Simple Optical Fiber Sensor for Express and Cross-Sensitive Hydrogen Detection

. 2026 Jan 23 ; 11 (1) : 756-765. [epub] 20260107

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41498286

The utilization of hydrogen as an energy source is becoming more and more widespread. Since hydrogen is a highly explosive gas, its use requires the development of inexpensive and simple sensors capable of measuring hydrogen concentrations under a variety of conditions. These sensors must meet several parameters, such as small size, light weight, corrosion resistance, and remote operation capability. The ideal hydrogen sensors should also be insensitive to the presence of various interfering gases and humidity or temperature variation and be protected against potential poisoning. In this work, we present a simple optical hydrogen sensor that satisfies most of the above criteria. The sensor is based on a plasmon-active multimode optical fiber coated with Pd and PDM layers in a stepwise manner. The Pd layer, deposited on the plasmon active area, ensures sensitivity toward hydrogen through hydrogenation of Pd, leading to a significant shift in the plasmon absorption band wavelength position. An additional PDMS layer ensures sensor protection against various interfering gases (NO2, CH4, CO2, CO, and NH3), including the moisture of sulfur-containing compounds. The sensor response is measured within tens of seconds, while its regeneration takes approximately 2 min. The operating temperature range is from RT to 80 °C, with a slight decrease in sensor functionality at an elevated temperature. The proposed structure is simple, allows the removal of hydrogen detection, and can be used under various operation conditions.

Zobrazit více v PubMed

Buravets V., Hosek F., Lapcak L., Miliutina E., Sajdl P., Elashnikov R., Švorčík V., Lyutakov O.. Beyond the Platinum EraScalable Preparation and Electrochemical Activation of TaS2 Flakes. ACS Appl. Mater. Interfaces. 2023;15(4):5679–5686. doi: 10.1021/acsami.2c20261. PubMed DOI PMC

Guselnikova O., Postnikov P., Chehimi M. M., Kalachyova Y., Svorcik V., Lyutakov O.. Surface Plasmon-Polariton: A Novel Way To Initiate Azide-Alkyne Cycloaddition. Langmuir. 2019;35(6):2023–2032. doi: 10.1021/acs.langmuir.8b03041. PubMed DOI

Ge L., Zhang B., Huang W., Li Y., Hou L., Xiao J., Mao Z., Li X.. A Review of Hydrogen Generation, Storage, and Applications in Power System. J. Energy Storage. 2024;75:109307. doi: 10.1016/j.est.2023.109307. DOI

Choi K.-S., Chang S.-P.. Effect of Structure Morphologies on Hydrogen Gas Sensing by ZnO Nanotubes. Mater. Lett. 2018;230:48–52. doi: 10.1016/j.matlet.2018.07.031. DOI

Mattoni G., de Jong B., Manca N., Tomellini M., Caviglia A. D.. Single-Crystal Pt-Decorated WO3 Ultrathin Films: A Platform for Sub-Ppm Hydrogen Sensing at Room Temperature. ACS Appl. Nano Mater. 2018;1(7):3446–3452. doi: 10.1021/acsanm.8b00627. PubMed DOI PMC

Dawood F., Anda M., Shafiullah G. M.. Hydrogen Production for Energy: An Overview. Int. J. Hydrog. Energy. 2020;45(7):3847–3869. doi: 10.1016/j.ijhydene.2019.12.059. DOI

Hübert T., Boon-Brett L., Black G., Banach U.. Hydrogen Sensors – A Review. Sens. Actuators B-Chem. 2011;157(2):329–352. doi: 10.1016/j.snb.2011.04.070. DOI

Girma H. G., Lee H. M., Kim Y., Ryu G.-S., Jeon S., Kim J. Y., Jung S.-H., Kim S. H., Noh Y.-Y., Lim B.. Highly Sensitive and Wrappable Room Temperature Wireless Gasochromic and Chemiresistive Dual-Response H2 Sensors Using Spray Coating. Nano Energy. 2023;113:108551. doi: 10.1016/j.nanoen.2023.108551. DOI

Kim Y., Kim M.-K., Kim S.-K., Baik K. H., Jang S.. β-Ga2O3 Flake Based Schottky Diode Hydrogen Sensor. Sens. Actuators B-Chem. 2023;379:133212. doi: 10.1016/j.snb.2022.133212. DOI

Li X., Sun W., Fu W., Lv H., Zu X., Guo Y., Gibson D., Fu Y.-Q.. Advances in Sensing Mechanisms and Micro/Nanostructured Sensing Layers for Surface Acoustic Wave-Based Gas Sensors. J. Mater. Chem. A. 2023;11(17):9216–9238. doi: 10.1039/D2TA10014B. DOI

Zou Z., Zhang H., Sun Y., Gao Y., Dou L.. A Thermal Conductivity Sensor Based on Mixed Carbon Material Modification for Hydrogen Detection. Rev. Sci. Instrum. 2022;93(3):035001. doi: 10.1063/5.0068966. PubMed DOI

Gupta S., Knoepfel A., Zou H., Ding Y.. Investigations of Methane Gas Sensor Based on Biasing Operation of N-ZnO Nanorods/p-Si Assembled Diode and Pd Functionalized Schottky Junctions. Sens. Actuators B-Chem. 2023;392:134030. doi: 10.1016/j.snb.2023.134030. DOI

Benitto J. J., Akash K., Vijaya J. J., Humayun M., Bououdina M.. State-of-the-Art Hydrogen Gas Sensors: From Fundamentals to Applications. J. Electron. Mater. 2025;54(2):879–909. doi: 10.1007/s11664-024-11604-w. DOI

Dai J., Yang M., Yu X., Cao K., Liao J.. Greatly Etched Fiber Bragg Grating Hydrogen Sensor with Pd/Ni Composite Film as Sensing Material. Sens. Actuators B-Chem. 2012;174:253–257. doi: 10.1016/j.snb.2012.07.018. DOI

Zhang Y., Peng H., Qian X., Zhang Y., An G., Zhao Y.. Recent Advancements in Optical Fiber Hydrogen Sensors. Sens. Actuators B-Chem. 2017;244:393–416. doi: 10.1016/j.snb.2017.01.004. DOI

Elsherif M., Salih A. E., Muñoz M. G., Alam F., AlQattan B., Antonysamy D. S., Zaki M. F., Yetisen A. K., Park S., Wilkinson T. D., Butt H.. Optical Fiber Sensors: Working Principle, Applications, and Limitations. Adv. Photon. Res. 2022;3(11):2100371. doi: 10.1002/adpr.202100371. DOI

Miliutina E., Guselnikova O., Kushnarenko A., Bainova P., Postnikov P., Hnatowicz V., Svorcik V., Lyutakov O.. Single Plasmon-Active Optical Fiber Probe for Instantaneous Chiral Detection. ACS Sens. 2020;5(1):50–56. doi: 10.1021/acssensors.9b01328. PubMed DOI

Miliutina E., Guselnikova O., Burtsev V., Elashnikov R., Postnikov P., Svorcik V., Lyutakov O.. Plasmon-Active Optical Fiber Functionalized by Metal Organic Framework for Pesticide Detection. Talanta. 2020;208:120480. doi: 10.1016/j.talanta.2019.120480. PubMed DOI

Ding H., Cao X., Xiong F., Xing H., Wang Z., Xu H., Chen Y., Tang S., Xu F.. Operando Monitoring Gas Pressure Based on an Optical Fiber Sensor for Quantifying Hydrogen Evolution toward Aqueous Zinc-Ion Batteries. J. Phys. Chem. C. 2025;129(27):12607–12614. doi: 10.1021/acs.jpcc.5c02894. DOI

Dai J., Chen Z., Yang R., Wu Z., Tang Z., Hu W., Cheng C., Wang X., Yang M.. Early Detection of Hydrogen Leakage Using Fiber Optic Hydrogen Sensor Based on WO3-PdPt-Pt Nanocomposite Films. Nanomaterials. 2025;15(11):836. doi: 10.3390/nano15110836. PubMed DOI PMC

Xie Z., Huang Z., Shi Y., Cao Y., Dong J., Tian R., Shen C.. Highly Sensitive Optical Fiber Hydrogen Detection in Liquid Environment. Int. J. Hydrogen Energy. 2025;106:1–7. doi: 10.1016/j.ijhydene.2025.01.426. DOI

Yang M., Dai J.. Fiber Optic Hydrogen Sensors: A Review. Photonic Sens. 2014;4(4):300–324. doi: 10.1007/s13320-014-0215-y. DOI

