Portillo MP, Martínez JA, Milagro FI (2015) Reshaping faecal gut microbiota composition by the intake of trans-resveratrol and quercetin in high-fat sucrose diet-fed rats. J Nutr Biochem 26(6):651–660. https://doi.org/10.1016/j.jnutbio.2015.01.002 PubMed DOI

Garrison NA, Hudson M, Ballantyne LL, Garba I, Martinez A, Taualii M, Arbour L, Caron NR, Rainie SC (2019) Genomic research through an indigenous lens: understanding the expectations. Annu Rev Genomics Hum Genet 20:495–517. https://doi.org/10.1146/annurev-genom-083118-015434 PubMed DOI

Gibbons SM, Gurry T, Lampe JW, Chakrabarti A, Dam V, Everard A, Goas A, Gross G, Kleerebezem M, Lane J, Maukonen J, Penna ALB, Pot B, Valdes AM, Walton G, Weiss A, Zanzer YC, Venlet NV, Miani M (2022) Perspective: Leveraging the gut microbiota to predict personalized responses to dietary, prebiotic, and probiotic interventions. Adv Nutr 13(5):1450–1461. https://doi.org/10.1093/advances/nmac075 PubMed DOI PMC

Gilbert JA, Blaser MJ, Caporaso JG, Jansson JK, Lynch SV, Knight R (2018) Current understanding of the human microbiome. Nat Med 24(4):392–400. https://doi.org/10.1038/nm.4517 PubMed DOI PMC

Guevara-Ramírez P, Cadena-Ullauri S, Ruiz-Pozo VA, Tamayo-Trujillo R, Paz-Cruz E, Simancas-Racines D, Zambrano AK. (2022). Genetics, genomics, and diet interactions in obesity in the Latin American environment. Front Nutr 9:1063286. doi: 10.3389/fnut.2022.1063286.

Hou K, Wu ZX, Chen XY, Wang JQ, Zhang D, Xiao C, Zhu D, Koya JB, Wei L, Li J, Chen ZS (2022) Microbiota in health and diseases. Signal Transduct Target Ther 7(1):135. https://doi.org/10.1038/s41392-022-00974-4 PubMed DOI PMC

Iacomino G, Rufián Henares JÁ, Lauria F. (2024). Editorial: Personalized nutrition and gut microbiota: current and future directions. Front Nutr 11:1375157. doi: 10.3389/fnut.2024.1375157.

Integrative HMP (iHMP) Research Network Consortium. (2019). The Integrative Human Microbiome Project. Nature 569(7758):641-648. doi: 10.1038/s41586-019-1238-8.

Jackson MA, Verdi S, Maxan ME, Shin CM, Zierer J, Bowyer RCE, Martin T, Williams FMK, Menni C, Bell JT, Spector TD, Steves CJ (2018) Gut microbiota associations with common diseases and prescription medications in a population-based cohort. Nat Commun 9(1):2655. https://doi.org/10.1038/s41467-018-05184-7 PubMed DOI PMC

Jain A, Madkan S, Patil P (2023) The role of gut microbiota in neurodegenerative diseases: current insights and therapeutic implications. Cureus 15(10):e47861. https://doi.org/10.7759/cureus.47861 PubMed DOI PMC

Johnson AJ, Vangay P, Al-Ghalith GA, Hillmann BM, Ward TL, Shields-Cutler RR, Kim AD, Shmagel AK, Syed AN; Personalized Microbiome Class Students; Walter J, Menon R, Koecher K, Knights D. (2019). Daily sampling reveals personalized diet-microbiome associations in humans. Cell Host Microbe 25(6):789–802.e5. https://doi.org/10.1016/j.chom.2019.05.005 .

Khalil M, Di Ciaula A, Mahdi L, Jaber N, Di Palo DM, Graziani A, Baffy G, Portincasa P. (2024). Unraveling the Role of the Human Gut Microbiome in Health and Diseases. Microorganisms 12(11):2333. doi: 10.3390/microorganisms12112333.

