IncL plasmid-mediated dissemination of OXA-48 β-lactamase and bla CTX-M-15 gene amplification identified via long-read sequencing in carbapenem-resistant Enterobacterales

. 2026 Feb ; 8 (1) : dlaf254. [epub] 20260107

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41510202

BACKGROUND: Increasing resistance to broad-spectrum beta-lactams and carbapenems is a significant concern in healthcare settings. This study aimed to determine the prevalence of intestinal carriage of extended-spectrum β-lactamase (ESBL)-producing and carbapenem-resistant Enterobacterales (CRE) in a tertiary care hospital and to evaluate the utility of long-read sequencing for carbapenem resistance surveillance. METHODS: In 2021, stool samples (n = 538) and rectal swabs (n = 256) from hospitalized patients were cultured after enrichment on selective chromogenic medium to detect ESBL and CRE carriage. CRE isolates were characterized by antimicrobial susceptibility testing and whole-genome sequencing. RESULTS: Among 794 patient samples, 239 (30%) Enterobacterales isolates grew on ESBL media. On CRE agar, 28 Enterobacterales were cultured, 27 confirmed carbapenem-resistant and identified as Klebsiella pneumoniae (n = 25), Escherichia coli (n = 1), and Enterobacter cloacae (n = 1). In CRE, 29.6% (8/27) were carbapenemase-producing Enterobacterales (CPE), carrying the bla OXA-48 (n = 7) or bla NDM-1 (n = 1) genes. The remaining 70.4% (19/27) were non-carbapenemase-producing CRE isolates (non-CP-CRE). The bla OXA-48 gene was localized on identical IncL plasmids with an inverted Tn1999.2 transposon in non-clonally related isolates. CPE isolates exhibited distinct resistance patterns to carbapenems, β-lactam/β-lactamase inhibitor combinations, with 87.5% resistant to cefiderocol. All non-CP-CRE isolates remained susceptible to imipenem; two were resistant to meropenem and carried either five or six copies of the bla CTX-M-15 gene along with mutations in porin genes. CONCLUSIONS: A 30% prevalence of intestinal carriage of ESBL-producing Enterobacterales and a 3.4% carriage prevalence of CRE were found. Long-read sequencing revealed IncL plasmid-mediated dissemination of OXA-48 β-lactamase and bla CTX-M-15 gene amplification, demonstrating its added value for antimicrobial resistance monitoring.

Zobrazit více v PubMed

Kajova  M, Khawaja  T, Kantele  A. European hospitals as source of multidrug-resistant bacteria: analysis of travellers screened in Finland after hospitalization abroad. J Travel Med  2022; 29: taac022. 10.1093/jtm/taac022 DOI

European Centre for Disease Prevention and Control . Carbapenem-resistant Enterobacterales, third update. ECDC, 2025. https://www.ecdc.europa.eu/sites/default/files/documents/risk-assessment-carbapenem-resistant-enterobacterales-third-update-february-2025_0.pdf

Mathers  AJ, Peirano  G, Pitout  JD. The role of epidemic resistance plasmids and international high-risk clones in the spread of multidrug-resistant Enterobacteriaceae. Clin Microbiol Rev  2015; 28: 565–91. 10.1128/CMR.00116-14 PubMed DOI PMC

Lerminiaux  N, Mitchell  R, Bartoszko  J  et al.  Plasmid genomic epidemiology of PubMed DOI PMC

Rozwandowicz  M, Brouwer  MSM, Fischer  J  et al.  Plasmids carrying antimicrobial resistance genes in Enterobacteriaceae. J Antimicrob Chemother  2018; 73: 1121–37. 10.1093/jac/dkx488 PubMed DOI

Elshamy  AA, Aboshanab  KM. A review on bacterial resistance to carbapenems: epidemiology, detection and treatment options. Future Sci OA  2020; 6: FSO438. 10.2144/fsoa-2019-0098 PubMed DOI PMC

Shropshire  WC, Konovalova  A, McDaneld  P  et al.  Systematic analysis of mobile genetic elements mediating β-lactamase gene amplification in noncarbapenemase-producing carbapenem-resistant enterobacterales bloodstream infections. mSystems  2022; 7: e0047622. 10.1128/msystems.00476-22 PubMed DOI PMC

Shropshire  WC, Aitken  SL, Pifer  R  et al.  IS26-mediated amplification of blaOXA-1 and blaCTX-M-15 with concurrent outer membrane porin disruption associated with de novo carbapenem resistance in a recurrent bacteraemia cohort. J Antimicrob Chemother  2021; 76: 385–95. 10.1093/jac/dkaa447 PubMed DOI PMC

EUCAST . Breakpoint tables for interpretation of MICs and zone diameters, Version 13.0, 2023. http://www.eucast.org

CLSI . Performance standards for antimicrobial susceptibility testing, 33rd edn, M100, 2023.

EUCAST . Breakpoint tables for interpretation of MICs and zone diameters, Version 15.0, 2025. https://www.eucast.org

Prjibelski  A, Antipov  D, Meleshko  D  et al.  Using SPAdes De Novo assembler. Curr Protoc Bioinformatics  2020; 70: e102. 10.1002/cpbi.102 PubMed DOI

Brettin  T, Davis  JJ, Disz  T  et al.  Rasttk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep  2015; 5: 8365. 10.1038/srep08365 PubMed DOI PMC

Kolmogorov  M, Yuan  J, Lin  Y  et al.  Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol  2019; 37: 540–6. 10.1038/s41587-019-0072-8 PubMed DOI

Wick  RR, Holt  KE. Polypolish: short-read polishing of long-read bacterial genome assemblies. PLoS Comput Biol  2022; 18: e1009802. 10.1371/journal.pcbi.1009802 PubMed DOI PMC

Bortolaia  V, Kaas  RS, Ruppe  E  et al.  Resfinder 4.0 for predictions of phenotypes from genotypes. J Antimicrob Chemother  2020; 75: 3491–500. 10.1093/jac/dkaa345 PubMed DOI PMC

Seemann  T. Snippy: fast bacterial variant calling from NGS reads, 2015. https://github.com/tseemann/snippy

Larsen  MV, Cosentino  S, Rasmussen  S  et al.  Multilocus sequence typing of total-genome-sequenced bacteria. J Clin Microbiol  2012; 50: 1355–61. 10.1128/JCM.06094-11 PubMed DOI PMC

Schürch  AC, Arredondo-Alonso  S, Willems  RJL  et al.  Whole genome sequencing options for bacterial strain typing and epidemiologic analysis based on single nucleotide polymorphism versus gene-by-gene-based approaches. Clin Microbiol Infect  2018; 24: 350–4. 10.1016/j.cmi.2017.12.016 PubMed DOI

Carattoli  A, Zankari  E, García-Fernández  A  et al.  In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother  2014; 58: 3895–903. 10.1128/AAC.02412-14 PubMed DOI PMC

Poirel  L, Bonnin  RA, Nordmann  P. Genetic features of the widespread plasmid coding for the carbapenemase OXA-48. Antimicrob Agents Chemother  2012; 56: 559–62. 10.1128/AAC.05289-11 PubMed DOI PMC

Beyrouthy  R, Robin  F, Delmas  J  et al.  IS1R-mediated plasticity of IncL/M plasmids leads to the insertion of bla OXA-48 into the PubMed DOI PMC

Skalova  A, Chudejova  K, Rotova  V  et al.  Molecular characterization of OXA-48-like-producing Enterobacteriaceae in the Czech Republic and evidence for horizontal transfer of pOXA-48-like plasmids. Antimicrob Agents Chemother  2017; 61: e01889-16. 10.1128/AAC.01889-16 PubMed DOI PMC

Hunt  M, Silva  ND, Otto  TD  et al.  Circlator: automated circularization of genome assemblies using long sequencing reads. Genome Biol  2015; 16: 294. 10.1186/s13059-015-0849-0 PubMed DOI PMC

Sullivan  MJ, Petty  NK, Beatson  SA. Easyfig: a genome comparison visualizer. Bioinformatics  2011; 27: 1009–10. 10.1093/bioinformatics/btr039 PubMed DOI PMC

Alikhan  NF, Petty  NK, Ben Zakour  NL  et al.  Blast ring image generator (BRIG): simple prokaryote genome comparisons. BMC Genomics  2011; 12: 402. 10.1186/1471-2164-12-402 PubMed DOI PMC

Sun  D, Rubio-Aparicio  D, Nelson  K  et al.  Meropenem-vaborbactam resistance selection, resistance prevention, and molecular mechanisms in mutants of KPC-producing PubMed DOI PMC

Özad Düzgün  A. From Turkey: first report of KPC-3- and CTX-M-27-producing multidrug-resistant PubMed DOI

Maclean  AKW, Morrow  S, Niu  F  et al.  What contributes to the minimum inhibitory concentration? Beyond β-lactamase gene detection in PubMed DOI PMC

Santerre Henriksen  A, Arena  F, Attwood  M  et al.  In vitro activity of cefiderocol against European Enterobacterales, including isolates resistant to meropenem and recentβ-lactam/β-lactamase inhibitor combinations. Microbiol Spectr  2024; 12: e0418123. 10.1128/spectrum.04181-23 PubMed DOI PMC

Husna  A, Rahman  MM, Badruzzaman  ATM  et al.  Extended-spectrum β-lactamases (ESBL): challenges and opportunities. Biomedicines  2023; 11: 2937. 10.3390/biomedicines11112937 PubMed DOI PMC

Houkes  KMG, Weterings  V, van den Bijllaardt  W  et al.  One decade of point-prevalence surveys for carriage of extended-spectrum beta-lactamase-producing enterobacterales: whole genome sequencing based prevalence and genetic characterization in a large Dutch teaching hospital from 2013 to 2022. Antimicrob Resist Infect Control  2024; 13: 102. 10.1186/s13756-024-01460-y PubMed DOI PMC

Hagel  S, Makarewicz  O, Hartung  A  et al.  ESBL colonization and acquisition in a hospital population: the molecular epidemiology and transmission of resistance genes. PLoS ONE  2019; 14: e0208505. 10.1371/journal.pone.0208505 PubMed DOI PMC

Pilmis  B, Cattoir  V, Lecointe  D  et al.  Carriage of ESBL-producing Enterobacteriaceae in French hospitals: the PORTABLSE study. J Hosp Infect  2018; 98: 247–52. 10.1016/j.jhin.2017.11.022 PubMed DOI

Markovska  R, Stankova  P, Stoeva  T  et al.  Fecal carriage and epidemiology of extended-spectrum beta-lactamase/carbapenemases producing enterobacterales isolates in Bulgarian hospitals. Antibiotics (Basel)  2021; 10: 747. 10.3390/antibiotics10060747 PubMed DOI PMC

Kizilates  F, Yakupogullari  Y, Berk  H  et al.  Risk factors for fecal carriage of extended-spectrum beta-lactamase-producing and carbapenem-resistant PubMed DOI

Wielders  CCH, Schouls  LM, Woudt  SHS  et al.  Epidemiology of carbapenem-resistant and carbapenemase-producing Enterobacterales in The Netherlands 2017-2019. Antimicrob Resist Infect Control  2022; 11: 57. 10.1186/s13756-022-01097-9 PubMed DOI PMC

Westerholt  M, Hasman  H, Hansen  DS  et al.  Screening patients at admission to Copenhagen hospitals for carriage of resistant bacteria after contact with healthcare systems abroad, 2016–2019. Int J Antimicrob Agents  2021; 58: 106452. 10.1016/j.ijantimicag.2021.106452 PubMed DOI

Pitout  JDD, Peirano  G, Kock  MM  et al.  The global ascendency of OXA-48-type carbapenemases. Clin Microbiol Rev  2019; 33: e00102-19. 10.1128/CMR.00102-19 PubMed DOI PMC

Peirano  G, Pitout  JDD. Rapidly spreading Enterobacterales with OXA-48-like carbapenemases. J Clin Microbiol  2025; 63: e0151524. 10.1128/jcm.01515-24 PubMed DOI PMC

Cantón  R, Akóva  M, Carmeli  Y  et al.  Rapid evolution and spread of carbapenemases among Enterobacteriaceae in Europe. Clin Microbiol Infect  2012; 18: 413–31. 10.1111/j.1469-0691.2012.03821.x PubMed DOI

Hrabák  J, Bébrová  E, Nyč  O  et al.  Isolation of the strain

Hrabák  J, Niemczyková  J, Chudáčková  E  et al.  KPC-2-producing PubMed DOI

Hrabák  J, Papagiannitsis  CC, Študentová  V  et al.  Carbapenemase-producing PubMed DOI

Papagiannitsis  CC, Studentova  V, Chudackova  E  et al.  Identification of a New Delhi metallo-β-lactamase-4 (NDM-4)-producing PubMed DOI

Carrër  A, Poirel  L, Eraksoy  H  et al.  Spread of OXA-48-positive carbapenem-resistant PubMed DOI PMC

Paskova  V, Medvecky  M, Skalova  A  et al.  Characterization of NDM-encoding plasmids from Enterobacteriaceae recovered from Czech Hospitals. Front Microbiol  2018; 9: 1549. 10.3389/fmicb.2018.01549 PubMed DOI PMC

Kraftova  L, Finianos  M, Studentova  V  et al.  Evidence of an epidemic spread of KPC-producing Enterobacterales in Czech hospitals. Sci Rep  2021; 11: 15732. 10.1038/s41598-021-95285-z PubMed DOI PMC

van Duin  D, Perez  F, Rudin  SD  et al.  Surveillance of carbapenem-resistant PubMed DOI PMC

Element  SJ, Moran  RA, Beattie  E  et al.  Growth in a biofilm promotes conjugation of a blaNDM-1-bearing plasmid between PubMed DOI PMC

Kidd  JM, Livermore  DM, Nicolau  DP. The difficulties of identifying and treating Enterobacterales with OXA-48-like carbapenemases. Clin Microbiol Infect  2020; 26: 401–3. 10.1016/j.cmi.2019.12.006 PubMed DOI

Nordmann  P, Bouvier  M, Poirel  L. Efficacy of ceftazidime-avibactam, meropenem-vaborbactam, and imipenem-relebactam combinations against carbapenemase-producing Enterobacterales in Switzerland. Eur J Clin Microbiol Infect Dis  2023; 42: 1145–52. 10.1007/s10096-023-04647-0 PubMed DOI PMC

Paul  M, Carrara  E, Retamar  P  et al.  European Society of Clinical Microbiology and Infectious Diseases (ESCMID) guidelines for the treatment of infections caused by multidrug-resistant Gram-negative bacilli (endorsed by European society of intensive care medicine). Clin Microbiol Infect  2022; 28: 521–47. 10.1016/j.cmi.2021.11.025 PubMed DOI

Tamma  PD, Aitken  SL, Bonomo  RA  et al.  Infectious Diseases Society of America 2022 guidance on the treatment of extended-spectrum β-lactamase producing Enterobacterales (ESBL-E), carbapenem-resistant Enterobacterales (CRE), and PubMed DOI PMC

Baltas  I, Patel  T, Soares  AL. Resistance profiles of carbapenemase-producing Enterobacterales in a large centre in England: are we already losing cefiderocol?  J Antimicrob Chemother  2025; 80: 59–67. 10.1093/jac/dkae367 PubMed DOI PMC

Klontz  EH, Tomich  AD, Günther  S  et al.  Structure and dynamics of FosA-mediated fosfomycin resistance in PubMed DOI PMC

Efrati Epchtien  R, Temkin  E, Lurie-Weinberger  MN  et al.  Characterization of Enterobacterales growing on selective CPE screening plates with a focus on non-carbapenemase-producing strains. Microbiol Spectr  2025; 13: e0207924. 10.1128/spectrum.02079-24 PubMed DOI PMC

Tsai  YK, Liou  CH, Fung  CP  et al.  Single or in combination antimicrobial resistance mechanisms of PubMed DOI PMC

Black  CA, Benavides  R, Bandy  SM  et al.  Diverse role of PubMed DOI PMC

Jacoby  GA, Mills  DM, Chow  N. Role of beta-lactamases and porins in resistance to ertapenem and other beta-lactams in PubMed DOI PMC

Magiorakos  AP, Burns  K, Rodríguez Baño  J  et al.  Infection prevention and control measures and tools for the prevention of entry of carbapenem-resistant Enterobacteriaceae into healthcare settings: guidance from the European centre for disease prevention and control. Antimicrob Resist Infect Control  2017; 6: 113. 10.1186/s13756-017-0259-z PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...