IncL plasmid-mediated dissemination of OXA-48 β-lactamase and bla CTX-M-15 gene amplification identified via long-read sequencing in carbapenem-resistant Enterobacterales
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
41510202
PubMed Central
PMC12776359
DOI
10.1093/jacamr/dlaf254
PII: dlaf254
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Increasing resistance to broad-spectrum beta-lactams and carbapenems is a significant concern in healthcare settings. This study aimed to determine the prevalence of intestinal carriage of extended-spectrum β-lactamase (ESBL)-producing and carbapenem-resistant Enterobacterales (CRE) in a tertiary care hospital and to evaluate the utility of long-read sequencing for carbapenem resistance surveillance. METHODS: In 2021, stool samples (n = 538) and rectal swabs (n = 256) from hospitalized patients were cultured after enrichment on selective chromogenic medium to detect ESBL and CRE carriage. CRE isolates were characterized by antimicrobial susceptibility testing and whole-genome sequencing. RESULTS: Among 794 patient samples, 239 (30%) Enterobacterales isolates grew on ESBL media. On CRE agar, 28 Enterobacterales were cultured, 27 confirmed carbapenem-resistant and identified as Klebsiella pneumoniae (n = 25), Escherichia coli (n = 1), and Enterobacter cloacae (n = 1). In CRE, 29.6% (8/27) were carbapenemase-producing Enterobacterales (CPE), carrying the bla OXA-48 (n = 7) or bla NDM-1 (n = 1) genes. The remaining 70.4% (19/27) were non-carbapenemase-producing CRE isolates (non-CP-CRE). The bla OXA-48 gene was localized on identical IncL plasmids with an inverted Tn1999.2 transposon in non-clonally related isolates. CPE isolates exhibited distinct resistance patterns to carbapenems, β-lactam/β-lactamase inhibitor combinations, with 87.5% resistant to cefiderocol. All non-CP-CRE isolates remained susceptible to imipenem; two were resistant to meropenem and carried either five or six copies of the bla CTX-M-15 gene along with mutations in porin genes. CONCLUSIONS: A 30% prevalence of intestinal carriage of ESBL-producing Enterobacterales and a 3.4% carriage prevalence of CRE were found. Long-read sequencing revealed IncL plasmid-mediated dissemination of OXA-48 β-lactamase and bla CTX-M-15 gene amplification, demonstrating its added value for antimicrobial resistance monitoring.
Zobrazit více v PubMed
Kajova M, Khawaja T, Kantele A. European hospitals as source of multidrug-resistant bacteria: analysis of travellers screened in Finland after hospitalization abroad. J Travel Med 2022; 29: taac022. 10.1093/jtm/taac022 DOI
European Centre for Disease Prevention and Control . Carbapenem-resistant Enterobacterales, third update. ECDC, 2025. https://www.ecdc.europa.eu/sites/default/files/documents/risk-assessment-carbapenem-resistant-enterobacterales-third-update-february-2025_0.pdf
Mathers AJ, Peirano G, Pitout JD. The role of epidemic resistance plasmids and international high-risk clones in the spread of multidrug-resistant Enterobacteriaceae. Clin Microbiol Rev 2015; 28: 565–91. 10.1128/CMR.00116-14 PubMed DOI PMC
Lerminiaux N, Mitchell R, Bartoszko J et al. Plasmid genomic epidemiology of PubMed DOI PMC
Rozwandowicz M, Brouwer MSM, Fischer J et al. Plasmids carrying antimicrobial resistance genes in Enterobacteriaceae. J Antimicrob Chemother 2018; 73: 1121–37. 10.1093/jac/dkx488 PubMed DOI
Elshamy AA, Aboshanab KM. A review on bacterial resistance to carbapenems: epidemiology, detection and treatment options. Future Sci OA 2020; 6: FSO438. 10.2144/fsoa-2019-0098 PubMed DOI PMC
Shropshire WC, Konovalova A, McDaneld P et al. Systematic analysis of mobile genetic elements mediating β-lactamase gene amplification in noncarbapenemase-producing carbapenem-resistant enterobacterales bloodstream infections. mSystems 2022; 7: e0047622. 10.1128/msystems.00476-22 PubMed DOI PMC
Shropshire WC, Aitken SL, Pifer R et al. IS26-mediated amplification of blaOXA-1 and blaCTX-M-15 with concurrent outer membrane porin disruption associated with de novo carbapenem resistance in a recurrent bacteraemia cohort. J Antimicrob Chemother 2021; 76: 385–95. 10.1093/jac/dkaa447 PubMed DOI PMC
EUCAST . Breakpoint tables for interpretation of MICs and zone diameters, Version 13.0, 2023. http://www.eucast.org
CLSI . Performance standards for antimicrobial susceptibility testing, 33rd edn, M100, 2023.
EUCAST . Breakpoint tables for interpretation of MICs and zone diameters, Version 15.0, 2025. https://www.eucast.org
Prjibelski A, Antipov D, Meleshko D et al. Using SPAdes De Novo assembler. Curr Protoc Bioinformatics 2020; 70: e102. 10.1002/cpbi.102 PubMed DOI
Brettin T, Davis JJ, Disz T et al. Rasttk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 2015; 5: 8365. 10.1038/srep08365 PubMed DOI PMC
Kolmogorov M, Yuan J, Lin Y et al. Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol 2019; 37: 540–6. 10.1038/s41587-019-0072-8 PubMed DOI
Wick RR, Holt KE. Polypolish: short-read polishing of long-read bacterial genome assemblies. PLoS Comput Biol 2022; 18: e1009802. 10.1371/journal.pcbi.1009802 PubMed DOI PMC
Bortolaia V, Kaas RS, Ruppe E et al. Resfinder 4.0 for predictions of phenotypes from genotypes. J Antimicrob Chemother 2020; 75: 3491–500. 10.1093/jac/dkaa345 PubMed DOI PMC
Seemann T. Snippy: fast bacterial variant calling from NGS reads, 2015. https://github.com/tseemann/snippy
Larsen MV, Cosentino S, Rasmussen S et al. Multilocus sequence typing of total-genome-sequenced bacteria. J Clin Microbiol 2012; 50: 1355–61. 10.1128/JCM.06094-11 PubMed DOI PMC
Schürch AC, Arredondo-Alonso S, Willems RJL et al. Whole genome sequencing options for bacterial strain typing and epidemiologic analysis based on single nucleotide polymorphism versus gene-by-gene-based approaches. Clin Microbiol Infect 2018; 24: 350–4. 10.1016/j.cmi.2017.12.016 PubMed DOI
Carattoli A, Zankari E, García-Fernández A et al. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother 2014; 58: 3895–903. 10.1128/AAC.02412-14 PubMed DOI PMC
Poirel L, Bonnin RA, Nordmann P. Genetic features of the widespread plasmid coding for the carbapenemase OXA-48. Antimicrob Agents Chemother 2012; 56: 559–62. 10.1128/AAC.05289-11 PubMed DOI PMC
Beyrouthy R, Robin F, Delmas J et al. IS1R-mediated plasticity of IncL/M plasmids leads to the insertion of bla OXA-48 into the PubMed DOI PMC
Skalova A, Chudejova K, Rotova V et al. Molecular characterization of OXA-48-like-producing Enterobacteriaceae in the Czech Republic and evidence for horizontal transfer of pOXA-48-like plasmids. Antimicrob Agents Chemother 2017; 61: e01889-16. 10.1128/AAC.01889-16 PubMed DOI PMC
Hunt M, Silva ND, Otto TD et al. Circlator: automated circularization of genome assemblies using long sequencing reads. Genome Biol 2015; 16: 294. 10.1186/s13059-015-0849-0 PubMed DOI PMC
Sullivan MJ, Petty NK, Beatson SA. Easyfig: a genome comparison visualizer. Bioinformatics 2011; 27: 1009–10. 10.1093/bioinformatics/btr039 PubMed DOI PMC
Alikhan NF, Petty NK, Ben Zakour NL et al. Blast ring image generator (BRIG): simple prokaryote genome comparisons. BMC Genomics 2011; 12: 402. 10.1186/1471-2164-12-402 PubMed DOI PMC
Sun D, Rubio-Aparicio D, Nelson K et al. Meropenem-vaborbactam resistance selection, resistance prevention, and molecular mechanisms in mutants of KPC-producing PubMed DOI PMC
Özad Düzgün A. From Turkey: first report of KPC-3- and CTX-M-27-producing multidrug-resistant PubMed DOI
Maclean AKW, Morrow S, Niu F et al. What contributes to the minimum inhibitory concentration? Beyond β-lactamase gene detection in PubMed DOI PMC
Santerre Henriksen A, Arena F, Attwood M et al. In vitro activity of cefiderocol against European Enterobacterales, including isolates resistant to meropenem and recentβ-lactam/β-lactamase inhibitor combinations. Microbiol Spectr 2024; 12: e0418123. 10.1128/spectrum.04181-23 PubMed DOI PMC
Husna A, Rahman MM, Badruzzaman ATM et al. Extended-spectrum β-lactamases (ESBL): challenges and opportunities. Biomedicines 2023; 11: 2937. 10.3390/biomedicines11112937 PubMed DOI PMC
Houkes KMG, Weterings V, van den Bijllaardt W et al. One decade of point-prevalence surveys for carriage of extended-spectrum beta-lactamase-producing enterobacterales: whole genome sequencing based prevalence and genetic characterization in a large Dutch teaching hospital from 2013 to 2022. Antimicrob Resist Infect Control 2024; 13: 102. 10.1186/s13756-024-01460-y PubMed DOI PMC
Hagel S, Makarewicz O, Hartung A et al. ESBL colonization and acquisition in a hospital population: the molecular epidemiology and transmission of resistance genes. PLoS ONE 2019; 14: e0208505. 10.1371/journal.pone.0208505 PubMed DOI PMC
Pilmis B, Cattoir V, Lecointe D et al. Carriage of ESBL-producing Enterobacteriaceae in French hospitals: the PORTABLSE study. J Hosp Infect 2018; 98: 247–52. 10.1016/j.jhin.2017.11.022 PubMed DOI
Markovska R, Stankova P, Stoeva T et al. Fecal carriage and epidemiology of extended-spectrum beta-lactamase/carbapenemases producing enterobacterales isolates in Bulgarian hospitals. Antibiotics (Basel) 2021; 10: 747. 10.3390/antibiotics10060747 PubMed DOI PMC
Kizilates F, Yakupogullari Y, Berk H et al. Risk factors for fecal carriage of extended-spectrum beta-lactamase-producing and carbapenem-resistant PubMed DOI
Wielders CCH, Schouls LM, Woudt SHS et al. Epidemiology of carbapenem-resistant and carbapenemase-producing Enterobacterales in The Netherlands 2017-2019. Antimicrob Resist Infect Control 2022; 11: 57. 10.1186/s13756-022-01097-9 PubMed DOI PMC
Westerholt M, Hasman H, Hansen DS et al. Screening patients at admission to Copenhagen hospitals for carriage of resistant bacteria after contact with healthcare systems abroad, 2016–2019. Int J Antimicrob Agents 2021; 58: 106452. 10.1016/j.ijantimicag.2021.106452 PubMed DOI
Pitout JDD, Peirano G, Kock MM et al. The global ascendency of OXA-48-type carbapenemases. Clin Microbiol Rev 2019; 33: e00102-19. 10.1128/CMR.00102-19 PubMed DOI PMC
Peirano G, Pitout JDD. Rapidly spreading Enterobacterales with OXA-48-like carbapenemases. J Clin Microbiol 2025; 63: e0151524. 10.1128/jcm.01515-24 PubMed DOI PMC
Cantón R, Akóva M, Carmeli Y et al. Rapid evolution and spread of carbapenemases among Enterobacteriaceae in Europe. Clin Microbiol Infect 2012; 18: 413–31. 10.1111/j.1469-0691.2012.03821.x PubMed DOI
Hrabák J, Bébrová E, Nyč O et al. Isolation of the strain
Hrabák J, Niemczyková J, Chudáčková E et al. KPC-2-producing PubMed DOI
Hrabák J, Papagiannitsis CC, Študentová V et al. Carbapenemase-producing PubMed DOI
Papagiannitsis CC, Studentova V, Chudackova E et al. Identification of a New Delhi metallo-β-lactamase-4 (NDM-4)-producing PubMed DOI
Carrër A, Poirel L, Eraksoy H et al. Spread of OXA-48-positive carbapenem-resistant PubMed DOI PMC
Paskova V, Medvecky M, Skalova A et al. Characterization of NDM-encoding plasmids from Enterobacteriaceae recovered from Czech Hospitals. Front Microbiol 2018; 9: 1549. 10.3389/fmicb.2018.01549 PubMed DOI PMC
Kraftova L, Finianos M, Studentova V et al. Evidence of an epidemic spread of KPC-producing Enterobacterales in Czech hospitals. Sci Rep 2021; 11: 15732. 10.1038/s41598-021-95285-z PubMed DOI PMC
van Duin D, Perez F, Rudin SD et al. Surveillance of carbapenem-resistant PubMed DOI PMC
Element SJ, Moran RA, Beattie E et al. Growth in a biofilm promotes conjugation of a blaNDM-1-bearing plasmid between PubMed DOI PMC
Kidd JM, Livermore DM, Nicolau DP. The difficulties of identifying and treating Enterobacterales with OXA-48-like carbapenemases. Clin Microbiol Infect 2020; 26: 401–3. 10.1016/j.cmi.2019.12.006 PubMed DOI
Nordmann P, Bouvier M, Poirel L. Efficacy of ceftazidime-avibactam, meropenem-vaborbactam, and imipenem-relebactam combinations against carbapenemase-producing Enterobacterales in Switzerland. Eur J Clin Microbiol Infect Dis 2023; 42: 1145–52. 10.1007/s10096-023-04647-0 PubMed DOI PMC
Paul M, Carrara E, Retamar P et al. European Society of Clinical Microbiology and Infectious Diseases (ESCMID) guidelines for the treatment of infections caused by multidrug-resistant Gram-negative bacilli (endorsed by European society of intensive care medicine). Clin Microbiol Infect 2022; 28: 521–47. 10.1016/j.cmi.2021.11.025 PubMed DOI
Tamma PD, Aitken SL, Bonomo RA et al. Infectious Diseases Society of America 2022 guidance on the treatment of extended-spectrum β-lactamase producing Enterobacterales (ESBL-E), carbapenem-resistant Enterobacterales (CRE), and PubMed DOI PMC
Baltas I, Patel T, Soares AL. Resistance profiles of carbapenemase-producing Enterobacterales in a large centre in England: are we already losing cefiderocol? J Antimicrob Chemother 2025; 80: 59–67. 10.1093/jac/dkae367 PubMed DOI PMC
Klontz EH, Tomich AD, Günther S et al. Structure and dynamics of FosA-mediated fosfomycin resistance in PubMed DOI PMC
Efrati Epchtien R, Temkin E, Lurie-Weinberger MN et al. Characterization of Enterobacterales growing on selective CPE screening plates with a focus on non-carbapenemase-producing strains. Microbiol Spectr 2025; 13: e0207924. 10.1128/spectrum.02079-24 PubMed DOI PMC
Tsai YK, Liou CH, Fung CP et al. Single or in combination antimicrobial resistance mechanisms of PubMed DOI PMC
Black CA, Benavides R, Bandy SM et al. Diverse role of PubMed DOI PMC
Jacoby GA, Mills DM, Chow N. Role of beta-lactamases and porins in resistance to ertapenem and other beta-lactams in PubMed DOI PMC
Magiorakos AP, Burns K, Rodríguez Baño J et al. Infection prevention and control measures and tools for the prevention of entry of carbapenem-resistant Enterobacteriaceae into healthcare settings: guidance from the European centre for disease prevention and control. Antimicrob Resist Infect Control 2017; 6: 113. 10.1186/s13756-017-0259-z PubMed DOI PMC