Kimura I, Ozawa K, Inoue D, Imamura T, Kimura K, Maeda T, Terasawa K, Kashihara D, Hirano K, Tani T, Takahashi T, Miyauchi S, Shioi G, Inoue H, Tsujimoto G (2013) The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat Commun 4:1829. https://doi.org/10.1038/ncomms2852 PubMed DOI

Kobyliak N, Conte C, Cammarota G, Haley AP, Styriak I, Gaspar L, Fusek J, Rodrigo L, Kruzliak P (2016) Probiotics in prevention and treatment of obesity: a critical view. Nutr Metab (Lond) 13:14. https://doi.org/10.1186/s12986-016-0067-0 PubMed DOI

Koh A, De Vadder F, Kovatcheva-Datchary P, Bäckhed F (2016) From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 165(6):1332–1345. https://doi.org/10.1016/j.cell.2016.05.041 PubMed DOI

Kostic AD, Xavier RJ, Gevers D (2014) The microbiome in inflammatory bowel disease: current status and the future ahead. Gastroenterology 46(6):1489–1499. https://doi.org/10.1053/j.gastro.2014.02.009 DOI

Lazaros K, Adam S, Krokidis MG, Exarchos T, Vlamos P, Vrahatis AG (2025) Non-invasive biomarkers in the era of big data and machine learning. Sensors (Basel) 25(5):1396. https://doi.org/10.3390/s25051396 PubMed DOI

Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, Almeida M, Arumugam M, Batto JM, Kennedy S, Leonard P, Li J, Burgdorf K, Grarup N, Jørgensen T, Brandslund I, Nielsen HB, Juncker AS, Bertalan M, Levenez F, Pons N, Rasmussen S, Sunagawa S, Tap J, Tims S, Zoetendal EG, Brunak S, Clément K, Doré J, Kleerebezem M, Kristiansen K, Renault P, Sicheritz-Ponten T, de Vos WM, Zucker JD, Raes J, Hansen T, MetaHIT consortium, Bork P, Wang J, Ehrlich SD, Pedersen O (2013) Richness of human gut microbiome correlates with metabolic markers. Nature 500(7464):541–6. https://doi.org/10.1038/nature12506

LeBlanc JG, Milani C, de Giori GS, Sesma F, van Sinderen D, Ventura M (2013) Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Curr Opin Biotechnol 24(2):160–168. https://doi.org/10.1016/j.copbio.2012.08.005 PubMed DOI

Lynch SV, Pedersen O (2016) The human intestinal microbiome in health and disease. N Engl J Med 375(24):2369–2379. https://doi.org/10.1056/NEJMra1600266 PubMed DOI

Makki K, Deehan EC, Walter J, Bäckhed F (2018) The impact of dietary fiber on gut microbiota in host health and disease. Cell Host Microbe 23(6):705–715. https://doi.org/10.1016/j.chom.2018.05.012 PubMed DOI

Marchesi JR, Adams DH, Fava F, Hermes GD, Hirschfield GM, Hold G, Quraishi MN, Kinross J, Smidt H, Tuohy KM, Thomas LV, Zoetendal EG, Hart A (2016) The gut microbiota and host health: a new clinical frontier. Gut 65(2):330–339. https://doi.org/10.1136/gutjnl-2015-309990 PubMed DOI

Martin AM, Sun EW, Rogers GB, Keating DJ. (2019). The Influence of the Gut Microbiome on Host Metabolism Through the Regulation of Gut Hormone Release. Front Physiol 10:428. doi: 10.3389/fphys.2019.00428.

Mohammadi-Shemirani P, Sood T, Paré G (2023) From ’omics to multi-omics technologies: the discovery of novel causal mediators. Curr Atheroscler Rep 25(2):55–65. https://doi.org/10.1007/s11883-022-01078-8 PubMed DOI PMC

Muhammad F, Fan B, Wang R, Ren J, Jia S, Wang L, Chen Z, Liu XA (2022) The molecular gut-brain axis in early brain development. Int J Mol Sci 23(23):15389. https://doi.org/10.3390/ijms232315389 PubMed DOI PMC

Ney LM, Wipplinger M, Grossmann M, Engert N, Wegner VD, Mosig AS (2023) Short chain fatty acids: key regulators of the local and systemic immune response in inflammatory diseases and infections. Open Biol 13(3):230014. https://doi.org/10.1098/rsob.230014 PubMed DOI PMC

