Intracerebral EEG Artifact Identification Using Convolutional Neural Networks

. 2019 Apr ; 17 (2) : 225-234.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30105544

Grantová podpora
UH2-NS095495 NIH HHS - United States
R01-NS063039 NIH HHS - United States
R01 NS063039 NINDS NIH HHS - United States

Odkazy

PubMed 30105544
PubMed Central PMC6459786
DOI 10.1007/s12021-018-9397-6
PII: 10.1007/s12021-018-9397-6
Knihovny.cz E-zdroje

Manual and semi-automatic identification of artifacts and unwanted physiological signals in large intracerebral electroencephalographic (iEEG) recordings is time consuming and inaccurate. To date, unsupervised methods to accurately detect iEEG artifacts are not available. This study introduces a novel machine-learning approach for detection of artifacts in iEEG signals in clinically controlled conditions using convolutional neural networks (CNN) and benchmarks the method's performance against expert annotations. The method was trained and tested on data obtained from St Anne's University Hospital (Brno, Czech Republic) and validated on data from Mayo Clinic (Rochester, Minnesota, U.S.A). We show that the proposed technique can be used as a generalized model for iEEG artifact detection. Moreover, a transfer learning process might be used for retraining of the generalized version to form a data-specific model. The generalized model can be efficiently retrained for use with different EEG acquisition systems and noise environments. The generalized and specialized model F1 scores on the testing dataset were 0.81 and 0.96, respectively. The CNN model provides faster, more objective, and more reproducible iEEG artifact detection compared to manual approaches.

Zobrazit více v PubMed

Ball T, Kern M, Mutschler I, Aertsen A, Schulze-Bonhage A. Signal quality of simultaneously recorded invasive and non-invasive EEG. NeuroImage. 2009;46(3):708–716. doi: 10.1016/j.neuroimage.2009.02.028. PubMed DOI

Bern, Universität. (2015). Removal of artifacts from EEG signals using adaptive filter through wavelet transform. no. October. 10.1109/ICOSP.2008.4697569.

Brázdil M, Pail M, Halámek J, Plešinger F, Cimbálník J, Roman R, Klimeš P, Daniel P, Chrastina J, Brichtová E, Rektor I, Worrell GA, Jurák P. Very high-frequency oscillations: Novel biomarkers of the epileptogenic zone. Annals of Neurology. 2017;82(2):299–310. doi: 10.1002/ana.25006. PubMed DOI

Delorme, A., Sejnowski, T., & Makeig, S. (2007). Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis. 34:1443–49. 10.1016/j.neuroimage.2006.11.004 PubMed PMC

Gerla V, Kremen V, Covassin N, Lhotska L, Saifutdinova EA, Bukartyk J, Marik V, Somers VK. Automatic identification of artifacts and unwanted physiologic signals in EEG and EOG during wakefulness. Biomedical Signal Processing and Control. 2017;31:381–390. doi: 10.1016/j.bspc.2016.09.006. DOI

Gliske SV, Irwin ZT, Davis KA, Sahaya K, Chestek C, Stacey WC. Universal automated high frequency oscillation detector for real-time, long term EEG. Clinical Neurophysiology. 2016;127(2):1057–1066. doi: 10.1016/j.clinph.2015.07.016. PubMed DOI PMC

Hu S, Stead M, Worrell GA. Automatic identification and removal of scalp reference signal for intracranial Eegs based on independent component analysis. IEEE Transactions on Biomedical Engineering. 2007;54(9):1560–1572. doi: 10.1109/TBME.2007.892929. PubMed DOI

Huang R, Heng F, Hu B, Peng H, Zhao Q, Shi Q, Han J. Artifacts reduction method in EEG signals with wavelet transform and adaptive filter. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 2014;8609:122–131. doi: 10.1007/978-3-319-09891-3_12. DOI

Islam K, Rastegarnia A, Yang Z. Methods for artifact detection and removal from scalp EEG : a review Les Méthodes de Détection et de Rejet D ’ Artefact de L ’ EEG de. Neurophysiologie Clinique / Clinical Neurophysiology. 2016;46(4–5):287–305. doi: 10.1016/j.neucli.2016.07.002. PubMed DOI

Jerbi K, Freyermuth S, Dalal S, Kahane P, Bertrand O, Berthoz A, Lachaux JP. Saccade related gamma-band activity in intracerebral EEG: Dissociating neural from ocular muscle activity. Brain Topography. 2009;22(1):18–23. doi: 10.1007/s10548-009-0078-5. PubMed DOI

Kiamini, M., Alirezaee, S., Perseh, B., & Ahmadi, M. (2008). A wavelet based algorithm for ocular artifact detection in the eeg signals. IEEE INMIC 2008: 12th IEEE International Multitopic Conference - Conference Proceedings, 165–68. 10.1109/INMIC.2008.4777729.

Kiranyaz S, Ince T, Gabbouj M. Real-time patient-specific ECG classification by 1-D convolutional neural networks. IEEE Transactions on Biomedical Engineering. 2016;63(3):664–675. doi: 10.1109/TBME.2015.2468589. PubMed DOI

Kovach CK, Tsuchiya N, Kawasaki H, Oya H, Howard MA, Adolphs R. Manifestation of ocular-muscle EMG contamination in human intracranial recordings. NeuroImage. 2011;54(1):213–233. doi: 10.1016/j.neuroimage.2010.08.002. PubMed DOI PMC

Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems. 2012;15:1–9. doi: 10.1016/j.protcy.2014.09.007. DOI

LeCun, Y. (1988). A theoretical framework for back-propagation. Proceedings of the 1988 Connectionist Models Summer School. 10.1007/978-3-642-35289-8.

Lecun Y. Deep learning. Nature. 2015;13:35. doi: 10.1038/nmeth.3707. PubMed DOI

Lecun, Y., & Bengio, Y. (1995). Convolutional networks for images, speech, and time-series. The Handbook of Brain Theory and Neural Networks. 10.1017/CBO9781107415324.004.

LeCun, Y., & Kavukcuoglu, K. (2010). Convolutional networks and applications in vision. Circuits and Systems (ISCAS).

Liu, T., & Yao, D. (2006). Removal of the ocular artifacts from EEG data using a cascaded spatio-temporal processing. Computer Methods and Programs in Biomedicine, 83(2), 95–103. 10.1016/j.cmpb.2006.03.009 PubMed

Plesinger F, Jurco J, Halamek J, Jurak P. SignalPlant: An open signal processing software platform. Physiological Measurement. 2016;37:N38–N48. doi: 10.1088/0967-3334/37/7/N38. PubMed DOI

Radüntz T, Scouten J, Hochmuth O, Meffert B. EEG artifact elimination by extraction of ICA-component features using image processing algorithms. Journal of Neuroscience Methods. 2015;243:84–93. doi: 10.1016/j.jneumeth.2015.01.030. PubMed DOI

Radüntz T, Scouten J, Hochmuth O, Meffert B. Automated EEG artifact elimination by applying machine learning algorithms to ICA-based features. Journal of Neural Engineering. 2017;14(4):46004. doi: 10.1088/1741-2552/aa69d1. PubMed DOI

Rahhal M, Al M, Bazi Y, Alhichri H, Alajlan N, Melgani F, Yager RR. Deep learning approach for active classification of electrocardiogram signals. Information Sciences. 2016;345:340–354. doi: 10.1016/j.ins.2016.01.082. DOI

Schirrmeister, R. T., Gemein, L., Eggensperger, K., Hutter, F., & Ball, T. (2017a). Deep learning with convolutional neural networks for decoding and visualization of EEG pathology. 10.1002/hbm.23730. PubMed PMC

Schirrmeister, R. T., Springenberg, J. T., Fiederer, L. D. J., Glasstetter, M., Eggensperger, K., Tangermann, M., Hutter, F., Burgard, W., & Ball, T. (2017b). Deep learning with convolutional neural networks for brain mapping and decoding of movement-related information from the human EEG. arXiv. 10.1002/hbm.23730. PubMed PMC

Somers, B., & Bertrand, A. (n.d.) Artifact removal from EEG signals using adaptive filters in Cascade. 10.1088/1742-6596/90/1/012081.

Stead M, Bower M, Brinkmann BH, Lee K, Richard Marsh W, Meyer FB, Litt B, Van Gompel J, Worrell GA. Microseizures and the spatiotemporal scales of human partial epilepsy. Brain. 2010;133(9):2789–2797. doi: 10.1093/brain/awq190. PubMed DOI PMC

Supratak A, Dong H, Wu C, Guo Y. DeepSleepNet: A model for automatic sleep stage scoring based on raw Single-Channel EEG. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2017;25(11):1998–2008. doi: 10.1109/TNSRE.2017.2721116. PubMed DOI

Wang, J., & Su, F. (2014). A new time-frequency method for EEG artifacts removing. CCIS 2014 - Proceedings of 2014 IEEE 3rd International Conference on Cloud Computing and Intelligence Systems, 341–46. 10.1109/CCIS.2014.7175756.

Worrell GA, Jerbi K, Kobayashi K, Lina JM, Zelmann R, Le Van Quyen M. Recording and analysis techniques for high-frequency oscillations. Progress in Neurobiology. 2012;98:265–278. doi: 10.1016/j.pneurobio.2012.02.006. PubMed DOI PMC

Yan, L. W., Jin, H. L., & Yuan, C. L. (2008). Automatic removal of ocular artifacts from electroencephalogram using Hilbert-Huang transform. In 2nd International Conference on Bioinformatics and Biomedical Engineering, iCBBE 2008, 2138–41. 10.1109/ICBBE.2008.864.

Zhang, Y., Pezeshki, M., Brakel, P., Zhang, S., Laurent, C. Bengio, Y., & Courville, A. (2017). Towards end-to-end speech recognition with deep convolutional neural networks. arXiv Preprint arXiv:1701.02720, no. November:410–14. 10.21437/Interspeech.2016-1446.

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace