Utilization of temporal autoencoder for semi-supervised intracranial EEG clustering and classification

. 2023 Jan 13 ; 13 (1) : 744. [epub] 20230113

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36639549
Odkazy

PubMed 36639549
PubMed Central PMC9839708
DOI 10.1038/s41598-023-27978-6
PII: 10.1038/s41598-023-27978-6
Knihovny.cz E-zdroje

Manual visual review, annotation and categorization of electroencephalography (EEG) is a time-consuming task that is often associated with human bias and requires trained electrophysiology experts with specific domain knowledge. This challenge is now compounded by development of measurement technologies and devices allowing large-scale heterogeneous, multi-channel recordings spanning multiple brain regions over days, weeks. Currently, supervised deep-learning techniques were shown to be an effective tool for analyzing big data sets, including EEG. However, the most significant caveat in training the supervised deep-learning models in a clinical research setting is the lack of adequate gold-standard annotations created by electrophysiology experts. Here, we propose a semi-supervised machine learning technique that utilizes deep-learning methods with a minimal amount of gold-standard labels. The method utilizes a temporal autoencoder for dimensionality reduction and a small number of the expert-provided gold-standard labels used for kernel density estimating (KDE) maps. We used data from electrophysiological intracranial EEG (iEEG) recordings acquired in two hospitals with different recording systems across 39 patients to validate the method. The method achieved iEEG classification (Pathologic vs. Normal vs. Artifacts) results with an area under the receiver operating characteristic (AUROC) scores of 0.862 ± 0.037, 0.879 ± 0.042, and area under the precision-recall curve (AUPRC) scores of 0.740 ± 0.740, 0.714 ± 0.042. This demonstrates that semi-supervised methods can provide acceptable results while requiring only 100 gold-standard data samples in each classification category. Subsequently, we deployed the technique to 12 novel patients in a pseudo-prospective framework for detecting Interictal epileptiform discharges (IEDs). We show that the proposed temporal autoencoder was able to generalize to novel patients while achieving AUROC of 0.877 ± 0.067 and AUPRC of 0.705 ± 0.154.

Zobrazit více v PubMed

GBD 2016 Epilepsy Collaborators. Global, regional, and national burden of epilepsy, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol.18, 357–375 (2019). PubMed PMC

Asadi-Pooya AA, Stewart GR, Abrams DJ, Sharan A. Prevalence and incidence of drug-resistant mesial temporal lobe epilepsy in the United States. World Neurosurg. 2017;99:662–666. doi: 10.1016/j.wneu.2016.12.074. PubMed DOI

Kalilani L, Sun X, Pelgrims B, Noack-Rink M, Villanueva V. The epidemiology of drug-resistant epilepsy: A systematic review and meta-analysis. Epilepsia. 2018;59:2179–2193. doi: 10.1111/epi.14596. PubMed DOI

Miller, J. W. & Hakimian, S. Surgical treatment of epilepsy. CONTINUUM: Lifelong Learning in Neurology vol. 19 730–742 Preprint at 10.1212/01.con.0000431398.69594.97 (2013). PubMed PMC

Stead M, Halford JJ. Proposal for a standard format for neurophysiology data recording and exchange. J. Clin. Neurophysiol. 2016;33:403–413. doi: 10.1097/WNP.0000000000000257. PubMed DOI PMC

Plesinger F, Jurco J, Halamek J, Jurak P. SignalPlant: An open signal processing software platform. Physiol. Meas. 2016;37:N38–48. doi: 10.1088/0967-3334/37/7/N38. PubMed DOI

Morrell, M. J. & RNS System in Epilepsy Study Group. Responsive cortical stimulation for the treatment of medically intractable partial epilepsy. Neurology77, 1295–1304 (2011). PubMed

Fisher RS, Velasco AL. Electrical brain stimulation for epilepsy. Nat. Rev. Neurol. 2014;10:261–270. doi: 10.1038/nrneurol.2014.59. PubMed DOI

Mivalt, F. et al. Electrical brain stimulation and continuous behavioral state tracking in ambulatory humans. J. Neural Eng.19, (2022). PubMed PMC

Kremen V, et al. Integrating brain implants with local and distributed computing devices: A next generation epilepsy management system. IEEE J. Transl. Eng. Health Med. 2018;6:2500112. doi: 10.1109/JTEHM.2018.2869398. PubMed DOI PMC

Sladky, V. et al. Distributed brain co-processor for tracking electrophysiology and behavior during electrical brain stimulation. Preprint at 10.1101/2021.03.08.434476.

Pal Attia T, et al. Epilepsy personal assistant device—A mobile platform for brain state, dense behavioral and physiology tracking and controlling adaptive stimulation. Front. Neurol. 2021;12:704170. doi: 10.3389/fneur.2021.704170. PubMed DOI PMC

Balzekas I, et al. Invasive electrophysiology for circuit discovery and study of comorbid psychiatric disorders in patients with epilepsy: Challenges, opportunities, and novel technologies. Front. Hum. Neurosci. 2021;15:702605. doi: 10.3389/fnhum.2021.702605. PubMed DOI PMC

Gardner AB, Worrell GA, Marsh E, Dlugos D, Litt B. Human and automated detection of high-frequency oscillations in clinical intracranial EEG recordings. Clin. Neurophysiol. 2007;118:1134–1143. doi: 10.1016/j.clinph.2006.12.019. PubMed DOI PMC

Gerber PA, et al. Interobserver agreement in the interpretation of EEG patterns in critically ill adults. J. Clin. Neurophysiol. 2008;25:241–249. doi: 10.1097/WNP.0b013e318182ed67. PubMed DOI

Grant AC, et al. EEG interpretation reliability and interpreter confidence: a large single-center study. Epilepsy Behav. 2014;32:102–107. doi: 10.1016/j.yebeh.2014.01.011. PubMed DOI PMC

LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436–444. doi: 10.1038/nature14539. PubMed DOI

Plesinger F, Nejedly P, Viscor I, Halamek J, Jurak P. Parallel use of a convolutional neural network and bagged tree ensemble for the classification of Holter ECG. Physiol. Meas. 2018;39:094002. doi: 10.1088/1361-6579/aad9ee. PubMed DOI

Lazic, D. et al. Landscape of bone marrow metastasis in human neuroblastoma unraveled by transcriptomics and deep multiplex imaging. Cancers13, (2021). PubMed PMC

Nejedly P, et al. Exploiting graphoelements and convolutional neural networks with long short term memory for classification of the human electroencephalogram. Sci. Rep. 2019;9:11383. doi: 10.1038/s41598-019-47854-6. PubMed DOI PMC

Nejedly P, et al. Intracerebral EEG artifact identification using convolutional neural networks. Neuroinformatics. 2019;17:225–234. doi: 10.1007/s12021-018-9397-6. PubMed DOI PMC

SEEG-Net. An explainable and deep learning-based cross-subject pathological activity detection method for drug-resistant epilepsy. Comput. Biol. Med.148, 105703 (2022). PubMed

Ronzhina M, et al. Sleep scoring using artificial neural networks. Sleep Med. Rev. 2012;16:251–263. doi: 10.1016/j.smrv.2011.06.003. PubMed DOI

Stephansen JB, et al. Neural network analysis of sleep stages enables efficient diagnosis of narcolepsy. Nat. Commun. 2018;9:5229. doi: 10.1038/s41467-018-07229-3. PubMed DOI PMC

Cimbalnik J, et al. Multi-feature localization of epileptic foci from interictal, intracranial EEG. Clin. Neurophysiol. 2019;130:1945–1953. doi: 10.1016/j.clinph.2019.07.024. PubMed DOI PMC

Kiral-Kornek I, et al. Epileptic seizure prediction using big data and deep learning: Toward a mobile system. EBioMedicine. 2018;27:103–111. doi: 10.1016/j.ebiom.2017.11.032. PubMed DOI PMC

Daoud H, Bayoumi MA. Efficient epileptic seizure prediction based on deep learning. IEEE Trans. Biomed. Circuits Syst. 2019;13:804–813. doi: 10.1109/TBCAS.2019.2929053. PubMed DOI

Nejedly P, et al. Deep-learning for seizure forecasting in canines with epilepsy. J. Neural Eng. 2019;16:036031. doi: 10.1088/1741-2552/ab172d. PubMed DOI

Gelinas JN, Khodagholy D, Thesen T, Devinsky O, Buzsáki G. Interictal epileptiform discharges induce hippocampal-cortical coupling in temporal lobe epilepsy. Nat. Med. 2016;22:641–648. doi: 10.1038/nm.4084. PubMed DOI PMC

Janca R, et al. Detection of interictal epileptiform discharges using signal envelope distribution modelling: application to epileptic and non-epileptic intracranial recordings. Brain Topogr. 2015;28:172–183. doi: 10.1007/s10548-014-0379-1. PubMed DOI

Chvojka J, et al. The role of interictal discharges in ictogenesis—A dynamical perspective. Epilepsy Behav. 2021;121:106591. doi: 10.1016/j.yebeh.2019.106591. PubMed DOI

Brázdil M, et al. Very high-frequency oscillations: Novel biomarkers of the epileptogenic zone. Ann. Neurol. 2017;82:299–310. doi: 10.1002/ana.25006. PubMed DOI

Worrell GA, et al. High-frequency oscillations and seizure generation in neocortical epilepsy. Brain. 2004;127:1496–1506. doi: 10.1093/brain/awh149. PubMed DOI

Frauscher B, et al. High-frequency oscillations: The state of clinical research. Epilepsia. 2017;58:1316–1329. doi: 10.1111/epi.13829. PubMed DOI PMC

Jiruska P, et al. Update on the mechanisms and roles of high-frequency oscillations in seizures and epileptic disorders. Epilepsia. 2017;58:1330–1339. doi: 10.1111/epi.13830. PubMed DOI PMC

Nejedly P, et al. Multicenter intracranial EEG dataset for classification of graphoelements and artifactual signals. Sci. Data. 2020;7:179. doi: 10.1038/s41597-020-0532-5. PubMed DOI PMC

Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization. (2014). 10.48550/ARXIV.1412.6980.

Zhang, Z. Improved Adam optimizer for deep neural networks. in 2018 IEEE/ACM 26th International Symposium on Quality of Service (IWQoS) (IEEE, 2018). 10.1109/iwqos.2018.8624183.

Zobrazit více v PubMed

figshare
10.6084/m9.figshare.c.4681208

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...