O’Toole PW, Marchesi JR, Hill C (2017) Next-generation probiotics: the spectrum from probiotics to live biotherapeutics. Nat Microbiol 2:17057. https://doi.org/10.1038/nmicrobiol.2017.57 PubMed DOI

Ozdal T, Sela DA, Xiao J, Boyacioglu D, Chen F, Capanoglu E (2016) The reciprocal interactions between polyphenols and gut microbiota and effects on bioaccessibility. Nutrients 8(2):78. https://doi.org/10.3390/nu8020078 PubMed DOI PMC

Paramsothy S, Paramsothy R, Rubin DT, Kamm MA, Kaakoush NO, Mitchell HM, Castaño-Rodríguez N (2017) Faecal microbiota transplantation for inflammatory bowel disease: a systematic review and meta-analysis. J Crohns Colitis 11(10):1180–1199. https://doi.org/10.1093/ecco-jcc/jjx063 PubMed DOI

Peterson LW, Artis D (2014) Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat Rev Immunol 14(3):141–153. https://doi.org/10.1038/nri3608 PubMed DOI

Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, Liang S, Zhang W, Guan Y, Shen D, Peng Y, Zhang D, Jie Z, Wu W, Qin Y, Xue W, Li J, Han L, Lu D, Wu P, Dai Y, Sun X, Li Z, Tang A, Zhong S, Li X, Chen W, Xu R, Wang M, Feng Q, Gong M, Yu J, Zhang Y, Zhang M, Hansen T, Sanchez G, Raes J, Falony G, Okuda S, Almeida M, LeChatelier E, Renault P, Pons N, Batto JM, Zhang Z, Chen H, Yang R, Zheng W, Li S, Yang H, Wang J, Ehrlich SD, Nielsen R, Pedersen O, Kristiansen K, Wang J (2012) A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490(7418):55–60. https://doi.org/10.1038/nature11450 PubMed DOI

Rinninella E, Raoul P, Cintoni M, Franceschi F, Miggiano GAD, Gasbarrini A, Mele MC (2019) What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms 7(1):14. https://doi.org/10.3390/microorganisms7010014 PubMed DOI PMC

Round JL, Mazmanian SK (2009) The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 9(5):313–323. https://doi.org/10.1038/nri2515 . (Erratum in: Nat Rev Immunol 9(8):600) PubMed DOI PMC

Sandhu KV, Sherwin E, Schellekens H, Stanton C, Dinan TG, Cryan JF (2017) Feeding the microbiota-gut-brain axis: diet, microbiome, and neuropsychiatry. Transl Res 179:223–244. https://doi.org/10.1016/j.trsl.2016.10.002 PubMed DOI

Sayin SI, Wahlström A, Felin J, Jäntti S, Marschall HU, Bamberg K, Angelin B, Hyötyläinen T, Orešič M, Bäckhed F (2013) Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab 17(2):225–235. https://doi.org/10.1016/j.cmet.2013.01.003 PubMed DOI

Slavin J (2013) Fiber and prebiotics: mechanisms and health benefits. Nutrients 5(4):1417–1435. https://doi.org/10.3390/nu5041417 PubMed DOI PMC

Sokol H, Pigneur B, Watterlot L, Lakhdari O, Bermúdez-Humarán LG, Gratadoux JJ, Blugeon S, Bridonneau C, Furet JP, Corthier G, Grangette C, Vasquez N, Pochart P, Trugnan G, Thomas G, Blottière HM, Doré J, Marteau P, Seksik P, Langella P (2008) Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci U S A 105(43):16731–16736. https://doi.org/10.1073/pnas.0804812105 PubMed DOI PMC

Tang WH, Wang Z, Levison BS, Koeth RA, Britt EB, Fu X, Wu Y, Hazen SL (2013) Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med 368(17):1575–1584. https://doi.org/10.1056/NEJMoa1109400 PubMed DOI PMC

Tett A, Pasolli E, Farina S, Truong DT, Asnicar F, Zolfo M, Beghini F, Armanini F, Jousson O, De Sanctis V, Bertorelli R, Girolomoni G, Cristofolini M, Segata N (2017) Unexplored diversity and strain-level structure of the skin microbiome associated with psoriasis. NPJ Biofilms Microbiomes 3:14. https://doi.org/10.1038/s41522-017-0022-5 PubMed DOI PMC

