Thalamic stimulation induced changes in network connectivity and excitability in epilepsy
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články, preprinty
Grantová podpora
K23 NS136792
NINDS NIH HHS - United States
R01 MH122258
NIMH NIH HHS - United States
UH3 NS095495
NINDS NIH HHS - United States
PubMed
38496621
PubMed Central
PMC10942513
DOI
10.1101/2024.03.03.24303480
PII: 2024.03.03.24303480
Knihovny.cz E-zdroje
- Klíčová slova
- deep brain stimulation, effective connectivity, electrophysiology, epilepsy, neuromodulation,
- Publikační typ
- časopisecké články MeSH
- preprinty MeSH
BACKGROUND: The clinical effects of deep brain stimulation for neurological conditions manifest across multiple timescales, spanning seconds to months, and involve direct electrical modulation, neuroplasticity, and network reorganization. In epilepsy, the delayed effects of deep brain stimulation on seizures limit optimization. Single pulse electrical stimulation and the resulting pulse evoked potentials offer a measure network effective connectivity and excitability. This study leverages single pulse and high frequency thalamic stimulation during stereotactic electroencephalography to assess seizure network engagement, modulate network activity, and track changes in excitability and epileptiform abnormalities. METHODS: Ten individuals with drug resistant epilepsy undergoing clinical stereotactic electroencephalography were enrolled in this retrospective cohort study. Each underwent a trial of high frequency (145 Hz) thalamic stimulation. Pulse evoked potentials were acquired before and after high frequency stimulation. Baseline evoked potential root-mean-square amplitude assessed seizure network engagement, and modulation of amplitude (post high frequency stimulation versus baseline; Cohen's d effect size) assessed change in network excitability. Interictal epileptiform discharge rates were measured by an automated classifier at baseline and during high frequency stimulation. Statistical significance was determined using paired-sample t-tests (p<0.05 significance level). This study was approved by the Mayo Clinic Institutional Review Board, with informed consent obtained from all participants. RESULTS: Thalamic stimulation delivered for >1.5 hours significantly reduced pulse evoked potential amplitudes in connected areas compared to baseline, with the degree of modulation correlated with baseline connectivity strength. Shorter stimulation durations did not induce reliable changes. High frequency stimulation immediately suppressed interictal epileptiform discharge rates in seizure networks with strong baseline thalamocortical connectivity. Pulse evoked potentials delineated the anatomical distribution of network engagement, revealing distinct patterns across thalamic subfields. CONCLUSION: Pulse evoked potentials and thalamic stimulation during stereotactic electroencephalography provide novel network biomarkers to evaluate target engagement and modulation of large-scale networks across acute and subacute timescales. This approach demonstrates potential for efficient, data-driven neuromodulation optimization, and a new paradigm for personalized deep brain stimulation in epilepsy.
Department of Neurology Mayo Clinic Rochester MN 55905 USA
Department of Neurosurgery Mayo Clinic Rochester MN 55905 USA
Department of Physiology and Biomedical Engineering Mayo Clinic Rochester MN 55905 USA
Medical Scientist Training Program Mayo Clinic Rochester MN 55905 USA
Zobrazit více v PubMed
Schuepbach WM, Rau J, Knudsen K, et al. Neurostimulation for Parkinson’s disease with early motor complications. N Engl J Med. 2013;368(7):610–622. PubMed
Fisher R, Salanova V, Witt T, et al. Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy. Epilepsia. 2010;51(5):899–908. PubMed
Boccard SG, Pereira EA, Aziz TZ. Deep brain stimulation for chronic pain. J Clin Neurosci. 2015;22(10):1537–1543. PubMed
Tisch S, Rothwell JC, Bhatia KP, et al. Pallidal stimulation modifies after-effects of paired associative stimulation on motor cortex excitability in primary generalised dystonia. Exp Neurol. 2007;206(1):80–85. PubMed