Ding M., Xu B., Chen Y., Gao E., Gong H., Yang M., Zhang Y., Chen X., Chen H., Zhao C.. Ultrasensitive Probe-Type Hydrogen Sensor Based on Dual Liquid-Filled Silica Capillary Fibers with Pt-WO3 Coating. Sens. Actuators B-Chem. 2025;436:137696. doi: 10.1016/j.snb.2025.137696. DOI

Yang Z., Chen J., Long X., Liu L., Jiang Y., Ren Z., Peng J., You D., Guo T.. Sensitive and Repeatable Optical Fiber Hydrogen Sensors Using Plasma-Induced Oxygen Vacancies Magnetron Sputtering Coating Technique. J. Light. Technol. 2025;43(5):2428–2437. doi: 10.1109/JLT.2024.3493593. DOI

Zheng H., Liu Z., Li S., Feng D., Jiang B.. Pd/WO3 Co-Deposited Tilted Fiber Bragg Grating for Fast Hydrogen Sensing. IEEE Trans. Instrum. Meas. 2025;74:1–7. doi: 10.1109/TIM.2024.3522415. DOI

Wang G., Dai J., Yang M.. Fiber-Optic Hydrogen Sensors: A Review. IEEE Sens. J. 2021;21(11):12706–12718. doi: 10.1109/JSEN.2020.3029519. DOI

Silva S. F., Coelho L., Frazao O., Santos J. L., Malcata F. X.. A Review of Palladium-Based Fiber-Optic Sensors for Molecular Hydrogen Detection. IEEE Sens. J. 2012;12(1):93–102. doi: 10.1109/JSEN.2011.2138130. DOI

Darmadi I., Nugroho F. A. A., Langhammer C.. High-Performance Nanostructured Palladium-Based Hydrogen SensorsCurrent Limitations and Strategies for Their Mitigation. ACS Sens. 2020;5(11):3306–3327. doi: 10.1021/acssensors.0c02019. PubMed DOI PMC

Zhang F., Buchfellner F., Hu W., Ao W., Bian Q., Roths J., Yang M.. Optical Fiber Hydrogen Sensor Based on π-Phase-Shifted Grating and Sputtered Pd/Hf Composite Film. Photonic Sens. 2025;15(2):250204. doi: 10.1007/s13320-025-0750-8. DOI

Meng X., Bi M., Gao W.. PdAg Alloy Modified SnO2 Nanoparticles for Ultrafast Detection of Hydrogen. Sens. Actuators, B. 2023;382:133515. doi: 10.1016/j.snb.2023.133515. DOI

Fisser M., Badcock R. A., Teal P. D., Hunze A.. Improving the Sensitivity of Palladium-Based Fiber Optic Hydrogen Sensors. J. Light Technol. 2018;36(11):2166–2174. doi: 10.1109/JLT.2018.2807789. DOI

Zhang Y.-N., Zhang A., Han B., E S.. A Reflective Hydrogen Sensor Based on Fiber Ring Laser with PCF Modal Interferometer. J. Opt. 2018;20(6):065401. doi: 10.1088/2040-8986/aac157. DOI

Xu B., Zhao C. L., Yang F., Gong H., Wang D. N., Dai J., Yang M.. Sagnac Interferometer Hydrogen Sensor Based on Panda Fiber with Pt-Loaded WO3/SiO2 Coating. Opt. Lett. 2016;41(7):1594–1597. doi: 10.1364/OL.41.001594. PubMed DOI

Luo J., Liu S., Chen P., Lu S., Zhang Q., Chen Y., Du B., Tang J., He J., Liao C., Wang Y.. Fiber Optic Hydrogen Sensor Based on a Fabry–Perot Interferometer with a Fiber Bragg Grating and a Nanofilm. Lab Chip. 2021;21(9):1752–1758. doi: 10.1039/D1LC00012H. PubMed DOI

Alkhabet M. M., Girei S. H., Al-Isawi Z. K., Shareef O. S. F., Farhan A. H., Altalebi O., Khalaf A. L., Jaafar J. A., Yaacob M. H.. Palladium (Pd) Coated Fiber Optic Hydrogen Sensors: A Review. Mater. Sci. Semicon. Proc. 2025;188:109204. doi: 10.1016/j.mssp.2024.109204. DOI

