Weak coupling of neurons enables very high-frequency and ultra-fast oscillations through the interplay of synchronized phase shifts

. 2024 ; 8 (1) : 293-318. [epub] 20240401

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38562290

Recently, in the past decade, high-frequency oscillations (HFOs), very high-frequency oscillations (VHFOs), and ultra-fast oscillations (UFOs) were reported in epileptic patients with drug-resistant epilepsy. However, to this day, the physiological origin of these events has yet to be understood. Our study establishes a mathematical framework based on bifurcation theory for investigating the occurrence of VHFOs and UFOs in depth EEG signals of patients with focal epilepsy, focusing on the potential role of reduced connection strength between neurons in an epileptic focus. We demonstrate that synchronization of a weakly coupled network can generate very and ultra high-frequency signals detectable by nearby microelectrodes. In particular, we show that a bistability region enables the persistence of phase-shift synchronized clusters of neurons. This phenomenon is observed for different hippocampal neuron models, including Morris-Lecar, Destexhe-Paré, and an interneuron model. The mechanism seems to be robust for small coupling, and it also persists with random noise affecting the external current. Our findings suggest that weakened neuronal connections could contribute to the production of oscillations with frequencies above 1000 Hz, which could advance our understanding of epilepsy pathology and potentially improve treatment strategies. However, further exploration of various coupling types and complex network models is needed.

We have built a mathematical framework to examine how a reduced neuronal coupling within an epileptic focus could lead to very high-frequency (VHFOs) and ultra-fast oscillations (UFOs) in depth EEG signals. By analyzing weakly coupled neurons, we found a bistability synchronization region where in-phase and anti-phase synchrony persist. These dynamics can be detected as very high-frequency EEG signals. The principle of weak coupling aligns with the disturbances in neuronal connections often observed in epilepsy; moreover, VHFOs are important markers of epileptogenicity. Our findings point to the potential significance of weakened neuronal connections in producing VHFOs and UFOs related to focal epilepsy. This could enhance our understanding of brain disorders. We emphasize the need for further investigations of weakly coupled neurons.

Zobrazit více v PubMed

Abrams, D. M., & Strogatz, S. H. (2004). Chimera states for coupled oscillators. Physical Review Letters, 93(17), 174102. 10.1103/PhysRevLett.93.174102, PubMed DOI

Aihara, K., Takabe, T., & Toyoda, M. (1990). Chaotic neural networks. Physics Letters A, 144(6–7), 333–340. 10.1016/0375-9601(90)90136-C DOI

Bakhtiari, S., Manshadi, M. K., Candas, M., & Beskok, A. (2023). Changes in electrical capacitance of cell membrane reflect drug partitioning-induced alterations in lipid bilayer. Micromachines, 14(2), 316. 10.3390/mi14020316, PubMed DOI PMC

Boccaletti, S., Pisarchik, A. N., Del Genio, C. I., & Amann, A. (2018). Synchronization: From coupled systems to complex networks. Cambridge University Press. 10.1017/9781107297111 DOI

Brázdil, M., Pail, M., Halámek, J., Plešinger, F., Cimbálník, J., Roman, R., … Jurák, P. (2017). Very high-frequency oscillations: Novel biomarkers of the epileptogenic zone. Annals of Neurology, 82(2), 299–310. 10.1002/ana.25006, PubMed DOI

Brazdil, M., Worrell, G. A., Travnicek, V., Pail, M., Roman, R., Plesinger, F., … Jurák, P. (2023). Ultra fast oscillations in the human brain and their functional significance. medRxiv. 10.1101/2023.02.23.23285962 DOI

Calim, A., Hövel, P., Ozer, M., & Uzuntarla, M. (2018). Chimera states in networks of type-I Morris–Lecar neurons. Physical Review E, 98(6), 062217. 10.1103/PhysRevE.98.062217 DOI

Cessac, B., & Samuelides, M. (2007). From neuron to neural networks dynamics. European Physical Journal Special Topics, 142(1), 7–88. 10.1140/epjst/e2007-00058-2 DOI

Chow, C. C., & Kopell, N. (2000). Dynamics of spiking neurons with electrical coupling. Neural Computation, 12(7), 1643–1678. 10.1162/089976600300015295, PubMed DOI

