Invasive Electrophysiology for Circuit Discovery and Study of Comorbid Psychiatric Disorders in Patients With Epilepsy: Challenges, Opportunities, and Novel Technologies

. 2021 ; 15 () : 702605. [epub] 20210726

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34381344

Grantová podpora
KL2 TR002379 NCATS NIH HHS - United States
UH3 NS095495 NINDS NIH HHS - United States
T32 GM065841 NIGMS NIH HHS - United States
R01 MH124655 NIMH NIH HHS - United States
UH2 NS095495 NINDS NIH HHS - United States
R01 MH113700 NIMH NIH HHS - United States
UG3 NS123066 NINDS NIH HHS - United States

Intracranial electroencephalographic (iEEG) recordings from patients with epilepsy provide distinct opportunities and novel data for the study of co-occurring psychiatric disorders. Comorbid psychiatric disorders are very common in drug-resistant epilepsy and their added complexity warrants careful consideration. In this review, we first discuss psychiatric comorbidities and symptoms in patients with epilepsy. We describe how epilepsy can potentially impact patient presentation and how these factors can be addressed in the experimental designs of studies focused on the electrophysiologic correlates of mood. Second, we review emerging technologies to integrate long-term iEEG recording with dense behavioral tracking in naturalistic environments. Third, we explore questions on how best to address the intersection between epilepsy and psychiatric comorbidities. Advances in ambulatory iEEG and long-term behavioral monitoring technologies will be instrumental in studying the intersection of seizures, epilepsy, psychiatric comorbidities, and their underlying circuitry.

Zobrazit více v PubMed

Aaronson S. T., Sears P., Ruvuna F., Bunker M., Conway C. R., Dougherty D. D., et al. . (2017). A 5-year observational study of patients with treatment-resistant depression treated with vagus nerve stimulation or treatment as usual: comparison of response, remission and suicidality. Am. J. Psychiatry 174, 640–648. 10.1176/appi.ajp.2017.16010034 PubMed DOI

Abou Jaoude M., Sun H., Pellerin K. R., Pavlova M., Sarkis R. A., Cash S. S., et al. . (2020). Expert-level automated sleep staging of long-term scalp electroencephalography recordings using deep learning. Sleep 43:zsaa112. 10.1093/sleep/zsaa112 PubMed DOI PMC

Adelöw C., Andersson T., Ahlbom A., Tomson T. (2012). Hospitalization for psychiatric disorders before and after onset of unprovoked seizures/epilepsy. Neurology 78, 396–401. 10.1212/WNL.0b013e318245f461 PubMed DOI

Aguilera A., Schueller S. M., Leykin Y. (2015). Daily mood ratings via text message as a proxy for clinic based depression assessment. J. Affect. Disord. 175, 471–474. 10.1016/j.jad.2015.01.033 PubMed DOI PMC

Ahmed A. T., Frye M. A., Rush A. J., Biernacka J. M., Craighead W. E., McDonald W. M., et al. . (2018). Mapping depression rating scale phenotypes onto research domain criteria (RDoC) to inform biological research in mood disorders. J. Affect. Disord. 238, 1–7. 10.1016/j.jad.2018.05.005 PubMed DOI PMC

Armitage R., Trivedi M., Hoffmann R., Rush A. J. (1997). Relationship between objective and subjective sleep measures in depressed patients and healthy controls. Depress. Anxiety 5, 97–102. 10.1002/(sici)1520-6394(1997)5:2<97::aid-da6>3.0.co;2-2 PubMed DOI

Asadi-Pooya A. A., Sperling M. R. (2015). Epidemiology of psychogenic nonepileptic seizures. Epilepsy Behav. 46, 60–65. 10.1016/j.yebeh.2015.03.015 PubMed DOI

Badawy R., Macdonell R., Jackson G., Berkovic S. (2009). The peri-ictal state: cortical excitability changes within 24 h of a seizure. Brain 132, 1013–1021. 10.1093/brain/awp017 PubMed DOI

Baker G. A., Jacoby A., Buck D., Stalgis C., Monnet D. (1997). Quality of life of people with epilepsy: a european study. Epilepsia 38, 353–362. 10.1111/j.1528-1157.1997.tb01128.x PubMed DOI

Ball T., Kern M., Mutschler I., Aertsen A., Schulze-Bonhage A. (2009). Signal quality of simultaneously recorded invasive and non-invasive EEG. NeuroImage 46, 708–716. 10.1016/j.neuroimage.2009.02.028 PubMed DOI

Basu I., Robertson M. M., Crocker B., Peled N., Farnes K., Vallejo-Lopez D. I., et al. . (2019). Consistent linear and non-linear responses to invasive electrical brain stimulation across individuals and primate species with implanted electrodes. Brain Stimul. 12, 877–892. 10.1016/j.brs.2019.03.007 PubMed DOI PMC

Baud M. O., Kleen J. K., Mirro E. A., Andrechak J. C., King-Stephens D., Chang E. F., et al. . (2018). Multi-day rhythms modulate seizure risk in epilepsy. Nat. Commun. 9:88. 10.1038/s41467-017-02577-y PubMed DOI PMC