Krauss JK, Yianni J, Loher TJ, Aziz TZ. Deep brain stimulation for dystonia. J Clin Neurophysiol. 2004;21(1):18–30. PubMed
Alagapan S, Choi KS, Heisig S, et al. Cingulate dynamics track depression recovery with deep brain stimulation. Nature. 2023;622(7981):130–138. PubMed PMC
Crowell AL, Garlow SJ, Riva-Posse P, Mayberg HS. Characterizing the therapeutic response to deep brain stimulation for treatment-resistant depression: a single center long-term perspective. Front Integr Neurosci. 2015;9:41. PubMed PMC
Ashkan K, Rogers P, Bergman H, Ughratdar I. Insights into the mechanisms of deep brain stimulation. Nat Rev Neurol. 2017;13(9):548–554. PubMed
Morgan RJ, Soltesz I. Nonrandom connectivity of the epileptic dentate gyrus predicts a major role for neuronal hubs in seizures. Proc Natl Acad Sci U S A. 2008;105(16):6179–6184. PubMed PMC
Wilke C, Worrell G, He B. Graph analysis of epileptogenic networks in human partial epilepsy. Epilepsia. 2011;52(1):84–93. PubMed PMC
Richardson MP. Large scale brain models of epilepsy: dynamics meets connectomics. J Neurol Neurosurg Psychiatry. 2012;83(12):1238–1248. PubMed
Piper RJ, Richardson RM, Worrell G, et al. Towards network-guided neuromodulation for epilepsy. Brain. 2022;145(10):3347–3362. PubMed PMC
Fisher RS, Acevedo C, Arzimanoglou A, et al. ILAE official report: a practical clinical definition of epilepsy. Epilepsia. 2014;55(4):475–482. PubMed
Karoly PJ, Rao VR, Gregg NM, et al. Cycles in epilepsy. Nature Reviews Neurology. 2021. PubMed
Keller CJ, Honey CJ, Megevand P, Entz L, Ulbert I, Mehta AD. Mapping human brain networks with cortico-cortical evoked potentials. Philos Trans R Soc Lond B Biol Sci. 2014;369(1653). PubMed PMC
van Blooijs D, van den Boom MA, van der Aar JF, et al. Developmental trajectory of transmission speed in the human brain. Nat Neurosci. 2023;26(4):537–541. PubMed PMC
Keller CJ, Huang Y, Herrero JL, et al. Induction and Quantification of Excitability Changes in Human Cortical Networks. J Neurosci. 2018;38(23):5384–5398. PubMed PMC
Valentin A, Alarcon G, Honavar M, et al. Single pulse electrical stimulation for identification of structural abnormalities and prediction of seizure outcome after epilepsy surgery: a prospective study. Lancet Neurol. 2005;4(11):718–726. PubMed
Matsumoto R, Kunieda T, Nair D. Single pulse electrical stimulation to probe functional and pathological connectivity in epilepsy. Seizure. 2017;44:27–36. PubMed PMC
Huang H, Ojeda Valencia G, Gregg NM, et al. CARLA: Adjusted common average referencing for cortico-cortical evoked potential data. J Neurosci Methods. 2024;407:110153. PubMed PMC
Janca R, Jezdik P, Cmejla R, et al. Detection of interictal epileptiform discharges using signal envelope distribution modelling: application to epileptic and non-epileptic intracranial recordings. Brain Topogr. 2015;28(1):172–183. PubMed
Sladky V, Nejedly P, Mivalt F, et al. Distributed brain co-processor for tracking spikes, seizures and behaviour during electrical brain stimulation. Brain Commun. 2022;4(3):fcac115. PubMed PMC
Dell KL, Payne DE, Kremen V, et al. Seizure likelihood varies with day-to-day variations in sleep duration in patients with refractory focal epilepsy: A longitudinal electroencephalography investigation. EClinicalMedicine. 2021:100934. PubMed PMC
Krauth A, Blanc R, Poveda A, Jeanmonod D, Morel A, Szekely G. A mean three-dimensional atlas of the human thalamus: generation from multiple histological data. Neuroimage. 2010;49(3):2053–2062. PubMed
Destrieux C, Fischl B, Dale A, Halgren E. Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. Neuroimage. 2010;53(1):1–15. PubMed PMC
Horn A, Li N, Dembek TA, et al. Lead-DBS v2: Towards a comprehensive pipeline for deep brain stimulation imaging. Neuroimage. 2019;184:293–316. PubMed PMC
Amunts K, Lepage C, Borgeat L, et al. BigBrain: an ultrahigh-resolution 3D human brain model. Science. 2013;340(6139):1472–1475. PubMed
Pawley AD, Chowdhury FA, Tangwiriyasakul C, et al. Cortical excitability correlates with seizure control and epilepsy duration in chronic epilepsy. Ann Clin Transl Neurol. 2017;4(2):87–97. PubMed PMC
Arcot Desai S, Tcheng TK, Morrell MJ. Quantitative electrocorticographic biomarkers of clinical outcomes in mesial temporal lobe epileptic patients treated with the RNS(R) system. Clin Neurophysiol. 2019;130(8):1364–1374. PubMed
Turrigiano GG. The self-tuning neuron: synaptic scaling of excitatory synapses. Cell. 2008;135(3):422–435. PubMed PMC
Chai Z, Ma C, Jin X. Homeostatic activity regulation as a mechanism underlying the effect of brain stimulation. Bioelectron Med. 2019;5:16. PubMed PMC
Turrigiano GG, Nelson SB. Homeostatic plasticity in the developing nervous system. Nat Rev Neurosci. 2004;5(2):97–107. PubMed
Marder E, Goaillard JM. Variability, compensation and homeostasis in neuron and network function. Nat Rev Neurosci. 2006;7(7):563–574. PubMed
Yu T, Wang X, Li Y, et al. High-frequency stimulation of anterior nucleus of thalamus desynchronizes epileptic network in humans. Brain. 2018;141(9):2631–2643. PubMed
Grill WM, Snyder AN, Miocinovic S. Deep brain stimulation creates an informational lesion of the stimulated nucleus. Neuroreport. 2004;15(7):1137–1140. PubMed
Lozano AM, Lipsman N, Bergman H, et al. Deep brain stimulation: current challenges and future directions. Nat Rev Neurol. 2019;15(3):148–160. PubMed PMC
Salanova V, Sperling MR, Gross RE, et al. The SANTE study at 10 years of follow-up: Effectiveness, safety, and sudden unexpected death in epilepsy. Epilepsia. 2021;62(6):1306–1317. PubMed
Horn A, Reich M, Vorwerk J, et al. Connectivity Predicts deep brain stimulation outcome in Parkinson disease. Ann Neurol. 2017;82(1):67–78. PubMed PMC
Johnson KA, Duffley G, Anderson DN, et al. Structural connectivity predicts clinical outcomes of deep brain stimulation for Tourette syndrome. Brain. 2020;143(8):26072623. PubMed PMC
Middlebrooks EH, Okromelidze L, Wong JK, et al. Connectivity correlates to predict essential tremor deep brain stimulation outcome: Evidence for a common treatment pathway. Neuroimage Clin. 2021;32:102846. PubMed PMC
Hollunder B, Ostrem JL, Sahin IA, et al. Mapping dysfunctional circuits in the frontal cortex using deep brain stimulation. Nat Neurosci. 2024;27(3):573–586. PubMed PMC
Wu TQ, Kaboodvand N, McGinn RJ, et al. Multisite thalamic recordings to characterize seizure propagation in the human brain. Brain. 2023;146(7):2792–2802. PubMed PMC
Guye M, Regis J, Tamura M, et al. The role of corticothalamic coupling in human temporal lobe epilepsy. Brain. 2006;129(Pt 7):1917–1928. PubMed
Rosenberg DS, Mauguiere F, Catenoix H, Faillenot I, Magnin M. Reciprocal thalamocortical connectivity of the medial pulvinar: a depth stimulation and evoked potential study in human brain. Cereb Cortex. 2009;19(6):1462–1473. PubMed
Gross RE, Fisher RS, Sperling MR, Giftakis JE, Stypulkowski PH. Analysis of Deep Brain Stimulation Lead Targeting in the Stimulation of Anterior Nucleus of the Thalamus for Epilepsy Clinical Trial. Neurosurgery. 2021;89(3):406–412. PubMed PMC
Lehtimaki K, Mottonen T, Jarventausta K, et al. Outcome based definition of the anterior thalamic deep brain stimulation target in refractory epilepsy. Brain Stimul. 2016;9(2):268–275. PubMed
Schaper F, Plantinga BR, Colon AJ, et al. Deep Brain Stimulation in Epilepsy: A Role for Modulation of the Mammillothalamic Tract in Seizure Control? Neurosurgery. 2020;87(3):602–610. PubMed PMC
Jones EG. The Thalamus. Second ed. Cambridge: Cambridge University Press; 2007.
Wu D, Schaper F, Jin G, et al. Human anterior thalamic stimulation evoked cortical potentials align with intrinsic functional connectivity. Neuroimage. 2023;277:120243. PubMed
Oehrn CR, Cernera S, Hammer LH, et al. Chronic adaptive deep brain stimulation versus conventional stimulation in Parkinson’s disease: a blinded randomized feasibility trial. Nat Med. 2024. PubMed PMC
Stieve BJ, Richner TJ, Krook-Magnuson C, Netoff TI, Krook-Magnuson E. Optimization of closed-loop electrical stimulation enables robust cerebellar-directed seizure control. Brain. 2023;146(1):91–108. PubMed PMC