Chowdhury, S. N., Rakshit, S., Buldu, J. M., Ghosh, D., & Hens, C. (2021). Antiphase synchronization in multiplex networks with attractive and repulsive interactions. Physical Review E, 103(3), 032310. 10.1103/PhysRevE.103.032310, PubMed DOI

Cimbalnik, J., Brinkmann, B., Kremen, V., Jurak, P., Berry, B., Gompel, J. V., … Worrell, G. (2018). Physiological and pathological high frequency oscillations in focal epilepsy. Annals of Clinical and Translational Neurology, 5(9), 1062–1076. 10.1002/acn3.618, PubMed DOI PMC

Cimbalnik, J., Pail, M., Klimes, P., Travnicek, V., Roman, R., Vajcner, A., & Brazdil, M. (2020). Cognitive processing impacts high frequency intracranial EEG activity of human hippocampus in patients with pharmacoresistant focal epilepsy. Frontiers in Neurology, 11, 578571. 10.3389/fneur.2020.578571, PubMed DOI PMC

DeSalvo, M. N., Douw, L., Tanaka, N., Reinsberger, C., & Stufflebeam, S. M. (2014). Altered structural connectome in temporal lobe epilepsy. Radiology, 270(3), 842–848. 10.1148/radiol.13131044, PubMed DOI PMC

Destexhe, A., & Paré, D. (1999). Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo. Journal of Neurophysiology, 81(4), 1531–1547. 10.1152/jn.1999.81.4.1531, PubMed DOI

Dhooge, A., Govaerts, W., & Kuznetsov, Y. A. (2003). MatCont: A MATLAB package for numerical bifurcation analysis of ODEs. ACM Transactions on Mathematical Software, 29(2), 141–164. 10.1145/779359.779362 DOI

Dhooge, A., Govaerts, W., Kuznetsov, Y. A., Meijer, H. G., & Sautois, B. (2008). New features of the software MatCont for bifurcation analysis of dynamical systems. Mathematical and Computer Modelling of Dynamical Systems, 14(2), 147–175. 10.1080/13873950701742754 DOI

Draguhn, A., Traub, R., Schmitz, D., & Jefferys, J. (1998). Electrical coupling underlies high-frequency oscillations in the hippocampus in vitro. Nature, 394(6689), 189–192. 10.1038/28184, PubMed DOI

Duan, L., & Lu, Q. (2006). Codimension-two bifurcation analysis on firing activities in Chay neuron model. Chaos, Solitons & Fractals, 30(5), 1172–1179. 10.1016/j.chaos.2005.08.179 DOI

Ermentrout, B., & Terman, D. H. (2010). Mathematical foundations of neuroscience (Vol. 35). Springer. 10.1007/978-0-387-87708-2 DOI

Frauscher, B., von Ellenrieder, N., Zelmann, R., Rogers, C., Nguyen, D. K., Kahane, P., … Gotman, J. (2018). High-frequency oscillations in the normal human brain. Annals of Neurology, 84(3), 374–385. 10.1002/ana.25304, PubMed DOI

Fukuda, T., & Kosaka, T. (2000). Gap junctions linking the dendritic network of gabaergic interneurons in the hippocampus. Journal of Neuroscience, 20(4), 1519–1528. 10.1523/JNEUROSCI.20-04-01519.2000, PubMed DOI PMC

Gabbiani, F., & Cox, S. J. (2017). Mathematics for neuroscientists. Academic Press.

Gentet, L. J., Stuart, G. J., & Clements, J. D. (2000). Direct measurement of specific membrane capacitance in neurons. Biophysical Journal, 79(1), 314–320. 10.1016/S0006-3495(00)76293-X, PubMed DOI PMC

Ghosh, S., Mondal, A., Ji, P., Mishra, A., Dana, S. K., Antonopoulos, C. G., & Hens, C. (2020). Emergence of mixed mode oscillations in random networks of diverse excitable neurons: The role of neighbors and electrical coupling. Frontiers in Computational Neuroscience, 14, 49. 10.3389/fncom.2020.00049, PubMed DOI PMC

Golubitsky, M., Messi, L. M., & Spardy, L. E. (2016). Symmetry types and phase-shift synchrony in networks. Physica D: Nonlinear Phenomena, 320, 9–18. 10.1016/j.physd.2015.12.005 DOI