Beck A. T., Epstein N., Brown G., Steer R. A. (1988). An inventory for measuring clinical anxiety: psychometric properties. J. Consult. Clin. Psychol. 56, 893–897. 10.1037//0022-006x.56.6.893 PubMed DOI

Beck A. T., Ward C. H., Mendelson M., Mock J., Erbaugh J. (1961). An inventory for measuring depression. Arch. Gen. Psychiatry 4, 561–571. 10.1001/archpsyc.1961.01710120031004 PubMed DOI

Berg A. T., Altalib H. H., Devinsky O. (2017). Psychiatric and behavioral comorbidities in epilepsy: a critical reappraisal. Epilepsia 58, 1123–1130. 10.1111/epi.13766 PubMed DOI PMC

Bernhardt B. C., Bernasconi N., Concha L., Bernasconi A. (2010). Cortical thickness analysis in temporal lobe epilepsy: reproducibility and relation to outcome. Neurology 74, 1776–1784. 10.1212/WNL.0b013e3181e0f80a PubMed DOI

Bettus G., Bartolomei F., Confort-Gouny S., Guedj E., Chauvel P., Cozzone P. J., et al. . (2010). Role of resting state functional connectivity MRI in presurgical investigation of mesial temporal lobe epilepsy. J. Neurol. Neurosurg. Psychiatry 81, 1147–1154. 10.1136/jnnp.2009.191460 PubMed DOI

Bettus G., Guedj E., Joyeux F., Confort-Gouny S., Soulier E., Laguitton V., et al. . (2009). Decreased basal fMRI functional connectivity in epileptogenic networks and contralateral compensatory mechanisms. Hum. Brain Mapp. 30, 1580–1591. 10.1002/hbm.20625 PubMed DOI PMC

Blumer D., Montouris G., Davies K. (2004). The interictal dysphoric disorder: recognition, pathogenesis, and treatment of the major psychiatric disorder of epilepsy. Epilepsy Behav. 5, 826–840. 10.1016/j.yebeh.2004.08.003 PubMed DOI

Botteron K. N., Raichle M. E., Drevets W. C., Heath A. C., Todd R. D. (2002). Volumetric reduction in left subgenual prefrontal cortex in early onset depression. Biol. Psychiatry 51, 342–344. 10.1016/s0006-3223(01)01280-x PubMed DOI

Bremner J. D., Vythilingam M., Vermetten E., Nazeer A., Adil J., Khan S., et al. . (2002). Reduced volume of orbitofrontal cortex in major depression. Biol. Psychiatry 51, 273–279. 10.1016/s0006-3223(01)01336-1 PubMed DOI

Buchsbaum M. S., Hazlett E., Sicotte N., Stein M., Wu J., Zetin M. (1985). Topographic EEG changes with benzodiazepine administration in generalized anxiety disorder. Biol. Psychiatry 20, 832–842. 10.1016/0006-3223(85)90208-2 PubMed DOI

Buysse D. J., Reynolds C. F., III., Monk T. H., Berman S. R., Kupfer D. J. (1989). The Pittsburgh sleep quality index: a new instrument for psychiatric practice and research. Psychiatry Res. 28, 193–213. 10.1016/0165-1781(89)90047-4 PubMed DOI

Carne R. P., O’Brien T. J., Kilpatrick C. J., MacGregor L. R., Hicks R. J., Murphy M. A., et al. . (2004). MRI-negative PET-positive temporal lobe epilepsy: a distinct surgically remediable syndrome. Brain 127, 2276–2285. 10.1093/brain/awh257 PubMed DOI

Cascino G. D. (2004). Surgical treatment for epilepsy. Epilepsy Res. 60, 179–186. 10.1016/j.eplepsyres.2004.07.003 PubMed DOI

Cascino G. D. (2008). Neuroimaging in epilepsy: diagnostic strategies in partial epilepsy. Semin. Neurol. 28, 523–532. 10.1055/s-0028-1083687 PubMed DOI

Cendes F., Andermann F., Gloor P., Gambardella A., Lopes-Cendes I., Watson C., et al. . (1994). Relationship between atrophy of the amygdala and ictal fear in temporal lobe epilepsy. Brain 117, 739–746. 10.1093/brain/117.4.739 PubMed DOI

Chan A. Y., Rolston J. D., Rao V. R., Chang E. F. (2018). Effect of neurostimulation on cognition and mood in refractory epilepsy. Epilepsia Open 3, 18–29. 10.1002/epi4.12100 PubMed DOI PMC

Chen B., Choi H., Hirsch L. J., Katz A., Legge A., Buchsbaum R., et al. . (2017). Psychiatric and behavioral side effects of antiepileptic drugs in adults with epilepsy. Epilepsy Behav. 76, 24–31. 10.1016/j.yebeh.2017.08.039 PubMed DOI

Chen Y.-Y., Huang S., Wu W.-Y., Liu C.-R., Yang X.-Y., Zhao H.-T., et al. . (2018). Associated and predictive factors of quality of life in patients with temporal lobe epilepsy. Epilepsy Behav. 86, 85–90. 10.1016/j.yebeh.2018.06.025 PubMed DOI

