Weak coupling of neurons enables very high-frequency and ultra-fast oscillations through the interplay of synchronized phase shifts
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38562290
PubMed Central
PMC10954350
DOI
10.1162/netn_a_00351
PII: netn_a_00351
Knihovny.cz E-zdroje
- Klíčová slova
- Bifurcations, Epilepsy, Neuronal network model, Phase-shift synchrony, Ultra-fast oscillations, Very high-frequency oscillations,
- Publikační typ
- časopisecké články MeSH
Recently, in the past decade, high-frequency oscillations (HFOs), very high-frequency oscillations (VHFOs), and ultra-fast oscillations (UFOs) were reported in epileptic patients with drug-resistant epilepsy. However, to this day, the physiological origin of these events has yet to be understood. Our study establishes a mathematical framework based on bifurcation theory for investigating the occurrence of VHFOs and UFOs in depth EEG signals of patients with focal epilepsy, focusing on the potential role of reduced connection strength between neurons in an epileptic focus. We demonstrate that synchronization of a weakly coupled network can generate very and ultra high-frequency signals detectable by nearby microelectrodes. In particular, we show that a bistability region enables the persistence of phase-shift synchronized clusters of neurons. This phenomenon is observed for different hippocampal neuron models, including Morris-Lecar, Destexhe-Paré, and an interneuron model. The mechanism seems to be robust for small coupling, and it also persists with random noise affecting the external current. Our findings suggest that weakened neuronal connections could contribute to the production of oscillations with frequencies above 1000 Hz, which could advance our understanding of epilepsy pathology and potentially improve treatment strategies. However, further exploration of various coupling types and complex network models is needed.
We have built a mathematical framework to examine how a reduced neuronal coupling within an epileptic focus could lead to very high-frequency (VHFOs) and ultra-fast oscillations (UFOs) in depth EEG signals. By analyzing weakly coupled neurons, we found a bistability synchronization region where in-phase and anti-phase synchrony persist. These dynamics can be detected as very high-frequency EEG signals. The principle of weak coupling aligns with the disturbances in neuronal connections often observed in epilepsy; moreover, VHFOs are important markers of epileptogenicity. Our findings point to the potential significance of weakened neuronal connections in producing VHFOs and UFOs related to focal epilepsy. This could enhance our understanding of brain disorders. We emphasize the need for further investigations of weakly coupled neurons.
Department of Applied Mathematics Techmed Centre University of Twente Enschede The Netherlands
Department of Mathematics and Statistics Faculty of Science Masaryk University Brno Czech Republic
Institute of Scientific Instruments The Czech Academy of Sciences Brno Czech Republic
Zobrazit více v PubMed
Abrams, D. M., & Strogatz, S. H. (2004). Chimera states for coupled oscillators. Physical Review Letters, 93(17), 174102. 10.1103/PhysRevLett.93.174102, PubMed DOI
Aihara, K., Takabe, T., & Toyoda, M. (1990). Chaotic neural networks. Physics Letters A, 144(6–7), 333–340. 10.1016/0375-9601(90)90136-C DOI
Bakhtiari, S., Manshadi, M. K., Candas, M., & Beskok, A. (2023). Changes in electrical capacitance of cell membrane reflect drug partitioning-induced alterations in lipid bilayer. Micromachines, 14(2), 316. 10.3390/mi14020316, PubMed DOI PMC
Boccaletti, S., Pisarchik, A. N., Del Genio, C. I., & Amann, A. (2018). Synchronization: From coupled systems to complex networks. Cambridge University Press. 10.1017/9781107297111 DOI
Brázdil, M., Pail, M., Halámek, J., Plešinger, F., Cimbálník, J., Roman, R., … Jurák, P. (2017). Very high-frequency oscillations: Novel biomarkers of the epileptogenic zone. Annals of Neurology, 82(2), 299–310. 10.1002/ana.25006, PubMed DOI
Brazdil, M., Worrell, G. A., Travnicek, V., Pail, M., Roman, R., Plesinger, F., … Jurák, P. (2023). Ultra fast oscillations in the human brain and their functional significance. medRxiv. 10.1101/2023.02.23.23285962 DOI
Calim, A., Hövel, P., Ozer, M., & Uzuntarla, M. (2018). Chimera states in networks of type-I Morris–Lecar neurons. Physical Review E, 98(6), 062217. 10.1103/PhysRevE.98.062217 DOI
Cessac, B., & Samuelides, M. (2007). From neuron to neural networks dynamics. European Physical Journal Special Topics, 142(1), 7–88. 10.1140/epjst/e2007-00058-2 DOI
Chow, C. C., & Kopell, N. (2000). Dynamics of spiking neurons with electrical coupling. Neural Computation, 12(7), 1643–1678. 10.1162/089976600300015295, PubMed DOI
Chowdhury, S. N., Rakshit, S., Buldu, J. M., Ghosh, D., & Hens, C. (2021). Antiphase synchronization in multiplex networks with attractive and repulsive interactions. Physical Review E, 103(3), 032310. 10.1103/PhysRevE.103.032310, PubMed DOI
Cimbalnik, J., Brinkmann, B., Kremen, V., Jurak, P., Berry, B., Gompel, J. V., … Worrell, G. (2018). Physiological and pathological high frequency oscillations in focal epilepsy. Annals of Clinical and Translational Neurology, 5(9), 1062–1076. 10.1002/acn3.618, PubMed DOI PMC
Cimbalnik, J., Pail, M., Klimes, P., Travnicek, V., Roman, R., Vajcner, A., & Brazdil, M. (2020). Cognitive processing impacts high frequency intracranial EEG activity of human hippocampus in patients with pharmacoresistant focal epilepsy. Frontiers in Neurology, 11, 578571. 10.3389/fneur.2020.578571, PubMed DOI PMC
DeSalvo, M. N., Douw, L., Tanaka, N., Reinsberger, C., & Stufflebeam, S. M. (2014). Altered structural connectome in temporal lobe epilepsy. Radiology, 270(3), 842–848. 10.1148/radiol.13131044, PubMed DOI PMC
Destexhe, A., & Paré, D. (1999). Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo. Journal of Neurophysiology, 81(4), 1531–1547. 10.1152/jn.1999.81.4.1531, PubMed DOI
Dhooge, A., Govaerts, W., & Kuznetsov, Y. A. (2003). MatCont: A MATLAB package for numerical bifurcation analysis of ODEs. ACM Transactions on Mathematical Software, 29(2), 141–164. 10.1145/779359.779362 DOI
Dhooge, A., Govaerts, W., Kuznetsov, Y. A., Meijer, H. G., & Sautois, B. (2008). New features of the software MatCont for bifurcation analysis of dynamical systems. Mathematical and Computer Modelling of Dynamical Systems, 14(2), 147–175. 10.1080/13873950701742754 DOI
Draguhn, A., Traub, R., Schmitz, D., & Jefferys, J. (1998). Electrical coupling underlies high-frequency oscillations in the hippocampus in vitro. Nature, 394(6689), 189–192. 10.1038/28184, PubMed DOI
Duan, L., & Lu, Q. (2006). Codimension-two bifurcation analysis on firing activities in Chay neuron model. Chaos, Solitons & Fractals, 30(5), 1172–1179. 10.1016/j.chaos.2005.08.179 DOI
Ermentrout, B., & Terman, D. H. (2010). Mathematical foundations of neuroscience (Vol. 35). Springer. 10.1007/978-0-387-87708-2 DOI
Frauscher, B., von Ellenrieder, N., Zelmann, R., Rogers, C., Nguyen, D. K., Kahane, P., … Gotman, J. (2018). High-frequency oscillations in the normal human brain. Annals of Neurology, 84(3), 374–385. 10.1002/ana.25304, PubMed DOI
Fukuda, T., & Kosaka, T. (2000). Gap junctions linking the dendritic network of gabaergic interneurons in the hippocampus. Journal of Neuroscience, 20(4), 1519–1528. 10.1523/JNEUROSCI.20-04-01519.2000, PubMed DOI PMC
Gabbiani, F., & Cox, S. J. (2017). Mathematics for neuroscientists. Academic Press.
Gentet, L. J., Stuart, G. J., & Clements, J. D. (2000). Direct measurement of specific membrane capacitance in neurons. Biophysical Journal, 79(1), 314–320. 10.1016/S0006-3495(00)76293-X, PubMed DOI PMC
Ghosh, S., Mondal, A., Ji, P., Mishra, A., Dana, S. K., Antonopoulos, C. G., & Hens, C. (2020). Emergence of mixed mode oscillations in random networks of diverse excitable neurons: The role of neighbors and electrical coupling. Frontiers in Computational Neuroscience, 14, 49. 10.3389/fncom.2020.00049, PubMed DOI PMC
Golubitsky, M., Messi, L. M., & Spardy, L. E. (2016). Symmetry types and phase-shift synchrony in networks. Physica D: Nonlinear Phenomena, 320, 9–18. 10.1016/j.physd.2015.12.005 DOI
Golubitsky, M., Romano, D., & Wang, Y. (2012). Network periodic solutions: Patterns of phase-shift synchrony. Nonlinearity, 25(4), 1045. 10.1088/0951-7715/25/4/1045 DOI
Golubitsky, M., & Stewart, I. (2006). Nonlinear dynamics of networks: The groupoid formalism. Bulletin of the American Mathematical Society, 43(3), 305–364. 10.1090/S0273-0979-06-01108-6 DOI
Golubitsky, M., & Stewart, I. (2016). Rigid patterns of synchrony for equilibria and periodic cycles in network dynamics. Chaos: An Interdisciplinary Journal of Nonlinear Science, 26(9), 094803. 10.1063/1.4953664, PubMed DOI
Golubitsky, M., Stewart, I., & Török, A. (2005). Patterns of synchrony in coupled cell networks with multiple arrows. SIAM Journal on Applied Dynamical Systems, 4(1), 78–100. 10.1137/040612634 DOI
Gutkin, B. S., & Ermentrout, G. B. (1998). Dynamics of membrane excitability determine interspike interval variability: A link between spike generation mechanisms and cortical spike train statistics. Neural Computation, 10(5), 1047–1065. 10.1162/089976698300017331, PubMed DOI
Hao, J., Cui, Y., Niu, B., Yu, L., Lin, Y., Xia, Y., … Guo, D. (2021). Roles of very fast ripple (500–1000 Hz) in the hippocampal network during status epilepticus. International Journal of Neural Systems, 31(4), 2150002. 10.1142/S0129065721500027, PubMed DOI
Hartveit, E., Veruki, M. L., & Zandt, B.-J. (2019). Capacitance measurement of dendritic exocytosis in an electrically coupled inhibitory retinal interneuron: An experimental and computational study. Physiological Reports, 7(15), e14186. 10.14814/phy2.14186, PubMed DOI PMC
Helling, R., Koppert, M., Visser, G., & Kalitzin, S. (2015). Gap junctions as common cause of high-frequency oscillations and epileptic seizures in a computational cascade of neuronal mass and compartmental modeling. International Journal of Neural Systems, 25(6), 1550021. 10.1142/S0129065715500215, PubMed DOI
Hodgkin, A. L. (1948). The local electric changes associated with repetitive action in a non-medullated axon. Journal of Physiology, 107(2), 165–181. 10.1113/jphysiol.1948.sp004260, PubMed DOI PMC
Hoppensteadt, F. C., & Izhikevich, E. M. (1997). Weakly connected neural networks (Vol. 126). Springer Science & Business Media. 10.1007/978-1-4612-1828-9 DOI
Huguenard, J., Hamill, O., & Prince, D. (1988). Developmental changes in Na+ conductances in rat neocortical neurons: Appearance of a slowly inactivating component. Journal of Neurophysiology, 59(3), 778–795. 10.1152/jn.1988.59.3.778, PubMed DOI
Izhikevich, E. (2006). Dynamical systems in neuroscience. MIT Press. 10.7551/mitpress/2526.001.0001 DOI
Jacobs, J., LeVan, P., Chander, R., Hall, J., Dubeau, F., & Gotman, J. (2008). Interictal high-frequency oscillations (80–500 Hz) are an indicator of seizure onset areas independent of spikes in the human epileptic brain. Epilepsia, 49(11), 1893–1907. 10.1111/j.1528-1167.2008.01656.x, PubMed DOI PMC