Golubitsky, M., Romano, D., & Wang, Y. (2012). Network periodic solutions: Patterns of phase-shift synchrony. Nonlinearity, 25(4), 1045. 10.1088/0951-7715/25/4/1045 DOI

Golubitsky, M., & Stewart, I. (2006). Nonlinear dynamics of networks: The groupoid formalism. Bulletin of the American Mathematical Society, 43(3), 305–364. 10.1090/S0273-0979-06-01108-6 DOI

Golubitsky, M., & Stewart, I. (2016). Rigid patterns of synchrony for equilibria and periodic cycles in network dynamics. Chaos: An Interdisciplinary Journal of Nonlinear Science, 26(9), 094803. 10.1063/1.4953664, PubMed DOI

Golubitsky, M., Stewart, I., & Török, A. (2005). Patterns of synchrony in coupled cell networks with multiple arrows. SIAM Journal on Applied Dynamical Systems, 4(1), 78–100. 10.1137/040612634 DOI

Gutkin, B. S., & Ermentrout, G. B. (1998). Dynamics of membrane excitability determine interspike interval variability: A link between spike generation mechanisms and cortical spike train statistics. Neural Computation, 10(5), 1047–1065. 10.1162/089976698300017331, PubMed DOI

Hao, J., Cui, Y., Niu, B., Yu, L., Lin, Y., Xia, Y., … Guo, D. (2021). Roles of very fast ripple (500–1000 Hz) in the hippocampal network during status epilepticus. International Journal of Neural Systems, 31(4), 2150002. 10.1142/S0129065721500027, PubMed DOI

Hartveit, E., Veruki, M. L., & Zandt, B.-J. (2019). Capacitance measurement of dendritic exocytosis in an electrically coupled inhibitory retinal interneuron: An experimental and computational study. Physiological Reports, 7(15), e14186. 10.14814/phy2.14186, PubMed DOI PMC

Helling, R., Koppert, M., Visser, G., & Kalitzin, S. (2015). Gap junctions as common cause of high-frequency oscillations and epileptic seizures in a computational cascade of neuronal mass and compartmental modeling. International Journal of Neural Systems, 25(6), 1550021. 10.1142/S0129065715500215, PubMed DOI

Hodgkin, A. L. (1948). The local electric changes associated with repetitive action in a non-medullated axon. Journal of Physiology, 107(2), 165–181. 10.1113/jphysiol.1948.sp004260, PubMed DOI PMC

Hoppensteadt, F. C., & Izhikevich, E. M. (1997). Weakly connected neural networks (Vol. 126). Springer Science & Business Media. 10.1007/978-1-4612-1828-9 DOI

Huguenard, J., Hamill, O., & Prince, D. (1988). Developmental changes in Na+ conductances in rat neocortical neurons: Appearance of a slowly inactivating component. Journal of Neurophysiology, 59(3), 778–795. 10.1152/jn.1988.59.3.778, PubMed DOI

Izhikevich, E. (2006). Dynamical systems in neuroscience. MIT Press. 10.7551/mitpress/2526.001.0001 DOI

Jacobs, J., LeVan, P., Chander, R., Hall, J., Dubeau, F., & Gotman, J. (2008). Interictal high-frequency oscillations (80–500 Hz) are an indicator of seizure onset areas independent of spikes in the human epileptic brain. Epilepsia, 49(11), 1893–1907. 10.1111/j.1528-1167.2008.01656.x, PubMed DOI PMC

Jacobs, J., Staba, R., Asano, E., Otsubo, H., Wu, J., Zijlmans, M., … Gotman, J. (2012). High-frequency oscillations (HFOs) in clinical epilepsy. Progress in Neurobiology, 98(3), 302–315. 10.1016/j.pneurobio.2012.03.001, PubMed DOI PMC

Jefferys, J. G., De La Prida, L. M., Wendling, F., Bragin, A., Avoli, M., Timofeev, I., & da Silva, F. H. L. (2012). Mechanisms of physiological and epileptic HFO generation. Progress in Neurobiology, 98(3), 250–264. 10.1016/j.pneurobio.2012.02.005, PubMed DOI PMC

Jin, M.-M., & Zhong, C. (2011). Role of gap junctions in epilepsy. Neuroscience Bulletin, 27(6), 389–406. 10.1007/s12264-011-1944-1, PubMed DOI PMC