Chen S., Wu X., Lui S., Wu Q., Yao Z., Li Q., et al. . (2012). Resting-state fMRI study of treatment-naïve temporal lobe epilepsy patients with depressive symptoms. NeuroImage 60, 299–304. 10.1016/j.neuroimage.2011.11.092 PubMed DOI

Cohen-Gadol A. A., Britton J. W., Worrell G. A., Meyer F. B. (2004). Transient cortical abnormalities on magnetic resonance imaging after status epilepticus: case report. Surg. Neurol. 61, 479–482. 10.1016/S0090-3019(03)00540-8 PubMed DOI

Cook M. J., O’Brien T. J., Berkovic S. F., Murphy M., Morokoff A., Fabinyi G., et al. . (2013). Prediction of seizure likelihood with a long-term, implanted seizure advisory system in patients with drug-resistant epilepsy: a first-in-man study. Lancet Neurol. 12, 563–571. 10.1016/S1474-4422(13)70075-9 PubMed DOI

Corripio I., Roldán A., Sarró S., McKenna P. J., Alonso-Solís A., Rabella M., et al. . (2020). Deep brain stimulation in treatment resistant schizophrenia: a pilot randomized cross-over clinical trial. EBioMedicine 51:102568. 10.1016/j.ebiom.2019.11.029 PubMed DOI PMC

Crowell A. L., Riva-Posse P., Holtzheimer P. E., Garlow S. J., Kelley M. E., Gross R. E., et al. . (2019). Long-term outcomes of subcallosal cingulate deep brain stimulation for treatment-resistant depression. Am. J. Psychiatry 176, 949–956. 10.1176/appi.ajp.2019.18121427 PubMed DOI

Dichter G. S., Gibbs D., Smoski M. J. (2015). A systematic review of relations between resting-state functional-MRI and treatment response in major depressive disorder. J. Affect. Disord. 172, 8–17. 10.1016/j.jad.2014.09.028 PubMed DOI PMC

Doležalová I., Kunst J., Kojan M., Chrastina J., Baláž M., Brázdil M. (2019). Anterior thalamic deep brain stimulation in epilepsy and persistent psychiatric side effects following discontinuation. Epilepsy Behav. Rep. 12:100344. 10.1016/j.ebr.2019.100344 PubMed DOI PMC

Doucet G., Osipowicz K., Sharan A., Sperling M. R., Tracy J. I. (2013). Extratemporal functional connectivity impairments at rest are related to memory performance in mesial temporal epilepsy. Hum. Brain Mapp. 34, 2202–2216. 10.1002/hbm.22059 PubMed DOI PMC

Duun-Henriksen J., Baud M., Richardson M. P., Cook M., Kouvas G., Heasman J. M., et al. . (2020). A new era in electroencephalographic monitoring? Subscalp devices for ultra-long-term recordings. Epilepsia 61, 1805–1817. 10.1111/epi.16630 PubMed DOI

Ebmeier K. P., Prentice N., Ryman A., Halloran E., Rimmington J. E., Best J. K., et al. . (1997). Temporal lobe abnormalities in dementia and depression: a study using high resolution single photon emission tomography and magnetic resonance imaging. J. Neurol. Neurosurg. Psychiatry 63, 597–604. 10.1136/jnnp.63.5.597 PubMed DOI PMC

Eker C., Gonul A. S. (2010). Volumetric MRI studies of the hippocampus in major depressive disorder: meanings of inconsistency and directions for future research. World J. Biol. Psychiatry 11, 19–35. 10.1080/15622970902737998 PubMed DOI

Elbejjani M., Fuhrer R., Abrahamowicz M., Mazoyer B., Crivello F., Tzourio C., et al. . (2015). Depression, depressive symptoms, and rate of hippocampal atrophy in a longitudinal cohort of older men and women. Psychol. Med. 45, 1931–1944. 10.1017/S0033291714003055 PubMed DOI

Elger G., Hoppe C., Falkai P., Rush A. J., Elger C. E. (2000). Vagus nerve stimulation is associated with mood improvements in epilepsy patients. Epilepsy Res. 42, 203–210. 10.1016/s0920-1211(00)00181-9 PubMed DOI

Elger C. E., Mormann F. (2013). Seizure prediction and documentation—two important problems. Lancet Neurol. 12, 531–532. 10.1016/S1474-4422(13)70092-9 PubMed DOI

Elkommos S., Mula M. (2020). A systematic review of neuroimaging studies of depression in adults with epilepsy. Epilepsy Behav. 115:107695. 10.1016/j.yebeh.2020.107695 PubMed DOI

Epps S. A., Weinshenker D. (2013). Rhythm and blues: animal models of epilepsy and depression comorbidity. Biochem. Pharmacol. 85, 135–146. 10.1016/j.bcp.2012.08.016 PubMed DOI PMC