Tremaroli V, Bäckhed F (2012) Functional interactions between the gut microbiota and host metabolism. Nature 489(7415):242–249. https://doi.org/10.1038/nature11552 PubMed DOI

Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, Sogin ML, Jones WJ, Roe BA, Affourtit JP, Egholm M, Henrissat B, Heath AC, Knight R, Gordon JI (2009) A core gut microbiome in obese and lean twins. Nature T457(7228):480–484. https://doi.org/10.1038/nature07540 DOI

Tzounis X, Rodriguez-Mateos A, Vulevic J, Gibson GR, Kwik-Uribe C, Spencer JP (2011) Prebiotic evaluation of cocoa-derived flavanols in healthy humans by using a randomized, controlled, double-blind, crossover intervention study. Am J Clin Nutr 93(1):62–72. https://doi.org/10.3945/ajcn.110.000075 PubMed DOI

Valdes AM, Walter J, Segal E, Spector TD (2018) Role of the gut microbiota in nutrition and health. BMJ 361:k2179. https://doi.org/10.1136/bmj.k2179 PubMed DOI PMC

Wallace CJK, Milev R (2017) The effects of probiotics on depressive symptoms in humans: a systematic review. Ann Gen Psychiatry 16:14. https://doi.org/10.1186/s12991-017-0138-2 . Erratum in: Ann Gen Psychiatry. (2017).Wa 16:18. https://doi.org/10.1186/s12991-017-0141-7

Wastyk HC, Fragiadakis GK, Perelman D, Dahan D, Merrill BD, Yu FB, Topf M, Gonzalez CG, Van Treuren W, Han S, Robinson JL, Elias JE, Sonnenburg ED, Gardner CD, Sonnenburg JL (2021) Gut-microbiota-targeted diets modulate human immune status. Cell 184(16):4137-4153.e14. https://doi.org/10.1016/j.cell.2021.06.019 PubMed DOI PMC

Yang Q, Liang Q, Balakrishnan B, Belobrajdic DP, Feng QJ, Zhang W. (2020). Role of Dietary Nutrients in the Modulation of Gut Microbiota: A Narrative Review. Nutrients 12(2):381. doi: 10.3390/nu12020381.

Zeevi D, Korem T, Zmora N, Israeli D, Rothschild D, Weinberger A, Ben-Yacov O, Lador D, Avnit-Sagi T, Lotan-Pompan M, Suez J, Mahdi JA, Matot E, Malka G, Kosower N, Rein M, Zilberman-Schapira G, Dohnalová L, Pevsner-Fischer M, Bikovsky R, Halpern Z, Elinav E, Segal E (2015) Personalized nutrition by prediction of glycemic responses. Cell 163(5):1079–1094. https://doi.org/10.1016/j.cell.2015.11.001 PubMed DOI

Zhao L, Zhang F, Ding X, Wu G, Lam YY, Wang X, Fu H, Xue X, Lu C, Ma J, Yu L, Xu C, Ren Z, Xu Y, Xu S, Shen H, Zhu X, Shi Y, Shen Q, Dong W, Liu R, Ling Y, Zeng Y, Wang X, Zhang Q, Wang J, Wang L, Wu Y, Zeng B, Wei H, Zhang M, Peng Y, Zhang C (2018) Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science 359(6380):1151–1156. https://doi.org/10.1126/science.aao5774 PubMed DOI

Zhernakova A, Kurilshikov A, Bonder MJ, Tigchelaar EF, Schirmer M, Vatanen T, Mujagic Z, Vila AV, Falony G, Vieira-Silva S, Wang J, Imhann F, Brandsma E, Jankipersadsing SA, Joossens M, Cenit MC, Deelen P, Swertz MA, Weersma RK, Feskens EJ, Netea MG, Gevers D, Jonkers D, Franke L, Aulchenko YS, Huttenhower C, Raes J, Hofker MH, Xavier RJ, Wijmenga C, Fu J (2016) Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science 352(6285):565–569. https://doi.org/10.1126/science.aad3369 PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...