Jacobs, J., Staba, R., Asano, E., Otsubo, H., Wu, J., Zijlmans, M., … Gotman, J. (2012). High-frequency oscillations (HFOs) in clinical epilepsy. Progress in Neurobiology, 98(3), 302–315. 10.1016/j.pneurobio.2012.03.001, PubMed DOI PMC
Jefferys, J. G., De La Prida, L. M., Wendling, F., Bragin, A., Avoli, M., Timofeev, I., & da Silva, F. H. L. (2012). Mechanisms of physiological and epileptic HFO generation. Progress in Neurobiology, 98(3), 250–264. 10.1016/j.pneurobio.2012.02.005, PubMed DOI PMC
Jin, M.-M., & Zhong, C. (2011). Role of gap junctions in epilepsy. Neuroscience Bulletin, 27(6), 389–406. 10.1007/s12264-011-1944-1, PubMed DOI PMC
Jiruska, P., Alvarado-Rojas, C., Schevon, C. A., Staba, R., Stacey, W., Wendling, F., & Avoli, M. (2017). Update on the mechanisms and roles of high-frequency oscillations in seizures and epileptic disorders. Epilepsia, 58(8), 1330–1339. 10.1111/epi.13830, PubMed DOI PMC
Katzner, S., Nauhaus, I., Benucci, A., Bonin, V., Ringach, D. L., & Carandini, M. (2009). Local origin of field potentials in visual cortex. Neuron, 61(1), 35–41. 10.1016/j.neuron.2008.11.016, PubMed DOI PMC
Kawamura, Y., Nakao, H., Arai, K., Kori, H., & Kuramoto, Y. (2010). Phase synchronization between collective rhythms of globally coupled oscillator groups: Noiseless nonidentical case. Chaos: An Interdisciplinary Journal of Nonlinear Science, 20(4), 043110. 10.1063/1.3491346, PubMed DOI
Keener, J., & Sneyd, J. (2009). Mathematical physiology: I: Cellular physiology. Springer. 10.1007/978-0-387-75847-3 DOI
Klimes, P., Duque, J., Brinkmann, B., Van Gompel, J., Stead, M., St. Louis, E., … Worrell, G. (2016). The functional organization of human epileptic hippocampus. Journal of Neurophysiology, 115(6), 3140–3145. 10.1152/jn.00089.2016, PubMed DOI PMC
Kobelevskiy, I. (2008). Bifurcation analysis of a system of Morris-Lecar neurons with time delayed gap junctional coupling. (Unpublished master’s thesis). University of Waterloo.
Kuznetsov, Y. A. (2023). Elements of applied bifurcation theory, (4th ed., Vol. 112). New York: Springer. 10.1007/978-3-031-22007-4 DOI
Lang, X., Lu, Q., & Kurths, J. (2010). Phase synchronization in noise-driven bursting neurons. Physical Review E, 82(2), 021909. 10.1103/PhysRevE.82.021909, PubMed DOI
Lecar, H. (2007). Morris–Lecar model. Scholarpedia, 2(10), 1333. 10.4249/scholarpedia.1333 DOI
Liu, C., Liu, X., & Liu, S. (2014). Bifurcation analysis of a Morris-Lecar neuron model. Biological Cybernetics, 108(1), 75–84. 10.1007/s00422-013-0580-4, PubMed DOI
Macdonald, R. L. (1989). Antiepileptic drug actions. Epilepsia, 30, S19–S28. 10.1111/j.1528-1157.1989.tb05810.x, PubMed DOI
Mainen, Z. F., Joerges, J., Huguenard, J. R., & Sejnowski, T. J. (1995). A model of spike initiation in neocortical pyramidal neurons. Neuron, 15(6), 1427–1439. 10.1016/0896-6273(95)90020-9, PubMed DOI
Majhi, S., Bera, B. K., Ghosh, D., & Perc, M. (2019). Chimera states in neuronal networks: A review. Physics of Life Reviews, 28, 100–121. 10.1016/j.plrev.2018.09.003, PubMed DOI
Mitzdorf, U. (1985). Current source-density method and application in cat cerebral cortex: Investigation of evoked potentials and EEG phenomena. Physiological Reviews, 65(1), 37–100. 10.1152/physrev.1985.65.1.37, PubMed DOI
Morris, C., & Lecar, H. (1981). Voltage oscillations in the barnacle giant muscle fiber. Biophysical Journal, 35(1), 193–213. 10.1016/S0006-3495(81)84782-0, PubMed DOI PMC
Nagai, K. H., & Kori, H. (2010). Noise-induced synchronization of a large population of globally coupled nonidentical oscillators. Physical Review E, 81(6), 065202. 10.1103/PhysRevE.81.065202, PubMed DOI
Naze, S., Bernard, C., & Jirsa, V. (2015). Computational modeling of seizure dynamics using coupled neuronal networks: Factors shaping epileptiform activity. PLOS Computational Biology, 11(5), e1004209. 10.1371/journal.pcbi.1004209, PubMed DOI PMC
Neiman, A., Schimansky-Geier, L., Cornell-Bell, A., & Moss, F. (1999). Noise-enhanced phase synchronization in excitable media. Physical Review Letters, 83(23), 4896. 10.1103/PhysRevLett.83.4896 DOI
Nejedly, P., Cimbalnik, J., Klimes, P., Plesinger, F., Halamek, J., Kremen, V., … Jurák, P. (2019). Intracerebral EEG artifact identification using convolutional neural networks. Neuroinformatics, 17(2), 225–234. 10.1007/s12021-018-9397-6, PubMed DOI PMC
Nicholson, G. M., Blanche, T., Mansfield, K., & Tran, Y. (2002). Differential blockade of neuronal voltage-gated Na+ and K+ channels by antidepressant drugs. European Journal of Pharmacology, 452(1), 35–48. 10.1016/S0014-2999(02)02239-2, PubMed DOI
Nijholt, E., Rink, B., & Sanders, J. (2019). Center manifolds of coupled cell networks. SIAM Review, 61(1), 121–155. 10.1137/18M1219977 DOI
Pail, M., Cimbálník, J., Roman, R., Daniel, P., Shaw, D. J., Chrastina, J., & Brázdil, M. (2020). High frequency oscillations in epileptic and non-epileptic human hippocampus during a cognitive task. Scientific Reports, 10(1), 18147. 10.1038/s41598-020-74306-3, PubMed DOI PMC
Patel, D. C., Tewari, B. P., Chaunsali, L., & Sontheimer, H. (2019). Neuron-glia interactions in the pathophysiology of epilepsy. Nature Reviews Neuroscience, 20(5), 282–297. 10.1038/s41583-019-0126-4, PubMed DOI PMC
Perko, L. (2001). Differential equations and dynamical systems (Vol. 7). Springer Science & Business Media. 10.1007/978-1-4613-0003-8 DOI
Pikovsky, A., Rosenblum, M., & Kurths, J. (2001). Synchronization: A universal concept in nonlinear sciences. Cambridge University Press. 10.1017/CBO9780511755743 DOI
Prescott, S. A., De Koninck, Y., & Sejnowski, T. J. (2008). Biophysical basis for three distinct dynamical mechanisms of action potential initiation. PLoS Computational Biology, 4(10), e1000198. 10.1371/journal.pcbi.1000198, PubMed DOI PMC
Prescott, S. A., Ratté, S., De Koninck, Y., & Sejnowski, T. J. (2008). Pyramidal neurons switch from integrators in vitro to resonators under in vivo-like conditions. Journal of Neurophysiology, 100(6), 3030–3042. 10.1152/jn.90634.2008, PubMed DOI PMC
Purves, D., Augustine, G. J., Fitzpatrick, D., Hall, W., LaMantia, A.-S., & White, L. (2019). Neuroscience (6th ed.). Oxford University Press.
Řehulka, P., Cimbalnik, J., Pail, M., Chrastina, J., Hermanová, M., & Brázdil, M. (2019). Hippocampal high frequency oscillations in unilateral and bilateral mesial temporal lobe epilepsy. Clinical Neurophysiology, 130(7), 1151–1159. 10.1016/j.clinph.2019.03.026, PubMed DOI
Sebek, M., Kawamura, Y., Nott, A. M., & Kiss, I. Z. (2019). Anti-phase collective synchronization with intrinsic in-phase coupling of two groups of electrochemical oscillators. Philosophical Transactions of the Royal Society A, 377(2160), 20190095. 10.1098/rsta.2019.0095, PubMed DOI PMC
Shilnikov, A. (2012). Complete dynamical analysis of a neuron model. Nonlinear Dynamics, 68(3), 305–328. 10.1007/s11071-011-0046-y DOI
Skinner, F., Zhang, L., Velazquez, J. P., & Carlen, P. (1999). Bursting in inhibitory interneuronal networks: A role for gap-junctional coupling. Journal of Neurophysiology, 81(3), 1274–1283. 10.1152/jn.1999.81.3.1274, PubMed DOI
Staba, R. J., & Bragin, A. (2011). High-frequency oscillations and other electrophysiological biomarkers of epilepsy: Underlying mechanisms. Biomarkers in Medicine, 5(5), 545–556. 10.2217/bmm.11.72, PubMed DOI PMC