Ewen J. B., Potter W. Z., Sweeney J. A. (2021). Biomarkers and neurobehavioral diagnosis. Biomark. Neuropsychiatry 4:100029. 10.1016/j.bionps.2020.100029 PubMed DOI PMC

Fasano R. E., Kanner A. M. (2019). Psychiatric complications after epilepsy surgery‥. but where are the psychiatrists? Epilepsy Behav. 98, 318–321. 10.1016/j.yebeh.2018.12.009 PubMed DOI

Figee M., Mayberg H. (2021). The future of personalized brain stimulation. Nat. Med. 27, 196–197. 10.1038/s41591-021-01243-7 PubMed DOI

First M., Williams J., Karg R., Spitzer R. (2015). Structured Clinical Interview for DSM-5—Research Version (SCID-5 for DSM-5, Research Version; SCID-5-RV). Arlington, VA: American Psychiatric Association.

Fisher R. S., Acevedo C., Arzimanoglou A., Bogacz A., Cross J. H., Elger C. E., et al. . (2014). ILAE official report: a practical clinical definition of epilepsy. Epilepsia 55, 475–482. 10.1111/epi.12550 PubMed DOI

Fisher R. S., Cross J. H., D’Souza C., French J. A., Haut S. R., Higurashi N., et al. . (2017). Instruction manual for the ILAE 2017 operational classification of seizure types. Epilepsia 58, 531–542. 10.1111/epi.13671 PubMed DOI

Fisher R., Salanova V., Witt T., Worth R., Henry T., Gross R., et al. . (2010). Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy. Epilepsia 51, 899–908. 10.1111/j.1528-1167.2010.02536.x PubMed DOI

Freeman D., Sheaves B., Waite F., Harvey A. G., Harrison P. J. (2020). Sleep disturbance and psychiatric disorders. Lancet Psychiatry 7, 628–637. 10.1016/S2215-0366(20)30136-X PubMed DOI

Gangstad S. W., Mikkelsen K. B., Kidmose P., Tabar Y. R., Weisdorf S., Lauritzen M. H., et al. . (2019). Automatic sleep stage classification based on subcutaneous EEG in patients with epilepsy. Biomed. Eng. Online 18:106. 10.1186/s12938-019-0725-3 PubMed DOI PMC

Geller E. B. (2018). Responsive neurostimulation: review of clinical trials and insights into focal epilepsy. Epilepsy Behav. 88, 11–20. 10.1016/j.yebeh.2018.06.042 PubMed DOI

Gilliam F. G., Barry J. J., Hermann B. P., Meador K. J., Vahle V., Kanner A. M. (2006). Rapid detection of major depression in epilepsy: a multicentre study. Lancet Neurol. 5, 399–405. 10.1016/S1474-4422(06)70415-X PubMed DOI

Gomes de Alvarenga P., de Mathis M. A., Dominguez Alves A. C., do Rosário M. C., Fossaluza V., Hounie A. G., et al. . (2012). Clinical features of tic-related obsessive-compulsive disorder: results from a large multicenter study. CNS Spectrosc. 17, 87–93. 10.1017/S1092852912000491 PubMed DOI

Goyal A., Goetz S., Stanslaski S., Oh Y., Rusheen A. E., Klassen B., et al. . (2021). The development of an implantable deep brain stimulation device with simultaneous chronic electrophysiological recording and stimulation in humans. Biosens. Bioelectron 176:112888. 10.1016/j.bios.2020.112888 PubMed DOI PMC

Grigg-Damberger M. M., Foldvary-Schaefer N. (2015). Primary sleep disorders in people with epilepsy: clinical questions and answers. Child Adolesc. Psychiatr. Clin. N. Am. 24, 145–176. 10.1016/j.chc.2014.09.001 PubMed DOI

Guedes L. G., Abreu Gde A., Rodrigues D. F., Teixeira L. R., Luiz R. R., Bloch K. V. (2016). Comparison between self-reported sleep duration and actigraphy among adolescents: gender differences. Rev. Bras. Epidemiol. 19, 339–347. 10.1590/1980-5497201600020011 PubMed DOI

Hamid H., Blackmon K., Cong X., Dziura J., Atlas L. Y., Vickrey B. G., et al. . (2014). Mood, anxiety, and incomplete seizure control affect quality of life after epilepsy surgery. Neurology 82, 887–894. 10.1212/WNL.0000000000000183 PubMed DOI PMC

Hamilton M. (1959). The assessment of anxiety states by rating. Br. J. Med. Psychol. 32, 50–55. 10.1111/j.2044-8341.1959.tb00467.x PubMed DOI

Hamilton M. (1960). A rating scale for depression. J. Neurol. Neurosurg. Psychiatry 23, 56–62. 10.1136/jnnp.23.1.56 PubMed DOI PMC

Hare B. D., Duman R. S. (2020). Prefrontal cortex circuits in depression and anxiety: contribution of discrete neuronal populations and target regions. Mol. Psychiatry 25, 2742–2758. 10.1038/s41380-020-0685-9 PubMed DOI PMC