Jiruska, P., Alvarado-Rojas, C., Schevon, C. A., Staba, R., Stacey, W., Wendling, F., & Avoli, M. (2017). Update on the mechanisms and roles of high-frequency oscillations in seizures and epileptic disorders. Epilepsia, 58(8), 1330–1339. 10.1111/epi.13830, PubMed DOI PMC

Katzner, S., Nauhaus, I., Benucci, A., Bonin, V., Ringach, D. L., & Carandini, M. (2009). Local origin of field potentials in visual cortex. Neuron, 61(1), 35–41. 10.1016/j.neuron.2008.11.016, PubMed DOI PMC

Kawamura, Y., Nakao, H., Arai, K., Kori, H., & Kuramoto, Y. (2010). Phase synchronization between collective rhythms of globally coupled oscillator groups: Noiseless nonidentical case. Chaos: An Interdisciplinary Journal of Nonlinear Science, 20(4), 043110. 10.1063/1.3491346, PubMed DOI

Keener, J., & Sneyd, J. (2009). Mathematical physiology: I: Cellular physiology. Springer. 10.1007/978-0-387-75847-3 DOI

Klimes, P., Duque, J., Brinkmann, B., Van Gompel, J., Stead, M., St. Louis, E., … Worrell, G. (2016). The functional organization of human epileptic hippocampus. Journal of Neurophysiology, 115(6), 3140–3145. 10.1152/jn.00089.2016, PubMed DOI PMC

Kobelevskiy, I. (2008). Bifurcation analysis of a system of Morris-Lecar neurons with time delayed gap junctional coupling. (Unpublished master’s thesis). University of Waterloo.

Kuznetsov, Y. A. (2023). Elements of applied bifurcation theory, (4th ed., Vol. 112). New York: Springer. 10.1007/978-3-031-22007-4 DOI

Lang, X., Lu, Q., & Kurths, J. (2010). Phase synchronization in noise-driven bursting neurons. Physical Review E, 82(2), 021909. 10.1103/PhysRevE.82.021909, PubMed DOI

Lecar, H. (2007). Morris–Lecar model. Scholarpedia, 2(10), 1333. 10.4249/scholarpedia.1333 DOI

Liu, C., Liu, X., & Liu, S. (2014). Bifurcation analysis of a Morris-Lecar neuron model. Biological Cybernetics, 108(1), 75–84. 10.1007/s00422-013-0580-4, PubMed DOI

Macdonald, R. L. (1989). Antiepileptic drug actions. Epilepsia, 30, S19–S28. 10.1111/j.1528-1157.1989.tb05810.x, PubMed DOI

Mainen, Z. F., Joerges, J., Huguenard, J. R., & Sejnowski, T. J. (1995). A model of spike initiation in neocortical pyramidal neurons. Neuron, 15(6), 1427–1439. 10.1016/0896-6273(95)90020-9, PubMed DOI

Majhi, S., Bera, B. K., Ghosh, D., & Perc, M. (2019). Chimera states in neuronal networks: A review. Physics of Life Reviews, 28, 100–121. 10.1016/j.plrev.2018.09.003, PubMed DOI

Mitzdorf, U. (1985). Current source-density method and application in cat cerebral cortex: Investigation of evoked potentials and EEG phenomena. Physiological Reviews, 65(1), 37–100. 10.1152/physrev.1985.65.1.37, PubMed DOI

Morris, C., & Lecar, H. (1981). Voltage oscillations in the barnacle giant muscle fiber. Biophysical Journal, 35(1), 193–213. 10.1016/S0006-3495(81)84782-0, PubMed DOI PMC

Nagai, K. H., & Kori, H. (2010). Noise-induced synchronization of a large population of globally coupled nonidentical oscillators. Physical Review E, 81(6), 065202. 10.1103/PhysRevE.81.065202, PubMed DOI

Naze, S., Bernard, C., & Jirsa, V. (2015). Computational modeling of seizure dynamics using coupled neuronal networks: Factors shaping epileptiform activity. PLOS Computational Biology, 11(5), e1004209. 10.1371/journal.pcbi.1004209, PubMed DOI PMC

Neiman, A., Schimansky-Geier, L., Cornell-Bell, A., & Moss, F. (1999). Noise-enhanced phase synchronization in excitable media. Physical Review Letters, 83(23), 4896. 10.1103/PhysRevLett.83.4896 DOI

Nejedly, P., Cimbalnik, J., Klimes, P., Plesinger, F., Halamek, J., Kremen, V., … Jurák, P. (2019). Intracerebral EEG artifact identification using convolutional neural networks. Neuroinformatics, 17(2), 225–234. 10.1007/s12021-018-9397-6, PubMed DOI PMC

Nicholson, G. M., Blanche, T., Mansfield, K., & Tran, Y. (2002). Differential blockade of neuronal voltage-gated Na+ and K+ channels by antidepressant drugs. European Journal of Pharmacology, 452(1), 35–48. 10.1016/S0014-2999(02)02239-2, PubMed DOI

Nijholt, E., Rink, B., & Sanders, J. (2019). Center manifolds of coupled cell networks. SIAM Review, 61(1), 121–155. 10.1137/18M1219977 DOI

Pail, M., Cimbálník, J., Roman, R., Daniel, P., Shaw, D. J., Chrastina, J., & Brázdil, M. (2020). High frequency oscillations in epileptic and non-epileptic human hippocampus during a cognitive task. Scientific Reports, 10(1), 18147. 10.1038/s41598-020-74306-3, PubMed DOI PMC

Patel, D. C., Tewari, B. P., Chaunsali, L., & Sontheimer, H. (2019). Neuron-glia interactions in the pathophysiology of epilepsy. Nature Reviews Neuroscience, 20(5), 282–297. 10.1038/s41583-019-0126-4, PubMed DOI PMC

Perko, L. (2001). Differential equations and dynamical systems (Vol. 7). Springer Science & Business Media. 10.1007/978-1-4613-0003-8 DOI

Pikovsky, A., Rosenblum, M., & Kurths, J. (2001). Synchronization: A universal concept in nonlinear sciences. Cambridge University Press. 10.1017/CBO9780511755743 DOI

Prescott, S. A., De Koninck, Y., & Sejnowski, T. J. (2008). Biophysical basis for three distinct dynamical mechanisms of action potential initiation. PLoS Computational Biology, 4(10), e1000198. 10.1371/journal.pcbi.1000198, PubMed DOI PMC

Prescott, S. A., Ratté, S., De Koninck, Y., & Sejnowski, T. J. (2008). Pyramidal neurons switch from integrators in vitro to resonators under in vivo-like conditions. Journal of Neurophysiology, 100(6), 3030–3042. 10.1152/jn.90634.2008, PubMed DOI PMC

Purves, D., Augustine, G. J., Fitzpatrick, D., Hall, W., LaMantia, A.-S., & White, L. (2019). Neuroscience (6th ed.). Oxford University Press.

Řehulka, P., Cimbalnik, J., Pail, M., Chrastina, J., Hermanová, M., & Brázdil, M. (2019). Hippocampal high frequency oscillations in unilateral and bilateral mesial temporal lobe epilepsy. Clinical Neurophysiology, 130(7), 1151–1159. 10.1016/j.clinph.2019.03.026, PubMed DOI

Sebek, M., Kawamura, Y., Nott, A. M., & Kiss, I. Z. (2019). Anti-phase collective synchronization with intrinsic in-phase coupling of two groups of electrochemical oscillators. Philosophical Transactions of the Royal Society A, 377(2160), 20190095. 10.1098/rsta.2019.0095, PubMed DOI PMC

Shilnikov, A. (2012). Complete dynamical analysis of a neuron model. Nonlinear Dynamics, 68(3), 305–328. 10.1007/s11071-011-0046-y DOI

Skinner, F., Zhang, L., Velazquez, J. P., & Carlen, P. (1999). Bursting in inhibitory interneuronal networks: A role for gap-junctional coupling. Journal of Neurophysiology, 81(3), 1274–1283. 10.1152/jn.1999.81.3.1274, PubMed DOI

Staba, R. J., & Bragin, A. (2011). High-frequency oscillations and other electrophysiological biomarkers of epilepsy: Underlying mechanisms. Biomarkers in Medicine, 5(5), 545–556. 10.2217/bmm.11.72, PubMed DOI PMC

Strogatz, S. H. (2018). Nonlinear dynamics and chaos: With applications to physics, biology, chemistry, and engineering. CRC Press. 10.1201/9780429492563 DOI