Strogatz, S. H. (2018). Nonlinear dynamics and chaos: With applications to physics, biology, chemistry, and engineering. CRC Press. 10.1201/9780429492563 DOI
Tewari, B. P., Chaunsali, L., Campbell, S. L., Patel, D. C., Goode, A. E., & Sontheimer, H. (2018). Perineuronal nets decrease membrane capacitance of peritumoral fast spiking interneurons in a model of epilepsy. Nature Communications, 9(1), 4724. 10.1038/s41467-018-07113-0, PubMed DOI PMC
Traub, R. D., & Miles, R. (1991). Neuronal networks of the hippocampus (Vol. 777). Cambridge University Press. 10.1017/CBO9780511895401 DOI
Travnicek, V., Jurak, P., Cimbalnik, J., Klimes, P., Daniel, P., & Brazdil, M. (2021). Ultra-fast oscillation detection in EEG signal from deep-brain microelectrodes. In 2021 43rd annual international conference of the IEEE Engineering in Medicine & Biology Society (EMBC) (pp. 265–268). 10.1109/EMBC46164.2021.9629481, PubMed DOI
Tsumoto, K., Kitajima, H., Yoshinaga, T., Aihara, K., & Kawakami, H. (2006). Bifurcations in Morris–Lecar neuron model. Neurocomputing, 69(4–6), 293–316. 10.1016/j.neucom.2005.03.006 DOI
van Putten, M. (2020). Dynamics of neural networks. Springer. 10.1007/978-3-662-61184-5 DOI
Vasickova, Z., Klimes, P., Cimbalnik, J., Travnicek, V., Pail, M., Halamek, J., … Brazdil, M. (2023). Shadows of very high-frequency oscillations can be detected in lower frequency bands of routine stereoelectroencephalography. Scientific Reports, 13(1), 1065. 10.1038/s41598-023-27797-9, PubMed DOI PMC
Volman, V., Perc, M., & Bazhenov, M. (2011). Gap junctions and epileptic seizures—Two sides of the same coin? PLoS One, 6(5), e20572. 10.1371/journal.pone.0020572, PubMed DOI PMC
Wang, B., Ke, W., Guang, J., Chen, G., Yin, L., Deng, S., … Shu, Y. (2016). Firing frequency maxima of fast-spiking neurons in human, monkey, and mouse neocortex. Frontiers in Cellular Neuroscience, 10, 239. 10.3389/fncel.2016.00239, PubMed DOI PMC
Warren, C., Hu, S., Stead, M., Brinkmann, B., Bower, M., & Worrell, G. (2010). Synchrony in normal and focal epileptic brain: The seizure onset zone is functionally disconnected. Journal of Neurophysiology, 104(6), 3530–3539. 10.1152/jn.00368.2010, PubMed DOI PMC
White, J. A., Chow, C. C., Rit, J., Soto-Treviño, C., & Kopell, N. (1998). Synchronization and oscillatory dynamics in heterogeneous, mutually inhibited neurons. Journal of Computational Neuroscience, 5(1), 5–16. 10.1023/A:1008841325921, PubMed DOI
Wiggins, S. (2003). Introduction to applied nonlinear dynamical systems and chaos (2nd ed.). New York: Springer. 10.1007/b97481 DOI
Worrell, G., & Gotman, J. (2011). High-frequency oscillations and other electrophysiological biomarkers of epilepsy: Clinical studies. Biomarkers in Medicine, 5(5), 557–566. 10.2217/bmm.11.74, PubMed DOI PMC
Xing, M., Song, X., Wang, H., Yang, Z., & Chen, Y. (2022). Frequency synchronization and excitabilities of two coupled heterogeneous Morris-Lecar neurons. Chaos, Solitons & Fractals, 157, 111959. 10.1016/j.chaos.2022.111959 DOI
Zhou, C., & Kurths, J. (2002). Noise-induced phase synchronization and synchronization transitions in chaotic oscillators. Physical Review Letters, 88(23), 230602. 10.1103/PhysRevLett.88.230602, PubMed DOI
Zhou, C., & Kurths, J. (2003). Noise-induced synchronization and coherence resonance of a Hodgkin-Huxley model of thermally sensitive neurons. Chaos: An Interdisciplinary Journal of Nonlinear Science, 13(1), 401–409. 10.1063/1.1493096, PubMed DOI
Zijlmans, M., Jacobs, J., Zelmann, R., Dubeau, F., & Gotman, J. (2009). High frequency oscillations and seizure frequency in patients with focal epilepsy. Epilepsy Research, 85(2–3), 287–292. 10.1016/j.eplepsyres.2009.03.026, PubMed DOI PMC