Harvey A. G., Stinson K., Whitaker K. L., Moskovitz D., Virk H. (2008). The subjective meaning of sleep quality: a comparison of individuals with and without insomnia. Sleep 31, 383–393. 10.1093/sleep/31.3.383 PubMed DOI PMC

Haut S. R., Hall C. B., Borkowski T., Tennen H., Lipton R. B. (2013). Modeling seizure self-prediction: an e-diary study. Epilepsia 54, 1960–1967. 10.1111/epi.12355 PubMed DOI PMC

Haut S. R., Hall C. B., Masur J., Lipton R. B. (2007). Seizure occurrence: precipitants and prediction. Neurology 69, 1905–1910. 10.1212/01.wnl.0000278112.48285.84 PubMed DOI

Hermann B. P., Dikmen S., Wilensky A. J. (1982). Increased psychopathology associated with multiple seizure types: fact or artifact? Epilepsia 23, 587–596. 10.1111/j.1528-1157.1982.tb05073.x PubMed DOI

Herrington T. M., Cheng J. J., Eskandar E. N. (2016). Mechanisms of deep brain stimulation. J. Neurophysiol. 115, 19–38. 10.1152/jn.00281.2015 PubMed DOI PMC

Hesdorffer D. C., Hauser W. A., Annegers J. F., Cascino G. (2000). Major depression is a risk factor for seizures in older adults. Ann. Neurol. 47, 246–249. 10.1002/1531-8249(200002)47:2<246::aid-ana17>3.0.co;2-e PubMed DOI

Hesdorffer D. C., Hauser W. A., Olafsson E., Ludvigsson P., Kjartansson O. (2006). Depression and suicide attempt as risk factors for incident unprovoked seizures. Ann. Neurol. 59, 35–41. 10.1002/ana.20685 PubMed DOI

Holtzheimer P. E., Husain M. M., Lisanby S. H., Taylor S. F., Whitworth L. A., McClintock S., et al. . (2017). Subcallosal cingulate deep brain stimulation for treatment-resistant depression: a multisite, randomised, sham-controlled trial. Lancet Psychiatry 4, 839–849. 10.1016/S2215-0366(17)30371-1 PubMed DOI

Insel T. R. (2017). Digital phenotyping: technology for a new science of behavior. JAMA 318, 1215–1216. 10.1001/jama.2017.11295 PubMed DOI

Thomas Insel T., Cuthbert B., Garvey M., Heinssen R., Pine D. S., Quinn K., et al. . (2010). Research domain criteria (RDoC): toward a new classification framework for research on mental disorders. Am. J. Psychiatry 167, 748–751. 10.1176/appi.ajp.2010.09091379 PubMed DOI

Järvenpää S., Peltola J., Rainesalo S., Leinonen E., Lehtimäki K., Järventausta K. (2018). Reversible psychiatric adverse effects related to deep brain stimulation of the anterior thalamus in patients with refractory epilepsy. Epilepsy Behav. 88, 373–379. 10.3390/j3030024 PubMed DOI

Jansen C., Francomme L., Vignal J. P., Jacquot C., Schwan R., Tyvaert L., et al. . (2019). Interictal psychiatric comorbidities of drug-resistant focal epilepsy: prevalence and influence of the localization of the epilepsy. Epilepsy Behav. 94, 288–296. 10.1016/j.yebeh.2018.06.046 PubMed DOI

Jerbi K., Freyermuth S., Dalal S., Kahane P., Bertrand O., Berthoz A., et al. . (2009). Saccade related gamma-band activity in intracerebral EEG: dissociating neural from ocular muscle activity. Brain Topogr. 22, 18–23. 10.1007/s10548-009-0078-5 PubMed DOI

Kanner A. M. (2008). Mood disorder and epilepsy: a neurobiologic perspective of their relationship. Dialogues Clin. Neurosci. 10, 39–45. 10.31887/DCNS.2008.10.1/amkanner PubMed DOI PMC

Kanner A. M. (2009). Psychiatric issues in epilepsy: the complex relation of mood, anxiety disorders, and epilepsy. Epilepsy Behav. 15, 83–87. 10.1016/j.yebeh.2009.02.034 PubMed DOI

Kanner A. M. (2016). Management of psychiatric and neurological comorbidities in epilepsy. Nat. Rev. Neurol. 12, 106–116. 10.1038/nrneurol.2015.243 PubMed DOI

Kanner A. M., Palac S. (2000). Depression in epilepsy: a common but often unrecognized comorbid malady. Epilepsy Behav. 1, 37–51. 10.1006/ebeh.2000.0030 PubMed DOI

Kanner A. M., Ribot R., Mazarati A. (2018). Bidirectional relations among common psychiatric and neurologic comorbidities and epilepsy: do they have an impact on the course of the seizure disorder? Epilepsia Open 3, 210–219. 10.1002/epi4.12278 PubMed DOI PMC

Kanner A. M., Rivas-Grajales A. M. (2016). Psychosis of epilepsy: a multifaceted neuropsychiatric disorder. CNS Spectrosc. 21, 247–257. 10.1017/S1092852916000250 PubMed DOI