Tewari, B. P., Chaunsali, L., Campbell, S. L., Patel, D. C., Goode, A. E., & Sontheimer, H. (2018). Perineuronal nets decrease membrane capacitance of peritumoral fast spiking interneurons in a model of epilepsy. Nature Communications, 9(1), 4724. 10.1038/s41467-018-07113-0, PubMed DOI PMC

Traub, R. D., & Miles, R. (1991). Neuronal networks of the hippocampus (Vol. 777). Cambridge University Press. 10.1017/CBO9780511895401 DOI

Travnicek, V., Jurak, P., Cimbalnik, J., Klimes, P., Daniel, P., & Brazdil, M. (2021). Ultra-fast oscillation detection in EEG signal from deep-brain microelectrodes. In 2021 43rd annual international conference of the IEEE Engineering in Medicine & Biology Society (EMBC) (pp. 265–268). 10.1109/EMBC46164.2021.9629481, PubMed DOI

Tsumoto, K., Kitajima, H., Yoshinaga, T., Aihara, K., & Kawakami, H. (2006). Bifurcations in Morris–Lecar neuron model. Neurocomputing, 69(4–6), 293–316. 10.1016/j.neucom.2005.03.006 DOI

van Putten, M. (2020). Dynamics of neural networks. Springer. 10.1007/978-3-662-61184-5 DOI

Vasickova, Z., Klimes, P., Cimbalnik, J., Travnicek, V., Pail, M., Halamek, J., … Brazdil, M. (2023). Shadows of very high-frequency oscillations can be detected in lower frequency bands of routine stereoelectroencephalography. Scientific Reports, 13(1), 1065. 10.1038/s41598-023-27797-9, PubMed DOI PMC

Volman, V., Perc, M., & Bazhenov, M. (2011). Gap junctions and epileptic seizures—Two sides of the same coin? PLoS One, 6(5), e20572. 10.1371/journal.pone.0020572, PubMed DOI PMC

Wang, B., Ke, W., Guang, J., Chen, G., Yin, L., Deng, S., … Shu, Y. (2016). Firing frequency maxima of fast-spiking neurons in human, monkey, and mouse neocortex. Frontiers in Cellular Neuroscience, 10, 239. 10.3389/fncel.2016.00239, PubMed DOI PMC

Warren, C., Hu, S., Stead, M., Brinkmann, B., Bower, M., & Worrell, G. (2010). Synchrony in normal and focal epileptic brain: The seizure onset zone is functionally disconnected. Journal of Neurophysiology, 104(6), 3530–3539. 10.1152/jn.00368.2010, PubMed DOI PMC

White, J. A., Chow, C. C., Rit, J., Soto-Treviño, C., & Kopell, N. (1998). Synchronization and oscillatory dynamics in heterogeneous, mutually inhibited neurons. Journal of Computational Neuroscience, 5(1), 5–16. 10.1023/A:1008841325921, PubMed DOI

Wiggins, S. (2003). Introduction to applied nonlinear dynamical systems and chaos (2nd ed.). New York: Springer. 10.1007/b97481 DOI

Worrell, G., & Gotman, J. (2011). High-frequency oscillations and other electrophysiological biomarkers of epilepsy: Clinical studies. Biomarkers in Medicine, 5(5), 557–566. 10.2217/bmm.11.74, PubMed DOI PMC

Xing, M., Song, X., Wang, H., Yang, Z., & Chen, Y. (2022). Frequency synchronization and excitabilities of two coupled heterogeneous Morris-Lecar neurons. Chaos, Solitons & Fractals, 157, 111959. 10.1016/j.chaos.2022.111959 DOI

Zhou, C., & Kurths, J. (2002). Noise-induced phase synchronization and synchronization transitions in chaotic oscillators. Physical Review Letters, 88(23), 230602. 10.1103/PhysRevLett.88.230602, PubMed DOI

Zhou, C., & Kurths, J. (2003). Noise-induced synchronization and coherence resonance of a Hodgkin-Huxley model of thermally sensitive neurons. Chaos: An Interdisciplinary Journal of Nonlinear Science, 13(1), 401–409. 10.1063/1.1493096, PubMed DOI

Zijlmans, M., Jacobs, J., Zelmann, R., Dubeau, F., & Gotman, J. (2009). High frequency oscillations and seizure frequency in patients with focal epilepsy. Epilepsy Research, 85(2–3), 287–292. 10.1016/j.eplepsyres.2009.03.026, PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace