Utilization of temporal autoencoder for semi-supervised intracranial EEG clustering and classification
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
PubMed
36639549
PubMed Central
PMC9839708
DOI
10.1038/s41598-023-27978-6
PII: 10.1038/s41598-023-27978-6
Knihovny.cz E-zdroje
- MeSH
- elektroencefalografie * metody MeSH
- elektrokortikografie * MeSH
- lidé MeSH
- mozek fyziologie MeSH
- prospektivní studie MeSH
- ROC křivka MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
Manual visual review, annotation and categorization of electroencephalography (EEG) is a time-consuming task that is often associated with human bias and requires trained electrophysiology experts with specific domain knowledge. This challenge is now compounded by development of measurement technologies and devices allowing large-scale heterogeneous, multi-channel recordings spanning multiple brain regions over days, weeks. Currently, supervised deep-learning techniques were shown to be an effective tool for analyzing big data sets, including EEG. However, the most significant caveat in training the supervised deep-learning models in a clinical research setting is the lack of adequate gold-standard annotations created by electrophysiology experts. Here, we propose a semi-supervised machine learning technique that utilizes deep-learning methods with a minimal amount of gold-standard labels. The method utilizes a temporal autoencoder for dimensionality reduction and a small number of the expert-provided gold-standard labels used for kernel density estimating (KDE) maps. We used data from electrophysiological intracranial EEG (iEEG) recordings acquired in two hospitals with different recording systems across 39 patients to validate the method. The method achieved iEEG classification (Pathologic vs. Normal vs. Artifacts) results with an area under the receiver operating characteristic (AUROC) scores of 0.862 ± 0.037, 0.879 ± 0.042, and area under the precision-recall curve (AUPRC) scores of 0.740 ± 0.740, 0.714 ± 0.042. This demonstrates that semi-supervised methods can provide acceptable results while requiring only 100 gold-standard data samples in each classification category. Subsequently, we deployed the technique to 12 novel patients in a pseudo-prospective framework for detecting Interictal epileptiform discharges (IEDs). We show that the proposed temporal autoencoder was able to generalize to novel patients while achieving AUROC of 0.877 ± 0.067 and AUPRC of 0.705 ± 0.154.
CEITEC Central European Institute of Technology Masaryk University Brno Czech Republic
Department of Neurology Mayo Clinic Mayo Systems Electrophysiology Laboratory Rochester MN USA
Faculty of Biomedical Engineering Czech Technical University Prague Kladno Czech Republic
Institute of Scientific Instruments The Czech Academy of Sciences Brno Czech Republic
International Clinical Research Center St Anne's University Hospital Brno Czech Republic
St Department of Neurology Faculty of Medicine Masaryk University Brno Czech Republic
Zobrazit více v PubMed
GBD 2016 Epilepsy Collaborators. Global, regional, and national burden of epilepsy, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol.18, 357–375 (2019). PubMed PMC
Asadi-Pooya AA, Stewart GR, Abrams DJ, Sharan A. Prevalence and incidence of drug-resistant mesial temporal lobe epilepsy in the United States. World Neurosurg. 2017;99:662–666. doi: 10.1016/j.wneu.2016.12.074. PubMed DOI
Kalilani L, Sun X, Pelgrims B, Noack-Rink M, Villanueva V. The epidemiology of drug-resistant epilepsy: A systematic review and meta-analysis. Epilepsia. 2018;59:2179–2193. doi: 10.1111/epi.14596. PubMed DOI
Miller, J. W. & Hakimian, S. Surgical treatment of epilepsy. CONTINUUM: Lifelong Learning in Neurology vol. 19 730–742 Preprint at 10.1212/01.con.0000431398.69594.97 (2013). PubMed PMC
Stead M, Halford JJ. Proposal for a standard format for neurophysiology data recording and exchange. J. Clin. Neurophysiol. 2016;33:403–413. doi: 10.1097/WNP.0000000000000257. PubMed DOI PMC
Plesinger F, Jurco J, Halamek J, Jurak P. SignalPlant: An open signal processing software platform. Physiol. Meas. 2016;37:N38–48. doi: 10.1088/0967-3334/37/7/N38. PubMed DOI
Morrell, M. J. & RNS System in Epilepsy Study Group. Responsive cortical stimulation for the treatment of medically intractable partial epilepsy. Neurology77, 1295–1304 (2011). PubMed
Fisher RS, Velasco AL. Electrical brain stimulation for epilepsy. Nat. Rev. Neurol. 2014;10:261–270. doi: 10.1038/nrneurol.2014.59. PubMed DOI
Mivalt, F. et al. Electrical brain stimulation and continuous behavioral state tracking in ambulatory humans. J. Neural Eng.19, (2022). PubMed PMC
Kremen V, et al. Integrating brain implants with local and distributed computing devices: A next generation epilepsy management system. IEEE J. Transl. Eng. Health Med. 2018;6:2500112. doi: 10.1109/JTEHM.2018.2869398. PubMed DOI PMC
Sladky, V. et al. Distributed brain co-processor for tracking electrophysiology and behavior during electrical brain stimulation. Preprint at 10.1101/2021.03.08.434476.
Pal Attia T, et al. Epilepsy personal assistant device—A mobile platform for brain state, dense behavioral and physiology tracking and controlling adaptive stimulation. Front. Neurol. 2021;12:704170. doi: 10.3389/fneur.2021.704170. PubMed DOI PMC
Balzekas I, et al. Invasive electrophysiology for circuit discovery and study of comorbid psychiatric disorders in patients with epilepsy: Challenges, opportunities, and novel technologies. Front. Hum. Neurosci. 2021;15:702605. doi: 10.3389/fnhum.2021.702605. PubMed DOI PMC
Gardner AB, Worrell GA, Marsh E, Dlugos D, Litt B. Human and automated detection of high-frequency oscillations in clinical intracranial EEG recordings. Clin. Neurophysiol. 2007;118:1134–1143. doi: 10.1016/j.clinph.2006.12.019. PubMed DOI PMC
Gerber PA, et al. Interobserver agreement in the interpretation of EEG patterns in critically ill adults. J. Clin. Neurophysiol. 2008;25:241–249. doi: 10.1097/WNP.0b013e318182ed67. PubMed DOI
Grant AC, et al. EEG interpretation reliability and interpreter confidence: a large single-center study. Epilepsy Behav. 2014;32:102–107. doi: 10.1016/j.yebeh.2014.01.011. PubMed DOI PMC
LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436–444. doi: 10.1038/nature14539. PubMed DOI
Plesinger F, Nejedly P, Viscor I, Halamek J, Jurak P. Parallel use of a convolutional neural network and bagged tree ensemble for the classification of Holter ECG. Physiol. Meas. 2018;39:094002. doi: 10.1088/1361-6579/aad9ee. PubMed DOI
Lazic, D. et al. Landscape of bone marrow metastasis in human neuroblastoma unraveled by transcriptomics and deep multiplex imaging. Cancers13, (2021). PubMed PMC
Nejedly P, et al. Exploiting graphoelements and convolutional neural networks with long short term memory for classification of the human electroencephalogram. Sci. Rep. 2019;9:11383. doi: 10.1038/s41598-019-47854-6. PubMed DOI PMC
Nejedly P, et al. Intracerebral EEG artifact identification using convolutional neural networks. Neuroinformatics. 2019;17:225–234. doi: 10.1007/s12021-018-9397-6. PubMed DOI PMC
SEEG-Net. An explainable and deep learning-based cross-subject pathological activity detection method for drug-resistant epilepsy. Comput. Biol. Med.148, 105703 (2022). PubMed
Ronzhina M, et al. Sleep scoring using artificial neural networks. Sleep Med. Rev. 2012;16:251–263. doi: 10.1016/j.smrv.2011.06.003. PubMed DOI
Stephansen JB, et al. Neural network analysis of sleep stages enables efficient diagnosis of narcolepsy. Nat. Commun. 2018;9:5229. doi: 10.1038/s41467-018-07229-3. PubMed DOI PMC
Cimbalnik J, et al. Multi-feature localization of epileptic foci from interictal, intracranial EEG. Clin. Neurophysiol. 2019;130:1945–1953. doi: 10.1016/j.clinph.2019.07.024. PubMed DOI PMC
Kiral-Kornek I, et al. Epileptic seizure prediction using big data and deep learning: Toward a mobile system. EBioMedicine. 2018;27:103–111. doi: 10.1016/j.ebiom.2017.11.032. PubMed DOI PMC
Daoud H, Bayoumi MA. Efficient epileptic seizure prediction based on deep learning. IEEE Trans. Biomed. Circuits Syst. 2019;13:804–813. doi: 10.1109/TBCAS.2019.2929053. PubMed DOI
Nejedly P, et al. Deep-learning for seizure forecasting in canines with epilepsy. J. Neural Eng. 2019;16:036031. doi: 10.1088/1741-2552/ab172d. PubMed DOI
Gelinas JN, Khodagholy D, Thesen T, Devinsky O, Buzsáki G. Interictal epileptiform discharges induce hippocampal-cortical coupling in temporal lobe epilepsy. Nat. Med. 2016;22:641–648. doi: 10.1038/nm.4084. PubMed DOI PMC
Janca R, et al. Detection of interictal epileptiform discharges using signal envelope distribution modelling: application to epileptic and non-epileptic intracranial recordings. Brain Topogr. 2015;28:172–183. doi: 10.1007/s10548-014-0379-1. PubMed DOI
Chvojka J, et al. The role of interictal discharges in ictogenesis—A dynamical perspective. Epilepsy Behav. 2021;121:106591. doi: 10.1016/j.yebeh.2019.106591. PubMed DOI
Brázdil M, et al. Very high-frequency oscillations: Novel biomarkers of the epileptogenic zone. Ann. Neurol. 2017;82:299–310. doi: 10.1002/ana.25006. PubMed DOI
Worrell GA, et al. High-frequency oscillations and seizure generation in neocortical epilepsy. Brain. 2004;127:1496–1506. doi: 10.1093/brain/awh149. PubMed DOI
Frauscher B, et al. High-frequency oscillations: The state of clinical research. Epilepsia. 2017;58:1316–1329. doi: 10.1111/epi.13829. PubMed DOI PMC
Jiruska P, et al. Update on the mechanisms and roles of high-frequency oscillations in seizures and epileptic disorders. Epilepsia. 2017;58:1330–1339. doi: 10.1111/epi.13830. PubMed DOI PMC
Nejedly P, et al. Multicenter intracranial EEG dataset for classification of graphoelements and artifactual signals. Sci. Data. 2020;7:179. doi: 10.1038/s41597-020-0532-5. PubMed DOI PMC
Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization. (2014). 10.48550/ARXIV.1412.6980.
Zhang, Z. Improved Adam optimizer for deep neural networks. in 2018 IEEE/ACM 26th International Symposium on Quality of Service (IWQoS) (IEEE, 2018). 10.1109/iwqos.2018.8624183.
figshare
10.6084/m9.figshare.c.4681208