Kanner A. M., Schachter S. C., Barry J. J., Hersdorffer D. C., Mula M., Trimble M., et al. . (2012). Depression and epilepsy: epidemiologic and neurobiologic perspectives that may explain their high comorbid occurrence. Epilepsy Behav. 24, 156–168. 10.1016/j.yebeh.2012.01.007 PubMed DOI

Karoly P. J., Rao V. R., Gregg N. M., Worrell G. A., Bernard C., Cook M. J., et al. . (2021). Cycles in epilepsy. Nat. Rev. Neurol. 17, 267–284. 10.1038/s41582-021-00464-1 PubMed DOI

Kaufman K. R. (2011). Antiepileptic drugs in the treatment of psychiatric disorders. Epilepsy Behav. 21, 1–11. 10.1016/j.yebeh.2011.03.011 PubMed DOI

Keller S. S., Richardson M. P., O’Muircheartaigh J., Schoene-Bake J. C., Elger C., Weber B. (2015). Morphometric MRI alterations and postoperative seizure control in refractory temporal lobe epilepsy. Hum. Brain Mapp. 36, 1637–1647. 10.1002/hbm.22722 PubMed DOI PMC

Kemmotsu N., Kucukboyaci N. E., Cheng C. E., Girard H. M., Tecoma E. S., Iragui V. J., et al. . (2013). Alterations in functional connectivity between the hippocampus and prefrontal cortex as a correlate of depressive symptoms in temporal lobe epilepsy. Epilepsy Behav. 29, 552–559. 10.1016/j.yebeh.2013.09.039 PubMed DOI PMC

Kemmotsu N., Kucukboyaci N. E., Leyden K. M., Cheng C. E., Girard H. M., Iragui V. J., et al. . (2014). Frontolimbic brain networks predict depressive symptoms in temporal lobe epilepsy. Epilepsy Res. 108, 1554–1563. 10.1016/j.eplepsyres.2014.08.018 PubMed DOI PMC

Kempton M. J., Salvador Z., Munafò M. R., Geddes J. R., Simmons A., Frangou S., et al. . (2011). Structural neuroimaging studies in major depressive disorder. Meta-analysis and comparison with bipolar disorder. Arch. Gen. Psychiatry 68, 675–690. 10.1001/archgenpsychiatry.2011.60 PubMed DOI

Kerrigan J. F., Litt B., Fisher R. S., Cranstoun S., French J. A., Blum D. E., et al. . (2004). Electrical stimulation of the anterior nucleus of the thalamus for the treatment of intractable epilepsy. Epilepsia 45, 346–354. 10.1111/j.0013-9580.2004.01304.x PubMed DOI

Kirkby L. A., Luongo F. J., Lee M. B., Nahum M., Van Vleet T. M., Rao V. R., et al. . (2018). An amygdala-hippocampus subnetwork that encodes variation in human mood. Cell 175, 1688.e14–1700.e14. 10.1016/j.cell.2018.10.005 PubMed DOI

Klimes P., Duque J. J., Brinkmann B., Van Gompel J., Stead M., St Louis E. K., et al. . (2016). The functional organization of human epileptic hippocampus. J. Neurophysiol. 115, 3140–3145. 10.1152/jn.00089.2016 PubMed DOI PMC

Klimeš P., Duque J. J., Jurák P., Halámek J., Worrell G. A. (2015). Connectivity of epileptic brain regions in wake and sleep. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2015, 2191–2194. 10.1109/EMBC.2015.7318825 PubMed DOI

Koch C., Massimini M., Boly M., Tononi G. (2016). Neural correlates of consciousness: progress and problems. Nat. Rev. Neurosci. 17, 307–321. 10.1038/nrn.2016.22 PubMed DOI

Kolesar T. A., Bilevicius E., Wilson A. D., Kornelsen J. (2019). Systematic review and meta-analyses of neural structural and functional differences in generalized anxiety disorder and healthy controls using magnetic resonance imaging. Neuroimage Clin. 24:102016. 10.1016/j.nicl.2019.102016 PubMed DOI PMC

Kovach C. K., Tsuchiya N., Kawasaki H., Oya H., Howard M. A., III., Adolphs R. (2011). Manifestation of ocular-muscle EMG contamination in human intracranial recordings. NeuroImage 54, 213–233. 10.1016/j.neuroimage.2010.08.002 PubMed DOI PMC

Kragel P. A., LaBar K. S. (2016). Decoding the nature of emotion in the brain. Trends Cogn. Sci. 20, 444–455. 10.1016/j.tics.2016.03.011 PubMed DOI PMC

Kramer M. A., Cash S. S. (2012). Epilepsy as a disorder of cortical network organization. Neuroscientist 18, 360–372. 10.1177/1073858411422754 PubMed DOI PMC

Kremen V., Brinkmann B. H., Kim I., Guragain H., Nasseri M., Magee A. L., et al. . (2018). Integrating brain implants with local and distributed computing devices: a next generation epilepsy management system. IEEE J. Transl. Eng. Health Med. 6:2500112. 10.1109/JTEHM.2018.2869398 PubMed DOI PMC

Kremen V., Brinkmann B. H., Van Gompel J. J., Stead M., St Louis E. K., Worrell G. A. (2019). Automated unsupervised behavioral state classification using intracranial electrophysiology. J. Neural Eng. 16:026004. 10.1088/1741-2552/aae5ab PubMed DOI

Kucewicz M. T., Berry B. M., Miller L. R., Khadjevand F., Ezzyat Y., Stein J. M., et al. . (2018). Evidence for verbal memory enhancement with electrical brain stimulation in the lateral temporal cortex. Brain 141, 971–978. 10.1093/brain/awx373 PubMed DOI

Kucyi A., Schrouff J., Bickel S., Foster B. L., Shine J. M., Parvizi J. (2018). Intracranial electrophysiology reveals reproducible intrinsic functional connectivity within human brain networks. J. Neurosci. 38, 4230–4242. 10.1523/JNEUROSCI.0217-18.2018 PubMed DOI PMC

Kumar G., Couper A., O’Brien T. J., Salzberg M. R., Jones N. C., Rees S. M., et al. . (2007). The acceleration of amygdala kindling epileptogenesis by chronic low-dose corticosterone involves both mineralocorticoid and glucocorticoid receptors. Psychoneuroendocrinology 32, 834–842. 10.1016/j.psyneuen.2007.05.011 PubMed DOI

Kwan P., Schachter S. C., Brodie M. J. (2011). Drug-resistant epilepsy. N. Engl. J. Med. 365, 919–926. 10.1056/NEJMra1004418 PubMed DOI

Labudda K., Illies D., Bien C. G., Neuner F. (2018). Interictal dysphoric disorder: further doubts about its epilepsy-specificity and its independency from common psychiatric disorders. Epilepsy Res. 141, 13–18. 10.1016/j.eplepsyres.2018.01.020 PubMed DOI

Leeman-Markowski B. A., Schachter S. C. (2017). Cognitive and behavioral interventions in epilepsy. Curr. Neurol. Neurosci. Rep. 17:42. 10.1007/s11910-017-0752-z PubMed DOI PMC

Leoutsakos J. S., Yan H., Anderson W. S., Asaad W. F., Baltuch G., Burke A., et al. . (2018). Deep brain stimulation targeting the fornix for mild alzheimer dementia (the advance trial): a two year follow-up including results of delayed activation. J. Alzheimers Dis. 64, 597–606. 10.3233/JAD-180121 PubMed DOI PMC

Li M., Santpere G., Imamura Kawasawa Y., Evgrafov O. V., Gulden F. O., Pochareddy S., et al. . (2018). Integrative functional genomic analysis of human brain development and neuropsychiatric risks. Science 362:eaat7615. 10.1126/science.aat7615 PubMed DOI PMC

Liao W., Zhang Z., Pan Z., Mantini D., Ding J., Duan X., et al. . (2010). Altered functional connectivity and small-world in mesial temporal lobe epilepsy. PLoS One 5:e8525. 10.1371/journal.pone.0008525 PubMed DOI PMC

Lin J.-J., Rugg M. D., Das S., Stein J., Rizzuto D. S., Kahana M. J., et al. . (2017). Theta band power increases in the posterior hippocampus predict successful episodic memory encoding in humans. Hippocampus 27, 1040–1053. 10.1002/hipo.22751 PubMed DOI PMC

Liu H., Yang Y., Wang Y., Tang H., Zhang F., Zhang Y., et al. . (2018). Ketogenic diet for treatment of intractable epilepsy in adults: a meta-analysis of observational studies. Epilepsia Open 3, 9–17. 10.1002/epi4.12098 PubMed DOI PMC

Lundstrom B. N., Meisel C., Van Gompel J., Stead M., Worrell G. (2018). Comparing spiking and slow wave activity from invasive electroencephalography in patients with and without seizures. Clin. Neurophysiol. 129, 909–919. 10.1016/j.clinph.2018.02.006 PubMed DOI PMC

Maccotta L., He B. J., Snyder A. Z., Eisenman L. N., Benzinger T. L., Ances B. M., et al. . (2013). Impaired and facilitated functional networks in temporal lobe epilepsy. Neuroimage Clin. 2, 862–872. 10.1016/j.nicl.2013.06.011 PubMed DOI PMC

McKinnon M. C., Yucel K., Nazarov A., MacQueen G. M. (2009). A meta-analysis examining clinical predictors of hippocampal volume in patients with major depressive disorder. J. Psychiatry Neurosci. 34, 41–54. PubMed PMC

Meador K. J., Kapur R., Loring D. W., Kanner A. M., Morrell M. J. (2015). Quality of life and mood in patients with medically intractable epilepsy treated with targeted responsive neurostimulation. Epilepsy Behav. 45, 242–247. 10.1016/j.yebeh.2015.01.012 PubMed DOI

Meisel C., Schulze-Bonhage A., Freestone D., Cook M. J., Achermann P., Plenz D. (2015). Intrinsic excitability measures track antiepileptic drug action and uncover increasing/decreasing excitability over the wake/sleep cycle. Proc. Natl. Acad. Sci. U S A 112, 14694–14699. 10.1073/pnas.1513716112 PubMed DOI PMC