Zhao Z., Knight M., Kumar S., Eisenbraun E. T., Carpenter M. A.. Humidity Effects on Pd/Au-Based All-Optical Hydrogen Sensors. Sens. Actuators B-Chem. 2008;129(2):726–733. doi: 10.1016/j.snb.2007.09.032. DOI

Baselt D. R., Fruhberger B., Klaassen E., Cemalovic S., Britton C. L., Patel S. V., Mlsna T. E., McCorkle D., Warmack B.. Design and Performance of a Microcantilever-Based Hydrogen Sensor. Sens. Actuators B-Chem. 2003;88(2):120–131. doi: 10.1016/S0925-4005(02)00315-5. DOI

Orme C. J., Stone M. L., Benson M. T., Peterson E. S.. Testing Of Polymer Membranes For The Selective Permeability Of Hydrogen. Sep. Sci. Technol. 2003;38(12–13):3225–3238. doi: 10.1081/SS-120022595. DOI

Miliutina E., Guselnikova O., Chufistova S., Kolska Z., Elashnikov R., Burtsev V., Postnikov P., Svorcik V., Lyutakov O.. Fast and All-Optical Hydrogen Sensor Based on Gold-Coated Optical Fiber Functionalized with Metal-Organic Framework Layer. ACS Sens. 2019;4(12):3133–3140. doi: 10.1021/acssensors.9b01074. PubMed DOI

Kim D., Shumski A., Bullard K. K., Wright R.. Optical Fiber Sensor with a Hydrophobic Filter Layer for Monitoring Hydrogen under Humid Conditions. ACS Sens. 2025;10(7):4825–4831. doi: 10.1021/acssensors.5c01172. PubMed DOI

Bannenberg L. J., Krishnan G., Boshuizen B., Schreuders H.. Palladium-PTFE Metal–Polymer Nanocomposite Film Produced by Cosputtering for Hydrogen Sensing Applications. ACS Appl. Energy Mater. 2025;8(9):5664–5674. doi: 10.1021/acsaem.4c03202. DOI

Yang K.-S., Ding K.-H., Geng W.-T., Yang K., Li Y.-Y., Yang H., Xu Y.. Pt/MOF-5 Film-Coated Optical Micro-Nano Fibre Hydrogen Sensor with Humidity and Temperature Compensation Functions. J. Mod. Opt. 2024;71(10–12):397–405. doi: 10.1080/09500340.2024.2427188. DOI

Zhang C., Shen C., Liu X., Liu S., Chen H., Huang Z., Wang Z., Lang T., Zhao C., Zhang Y.. Pd/Au Nanofilms Based Tilted Fiber Bragg Grating Hydrogen Sensor. Opt. Commun. 2022;502:127424. doi: 10.1016/j.optcom.2021.127424. DOI

Khanikar T., Karki D., Su Y.-D., Young Hong J., Wang Y., Naeem K., Ohodnicki P. R.. Pd/PMMA Nanocomposite-Coated Optical Fiber Hydrogen Sensor Operating at Room Temperature With Humidity Tolerance. IEEE Sens. J. 2024;24:34498–34506. doi: 10.1109/JSEN.2024.3454569. DOI

Xie Z., Huang Z., Shi Y., Cao Y., Dong J., Tian R., Shen C.. Highly Sensitive Optical Fiber Hydrogen Detection in Liquid Environment. Int. J. Hydr. Energy. 2025;106:1–7. doi: 10.1016/j.ijhydene.2025.01.426. DOI

Abdalwareth A., Flachenecker G., Angelmahr M., Schade W.. Optical Fiber Evanescent Hydrogen Sensor Based on Palladium Nanoparticles Coated Bragg Gratings. Sens. Actuat. A: Phys. 2023;361:114594. doi: 10.1016/j.sna.2023.114594. DOI

Cao R., Wu J., Liang G., Ohodnicki P. R., Chen K. P.. Functionalized PdAu Alloy on Nanocones Fabricated on Optical Fibers for Hydrogen Sensing. IEEE Sens. J. 2020;20:1922–1927. doi: 10.1109/JSEN.2019.2950505. DOI

Luong H. M., Pham M. T., Madhogaria R. P., Phan M.-H., Larsen G. K., Nguyen T. D.. Bilayer Plasmonic Nano-Lattices for Tunable Hydrogen Sensing Platform. Nano Energy. 2020;71:104558. doi: 10.1016/j.nanoen.2020.104558. DOI

Ngene P., Radeva T., Slaman M., Westerwaal R. J., Schreuders H., Dam B.. Seeing Hydrogen in Colors: Low-Cost and Highly Sensitive Eye Readable Hydrogen Detectors. Adv. Funct. Mater. 2014;24:2374–2382. doi: 10.1002/adfm.201303065. DOI

Bannenberg L., Schreuders H., Dam B.. Tantalum-Palladium: Hysteresis-Free Optical Hydrogen Sensor Over 7 Orders of Magnitude in Pressure with Sub-Second Response. Adv. Funct. Mater. 2021;31:2010483. doi: 10.1002/adfm.202010483. DOI

Gu F., Zeng H., Zhu Y. B., Yang Q., Ang L. K., Zhuang S.. Single-Crystal Pd and Its Alloy Nanowires for Plasmon Propagation and Highly Sensitive Hydrogen Detection. Adv. Opt. Mater. 2014;2:189–196. doi: 10.1002/adom.201300413. DOI

Wadell C., Langhammer C.. Drift-Corrected Nanoplasmonic Hydrogen Sensing by Polarization. Nanoscale. 2015;7:10963–10969. doi: 10.1039/C5NR01818H. PubMed DOI

Ma J., Zhou Y., Bai X., Chen K., Guan B.-O.. High-Sensitivity and Fast-Response Fiber-Tip Fabry–Pérot Hydrogen Sensor with Suspended Palladium-Decorated Graphene. Nanoscale. 2019;11:15821–15827. doi: 10.1039/C9NR04274A. PubMed DOI

Östergren I., Darmadi I., Lerch S., Silva R. R. da, Craighero M., Paleti S. H. K., Moth-Poulsen K., Langhammer C., Müller C.. A Surface Passivated Fluorinated Polymer Nanocomposite for Carbon Monoxide Resistant Plasmonic Hydrogen Sensing. J. Mater. Chem. A. 2024;12:7906–7915. doi: 10.1039/D4TA00055B. DOI

Östergren I., Pourrahimi A. M., Darmadi I., da Silva R., Stolaś A., Lerch S., Berke B., Guizar-Sicairos M., Liebi M., Foli G., Palermo V., Minelli M., Moth-Poulsen K., Langhammer C., Müller C.. Highly Permeable Fluorinated Polymer Nanocomposites for Plasmonic Hydrogen Sensing. ACS Appl. Mater. Interfaces. 2021;13:21724–21732. doi: 10.1021/acsami.1c01968. PubMed DOI PMC

Dai J., Yang M., Chen Y., Cao K., Liao H., Zhang P.. Side-Polished Fiber Bragg Grating Hydrogen Sensor with WO3-Pd Composite Film as Sensing Materials. Opt. Express. 2011;19:6141–6148. doi: 10.1364/OE.19.006141. PubMed DOI

Perrotton C., Westerwaal R. J., Javahiraly N., Slaman M., Schreuders H., Dam B., Meyrueis P.. A Reliable, Sensitive and Fast Optical Fiber Hydrogen Sensor Based on Surface Plasmon Resonance. Opt. Express. 2013;21:382–390. doi: 10.1364/OE.21.000382. PubMed DOI

Zhang X., Li X., Zhang X., Peng W.. Optics-Mechanics Synergistic Fiber Optic Sensor for Hydrogen Detection. Opt. Express. 2022;30:32769–32782. doi: 10.1364/OE.468282. PubMed DOI

Cai S., Nan Y.-G., Li Y., Hou Y., Zhang Z.. Rapid Detection of Hydrogen Using Narrow Bandwidth Fiber-Optic Spectral Combs with a Low Limit of Detection. Opt. Express. 2023;31:35616–35623. doi: 10.1364/OE.502915. PubMed DOI

Shen C., Huang Z., Chen X., Chen H., Wang Z., Li Y., Liu J., Zhou J.. Reflective-Type High Sensitivity Optical Fiber Hydrogen Sensor Based On Enlarged Taper Cascaded With Tilted Fiber Grating. J. Lightwave Technol. 2022;40:6296–6302. doi: 10.1109/JLT.2022.3192058. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...