Simple Optical Fiber Sensor for Express and Cross-Sensitive Hydrogen Detection
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
41498286
PubMed Central
PMC12836353
DOI
10.1021/acssensors.5c04316
Knihovny.cz E-zdroje
- Klíčová slova
- PDMS, Pd, hydrogen detection, optical fiber, plasmon,
- MeSH
- optická vlákna * MeSH
- palladium chemie MeSH
- teplota MeSH
- vodík * analýza MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- palladium MeSH
- vodík * MeSH
The utilization of hydrogen as an energy source is becoming more and more widespread. Since hydrogen is a highly explosive gas, its use requires the development of inexpensive and simple sensors capable of measuring hydrogen concentrations under a variety of conditions. These sensors must meet several parameters, such as small size, light weight, corrosion resistance, and remote operation capability. The ideal hydrogen sensors should also be insensitive to the presence of various interfering gases and humidity or temperature variation and be protected against potential poisoning. In this work, we present a simple optical hydrogen sensor that satisfies most of the above criteria. The sensor is based on a plasmon-active multimode optical fiber coated with Pd and PDM layers in a stepwise manner. The Pd layer, deposited on the plasmon active area, ensures sensitivity toward hydrogen through hydrogenation of Pd, leading to a significant shift in the plasmon absorption band wavelength position. An additional PDMS layer ensures sensor protection against various interfering gases (NO2, CH4, CO2, CO, and NH3), including the moisture of sulfur-containing compounds. The sensor response is measured within tens of seconds, while its regeneration takes approximately 2 min. The operating temperature range is from RT to 80 °C, with a slight decrease in sensor functionality at an elevated temperature. The proposed structure is simple, allows the removal of hydrogen detection, and can be used under various operation conditions.
Zobrazit více v PubMed
Buravets V., Hosek F., Lapcak L., Miliutina E., Sajdl P., Elashnikov R., Švorčík V., Lyutakov O.. Beyond the Platinum EraScalable Preparation and Electrochemical Activation of TaS2 Flakes. ACS Appl. Mater. Interfaces. 2023;15(4):5679–5686. doi: 10.1021/acsami.2c20261. PubMed DOI PMC
Guselnikova O., Postnikov P., Chehimi M. M., Kalachyova Y., Svorcik V., Lyutakov O.. Surface Plasmon-Polariton: A Novel Way To Initiate Azide-Alkyne Cycloaddition. Langmuir. 2019;35(6):2023–2032. doi: 10.1021/acs.langmuir.8b03041. PubMed DOI
Ge L., Zhang B., Huang W., Li Y., Hou L., Xiao J., Mao Z., Li X.. A Review of Hydrogen Generation, Storage, and Applications in Power System. J. Energy Storage. 2024;75:109307. doi: 10.1016/j.est.2023.109307. DOI
Choi K.-S., Chang S.-P.. Effect of Structure Morphologies on Hydrogen Gas Sensing by ZnO Nanotubes. Mater. Lett. 2018;230:48–52. doi: 10.1016/j.matlet.2018.07.031. DOI
Mattoni G., de Jong B., Manca N., Tomellini M., Caviglia A. D.. Single-Crystal Pt-Decorated WO3 Ultrathin Films: A Platform for Sub-Ppm Hydrogen Sensing at Room Temperature. ACS Appl. Nano Mater. 2018;1(7):3446–3452. doi: 10.1021/acsanm.8b00627. PubMed DOI PMC
Dawood F., Anda M., Shafiullah G. M.. Hydrogen Production for Energy: An Overview. Int. J. Hydrog. Energy. 2020;45(7):3847–3869. doi: 10.1016/j.ijhydene.2019.12.059. DOI
Hübert T., Boon-Brett L., Black G., Banach U.. Hydrogen Sensors – A Review. Sens. Actuators B-Chem. 2011;157(2):329–352. doi: 10.1016/j.snb.2011.04.070. DOI
Girma H. G., Lee H. M., Kim Y., Ryu G.-S., Jeon S., Kim J. Y., Jung S.-H., Kim S. H., Noh Y.-Y., Lim B.. Highly Sensitive and Wrappable Room Temperature Wireless Gasochromic and Chemiresistive Dual-Response H2 Sensors Using Spray Coating. Nano Energy. 2023;113:108551. doi: 10.1016/j.nanoen.2023.108551. DOI
Kim Y., Kim M.-K., Kim S.-K., Baik K. H., Jang S.. β-Ga2O3 Flake Based Schottky Diode Hydrogen Sensor. Sens. Actuators B-Chem. 2023;379:133212. doi: 10.1016/j.snb.2022.133212. DOI
Li X., Sun W., Fu W., Lv H., Zu X., Guo Y., Gibson D., Fu Y.-Q.. Advances in Sensing Mechanisms and Micro/Nanostructured Sensing Layers for Surface Acoustic Wave-Based Gas Sensors. J. Mater. Chem. A. 2023;11(17):9216–9238. doi: 10.1039/D2TA10014B. DOI
Zou Z., Zhang H., Sun Y., Gao Y., Dou L.. A Thermal Conductivity Sensor Based on Mixed Carbon Material Modification for Hydrogen Detection. Rev. Sci. Instrum. 2022;93(3):035001. doi: 10.1063/5.0068966. PubMed DOI
Gupta S., Knoepfel A., Zou H., Ding Y.. Investigations of Methane Gas Sensor Based on Biasing Operation of N-ZnO Nanorods/p-Si Assembled Diode and Pd Functionalized Schottky Junctions. Sens. Actuators B-Chem. 2023;392:134030. doi: 10.1016/j.snb.2023.134030. DOI
Benitto J. J., Akash K., Vijaya J. J., Humayun M., Bououdina M.. State-of-the-Art Hydrogen Gas Sensors: From Fundamentals to Applications. J. Electron. Mater. 2025;54(2):879–909. doi: 10.1007/s11664-024-11604-w. DOI
Dai J., Yang M., Yu X., Cao K., Liao J.. Greatly Etched Fiber Bragg Grating Hydrogen Sensor with Pd/Ni Composite Film as Sensing Material. Sens. Actuators B-Chem. 2012;174:253–257. doi: 10.1016/j.snb.2012.07.018. DOI
Zhang Y., Peng H., Qian X., Zhang Y., An G., Zhao Y.. Recent Advancements in Optical Fiber Hydrogen Sensors. Sens. Actuators B-Chem. 2017;244:393–416. doi: 10.1016/j.snb.2017.01.004. DOI
Elsherif M., Salih A. E., Muñoz M. G., Alam F., AlQattan B., Antonysamy D. S., Zaki M. F., Yetisen A. K., Park S., Wilkinson T. D., Butt H.. Optical Fiber Sensors: Working Principle, Applications, and Limitations. Adv. Photon. Res. 2022;3(11):2100371. doi: 10.1002/adpr.202100371. DOI
Miliutina E., Guselnikova O., Kushnarenko A., Bainova P., Postnikov P., Hnatowicz V., Svorcik V., Lyutakov O.. Single Plasmon-Active Optical Fiber Probe for Instantaneous Chiral Detection. ACS Sens. 2020;5(1):50–56. doi: 10.1021/acssensors.9b01328. PubMed DOI
Miliutina E., Guselnikova O., Burtsev V., Elashnikov R., Postnikov P., Svorcik V., Lyutakov O.. Plasmon-Active Optical Fiber Functionalized by Metal Organic Framework for Pesticide Detection. Talanta. 2020;208:120480. doi: 10.1016/j.talanta.2019.120480. PubMed DOI
Ding H., Cao X., Xiong F., Xing H., Wang Z., Xu H., Chen Y., Tang S., Xu F.. Operando Monitoring Gas Pressure Based on an Optical Fiber Sensor for Quantifying Hydrogen Evolution toward Aqueous Zinc-Ion Batteries. J. Phys. Chem. C. 2025;129(27):12607–12614. doi: 10.1021/acs.jpcc.5c02894. DOI
Dai J., Chen Z., Yang R., Wu Z., Tang Z., Hu W., Cheng C., Wang X., Yang M.. Early Detection of Hydrogen Leakage Using Fiber Optic Hydrogen Sensor Based on WO3-PdPt-Pt Nanocomposite Films. Nanomaterials. 2025;15(11):836. doi: 10.3390/nano15110836. PubMed DOI PMC
Xie Z., Huang Z., Shi Y., Cao Y., Dong J., Tian R., Shen C.. Highly Sensitive Optical Fiber Hydrogen Detection in Liquid Environment. Int. J. Hydrogen Energy. 2025;106:1–7. doi: 10.1016/j.ijhydene.2025.01.426. DOI
Yang M., Dai J.. Fiber Optic Hydrogen Sensors: A Review. Photonic Sens. 2014;4(4):300–324. doi: 10.1007/s13320-014-0215-y. DOI
Ding M., Xu B., Chen Y., Gao E., Gong H., Yang M., Zhang Y., Chen X., Chen H., Zhao C.. Ultrasensitive Probe-Type Hydrogen Sensor Based on Dual Liquid-Filled Silica Capillary Fibers with Pt-WO3 Coating. Sens. Actuators B-Chem. 2025;436:137696. doi: 10.1016/j.snb.2025.137696. DOI
Yang Z., Chen J., Long X., Liu L., Jiang Y., Ren Z., Peng J., You D., Guo T.. Sensitive and Repeatable Optical Fiber Hydrogen Sensors Using Plasma-Induced Oxygen Vacancies Magnetron Sputtering Coating Technique. J. Light. Technol. 2025;43(5):2428–2437. doi: 10.1109/JLT.2024.3493593. DOI
Zheng H., Liu Z., Li S., Feng D., Jiang B.. Pd/WO3 Co-Deposited Tilted Fiber Bragg Grating for Fast Hydrogen Sensing. IEEE Trans. Instrum. Meas. 2025;74:1–7. doi: 10.1109/TIM.2024.3522415. DOI
Wang G., Dai J., Yang M.. Fiber-Optic Hydrogen Sensors: A Review. IEEE Sens. J. 2021;21(11):12706–12718. doi: 10.1109/JSEN.2020.3029519. DOI
Silva S. F., Coelho L., Frazao O., Santos J. L., Malcata F. X.. A Review of Palladium-Based Fiber-Optic Sensors for Molecular Hydrogen Detection. IEEE Sens. J. 2012;12(1):93–102. doi: 10.1109/JSEN.2011.2138130. DOI
Darmadi I., Nugroho F. A. A., Langhammer C.. High-Performance Nanostructured Palladium-Based Hydrogen SensorsCurrent Limitations and Strategies for Their Mitigation. ACS Sens. 2020;5(11):3306–3327. doi: 10.1021/acssensors.0c02019. PubMed DOI PMC
Zhang F., Buchfellner F., Hu W., Ao W., Bian Q., Roths J., Yang M.. Optical Fiber Hydrogen Sensor Based on π-Phase-Shifted Grating and Sputtered Pd/Hf Composite Film. Photonic Sens. 2025;15(2):250204. doi: 10.1007/s13320-025-0750-8. DOI
Meng X., Bi M., Gao W.. PdAg Alloy Modified SnO2 Nanoparticles for Ultrafast Detection of Hydrogen. Sens. Actuators, B. 2023;382:133515. doi: 10.1016/j.snb.2023.133515. DOI
Fisser M., Badcock R. A., Teal P. D., Hunze A.. Improving the Sensitivity of Palladium-Based Fiber Optic Hydrogen Sensors. J. Light Technol. 2018;36(11):2166–2174. doi: 10.1109/JLT.2018.2807789. DOI
Zhang Y.-N., Zhang A., Han B., E S.. A Reflective Hydrogen Sensor Based on Fiber Ring Laser with PCF Modal Interferometer. J. Opt. 2018;20(6):065401. doi: 10.1088/2040-8986/aac157. DOI
Xu B., Zhao C. L., Yang F., Gong H., Wang D. N., Dai J., Yang M.. Sagnac Interferometer Hydrogen Sensor Based on Panda Fiber with Pt-Loaded WO3/SiO2 Coating. Opt. Lett. 2016;41(7):1594–1597. doi: 10.1364/OL.41.001594. PubMed DOI
Luo J., Liu S., Chen P., Lu S., Zhang Q., Chen Y., Du B., Tang J., He J., Liao C., Wang Y.. Fiber Optic Hydrogen Sensor Based on a Fabry–Perot Interferometer with a Fiber Bragg Grating and a Nanofilm. Lab Chip. 2021;21(9):1752–1758. doi: 10.1039/D1LC00012H. PubMed DOI
Alkhabet M. M., Girei S. H., Al-Isawi Z. K., Shareef O. S. F., Farhan A. H., Altalebi O., Khalaf A. L., Jaafar J. A., Yaacob M. H.. Palladium (Pd) Coated Fiber Optic Hydrogen Sensors: A Review. Mater. Sci. Semicon. Proc. 2025;188:109204. doi: 10.1016/j.mssp.2024.109204. DOI
Zhao Z., Knight M., Kumar S., Eisenbraun E. T., Carpenter M. A.. Humidity Effects on Pd/Au-Based All-Optical Hydrogen Sensors. Sens. Actuators B-Chem. 2008;129(2):726–733. doi: 10.1016/j.snb.2007.09.032. DOI
Baselt D. R., Fruhberger B., Klaassen E., Cemalovic S., Britton C. L., Patel S. V., Mlsna T. E., McCorkle D., Warmack B.. Design and Performance of a Microcantilever-Based Hydrogen Sensor. Sens. Actuators B-Chem. 2003;88(2):120–131. doi: 10.1016/S0925-4005(02)00315-5. DOI
Orme C. J., Stone M. L., Benson M. T., Peterson E. S.. Testing Of Polymer Membranes For The Selective Permeability Of Hydrogen. Sep. Sci. Technol. 2003;38(12–13):3225–3238. doi: 10.1081/SS-120022595. DOI
Miliutina E., Guselnikova O., Chufistova S., Kolska Z., Elashnikov R., Burtsev V., Postnikov P., Svorcik V., Lyutakov O.. Fast and All-Optical Hydrogen Sensor Based on Gold-Coated Optical Fiber Functionalized with Metal-Organic Framework Layer. ACS Sens. 2019;4(12):3133–3140. doi: 10.1021/acssensors.9b01074. PubMed DOI
Kim D., Shumski A., Bullard K. K., Wright R.. Optical Fiber Sensor with a Hydrophobic Filter Layer for Monitoring Hydrogen under Humid Conditions. ACS Sens. 2025;10(7):4825–4831. doi: 10.1021/acssensors.5c01172. PubMed DOI
Bannenberg L. J., Krishnan G., Boshuizen B., Schreuders H.. Palladium-PTFE Metal–Polymer Nanocomposite Film Produced by Cosputtering for Hydrogen Sensing Applications. ACS Appl. Energy Mater. 2025;8(9):5664–5674. doi: 10.1021/acsaem.4c03202. DOI
Yang K.-S., Ding K.-H., Geng W.-T., Yang K., Li Y.-Y., Yang H., Xu Y.. Pt/MOF-5 Film-Coated Optical Micro-Nano Fibre Hydrogen Sensor with Humidity and Temperature Compensation Functions. J. Mod. Opt. 2024;71(10–12):397–405. doi: 10.1080/09500340.2024.2427188. DOI
Zhang C., Shen C., Liu X., Liu S., Chen H., Huang Z., Wang Z., Lang T., Zhao C., Zhang Y.. Pd/Au Nanofilms Based Tilted Fiber Bragg Grating Hydrogen Sensor. Opt. Commun. 2022;502:127424. doi: 10.1016/j.optcom.2021.127424. DOI
Khanikar T., Karki D., Su Y.-D., Young Hong J., Wang Y., Naeem K., Ohodnicki P. R.. Pd/PMMA Nanocomposite-Coated Optical Fiber Hydrogen Sensor Operating at Room Temperature With Humidity Tolerance. IEEE Sens. J. 2024;24:34498–34506. doi: 10.1109/JSEN.2024.3454569. DOI
Xie Z., Huang Z., Shi Y., Cao Y., Dong J., Tian R., Shen C.. Highly Sensitive Optical Fiber Hydrogen Detection in Liquid Environment. Int. J. Hydr. Energy. 2025;106:1–7. doi: 10.1016/j.ijhydene.2025.01.426. DOI
Abdalwareth A., Flachenecker G., Angelmahr M., Schade W.. Optical Fiber Evanescent Hydrogen Sensor Based on Palladium Nanoparticles Coated Bragg Gratings. Sens. Actuat. A: Phys. 2023;361:114594. doi: 10.1016/j.sna.2023.114594. DOI
Cao R., Wu J., Liang G., Ohodnicki P. R., Chen K. P.. Functionalized PdAu Alloy on Nanocones Fabricated on Optical Fibers for Hydrogen Sensing. IEEE Sens. J. 2020;20:1922–1927. doi: 10.1109/JSEN.2019.2950505. DOI
Luong H. M., Pham M. T., Madhogaria R. P., Phan M.-H., Larsen G. K., Nguyen T. D.. Bilayer Plasmonic Nano-Lattices for Tunable Hydrogen Sensing Platform. Nano Energy. 2020;71:104558. doi: 10.1016/j.nanoen.2020.104558. DOI
Ngene P., Radeva T., Slaman M., Westerwaal R. J., Schreuders H., Dam B.. Seeing Hydrogen in Colors: Low-Cost and Highly Sensitive Eye Readable Hydrogen Detectors. Adv. Funct. Mater. 2014;24:2374–2382. doi: 10.1002/adfm.201303065. DOI
Bannenberg L., Schreuders H., Dam B.. Tantalum-Palladium: Hysteresis-Free Optical Hydrogen Sensor Over 7 Orders of Magnitude in Pressure with Sub-Second Response. Adv. Funct. Mater. 2021;31:2010483. doi: 10.1002/adfm.202010483. DOI
Gu F., Zeng H., Zhu Y. B., Yang Q., Ang L. K., Zhuang S.. Single-Crystal Pd and Its Alloy Nanowires for Plasmon Propagation and Highly Sensitive Hydrogen Detection. Adv. Opt. Mater. 2014;2:189–196. doi: 10.1002/adom.201300413. DOI
Wadell C., Langhammer C.. Drift-Corrected Nanoplasmonic Hydrogen Sensing by Polarization. Nanoscale. 2015;7:10963–10969. doi: 10.1039/C5NR01818H. PubMed DOI
Ma J., Zhou Y., Bai X., Chen K., Guan B.-O.. High-Sensitivity and Fast-Response Fiber-Tip Fabry–Pérot Hydrogen Sensor with Suspended Palladium-Decorated Graphene. Nanoscale. 2019;11:15821–15827. doi: 10.1039/C9NR04274A. PubMed DOI
Östergren I., Darmadi I., Lerch S., Silva R. R. da, Craighero M., Paleti S. H. K., Moth-Poulsen K., Langhammer C., Müller C.. A Surface Passivated Fluorinated Polymer Nanocomposite for Carbon Monoxide Resistant Plasmonic Hydrogen Sensing. J. Mater. Chem. A. 2024;12:7906–7915. doi: 10.1039/D4TA00055B. DOI
Östergren I., Pourrahimi A. M., Darmadi I., da Silva R., Stolaś A., Lerch S., Berke B., Guizar-Sicairos M., Liebi M., Foli G., Palermo V., Minelli M., Moth-Poulsen K., Langhammer C., Müller C.. Highly Permeable Fluorinated Polymer Nanocomposites for Plasmonic Hydrogen Sensing. ACS Appl. Mater. Interfaces. 2021;13:21724–21732. doi: 10.1021/acsami.1c01968. PubMed DOI PMC
Dai J., Yang M., Chen Y., Cao K., Liao H., Zhang P.. Side-Polished Fiber Bragg Grating Hydrogen Sensor with WO3-Pd Composite Film as Sensing Materials. Opt. Express. 2011;19:6141–6148. doi: 10.1364/OE.19.006141. PubMed DOI
Perrotton C., Westerwaal R. J., Javahiraly N., Slaman M., Schreuders H., Dam B., Meyrueis P.. A Reliable, Sensitive and Fast Optical Fiber Hydrogen Sensor Based on Surface Plasmon Resonance. Opt. Express. 2013;21:382–390. doi: 10.1364/OE.21.000382. PubMed DOI
Zhang X., Li X., Zhang X., Peng W.. Optics-Mechanics Synergistic Fiber Optic Sensor for Hydrogen Detection. Opt. Express. 2022;30:32769–32782. doi: 10.1364/OE.468282. PubMed DOI
Cai S., Nan Y.-G., Li Y., Hou Y., Zhang Z.. Rapid Detection of Hydrogen Using Narrow Bandwidth Fiber-Optic Spectral Combs with a Low Limit of Detection. Opt. Express. 2023;31:35616–35623. doi: 10.1364/OE.502915. PubMed DOI
Shen C., Huang Z., Chen X., Chen H., Wang Z., Li Y., Liu J., Zhou J.. Reflective-Type High Sensitivity Optical Fiber Hydrogen Sensor Based On Enlarged Taper Cascaded With Tilted Fiber Grating. J. Lightwave Technol. 2022;40:6296–6302. doi: 10.1109/JLT.2022.3192058. DOI