Miller K. J., Prieto T., Williams N. R., Halpern C. H. (2019). Case studies in neuroscience: the electrophysiology of a human obsession in nucleus accumbens. J. Neurophysiol. 121, 2336–2340. 10.1152/jn.00096.2019 PubMed DOI PMC

Miller K. J., Sorensen L. B., Ojemann J. G., den Nijs M. (2009). Power-law scaling in the brain surface electric potential. PLoS Comput. Biol. 5:e1000609. 10.1371/journal.pcbi.1000609 PubMed DOI PMC

Moon C.-M., Jeong G.-W. (2016). Abnormalities in gray and white matter volumes associated with explicit memory dysfunction in patients with generalized anxiety disorder. Acta Radiol. 58, 353–361. 10.1177/0284185116649796 PubMed DOI

Moon C.-M., Kim G.-W., Jeong G.-W. (2014). Whole-brain gray matter volume abnormalities in patients with generalized anxiety disorder: voxel-based morphometry. NeuroReport 25, 184–189. 10.1097/WNR.0000000000000100 PubMed DOI

Moon C.-M., Yang J.-C., Jeong G.-W. (2015). Explicit verbal memory impairments associated with brain functional deficits and morphological alterations in patients with generalized anxiety disorder. J. Affect. Disord. 186, 328–336. 10.1016/j.jad.2015.07.038 PubMed DOI

Morgan V. L., Rogers B. P., Sonmezturk H. H., Gore J. C., Abou-Khalil B. (2011). Cross hippocampal influence in mesial temporal lobe epilepsy measured with high temporal resolution functional magnetic resonance imaging. Epilepsia 52, 1741–1749. 10.1111/j.1528-1167.2011.03196.x PubMed DOI PMC

Moser D., Pablik E., Aull-Watschinger S., Pataraia E., Wöber C., Seidel S. (2015). Depressive symptoms predict the quality of sleep in patients with partial epilepsy—a combined retrospective and prospective study. Epilepsy Behav. 47, 104–110. 10.1016/j.yebeh.2015.04.021 PubMed DOI

Mula M. (2012a). Bidirectional link between epilepsy and psychiatric disorders. Nat. Rev. Neurol. 8, 252–253. 10.1038/nrneurol.2012.69 PubMed DOI

Mula M. (2012b). Topiramate and cognitive impairment: evidence and clinical implications. Ther. Adv. Drug Saf. 3, 279–289. 10.1177/2042098612455357 PubMed DOI PMC

Mula M. (2013). The interictal dysphoric disorder of epilepsy: a still open debate. Curr. Neurol. Neurosci. Rep. 13:355. 10.1007/s11910-013-0355-2 PubMed DOI

Nahum M., Van Vleet T. M., Sohal V. S., Mirzabekov J. J., Rao V. R., Wallace D. L., et al. . (2017). Immediate mood scaler: tracking symptoms of depression and anxiety using a novel mobile mood scale. JMIR Mhealth Uhealth 5:e44. 10.2196/mhealth.6544 PubMed DOI PMC

Nejedly P., Cimbalnik J., Klimes P., Plesinger F., Halamek J., Kremen V., et al. . (2019a). Intracerebral EEG artifact identification using convolutional neural networks. Neuroinformatics 17, 225–234. 10.1007/s12021-018-9397-6 PubMed DOI PMC

Nejedly P., Kremen V., Sladky V., Nasseri M., Guragain H., Klimes P., et al. . (2019b). Deep-learning for seizure forecasting in canines with epilepsy. J. Neural Eng. 16:036031. 10.1088/1741-2552/ab172d PubMed DOI

Neumann W.-J., Huebl J., Brücke C., Gabriëls L., Bajbouj M., Merkl A., et al. . (2014). Different patterns of local field potentials from limbic DBS targets in patients with major depressive and obsessive compulsive disorder. Mol. Psychiatry 19, 1186–1192. 10.1038/mp.2014.2 PubMed DOI PMC

Newson J. J., Thiagarajan T. C. (2019). EEG frequency bands in psychiatric disorders: a review of resting state studies. Front. Hum. Neurosci. 12:521. 10.3389/fnhum.2018.00521 PubMed DOI PMC

Noble A. J., Reilly J., Temple J., Fisher P. L. (2018). Cognitive-behavioural therapy does not meaningfully reduce depression in most people with epilepsy: a systematic review of clinically reliable improvement. J. Neurol. Neurosurg. Psychiatry 89, 1129–1137. 10.1136/jnnp-2018-317997 PubMed DOI PMC

Nogueira M. H., Yasuda C. L., Coan A. C., Kanner A. M., Cendes F. (2017). Concurrent mood and anxiety disorders are associated with pharmacoresistant seizures in patients with MTLE. Epilepsia 58, 1268–1276. 10.1111/epi.13781 PubMed DOI

Olsen S. T., Basu I., Bilge M. T., Kanabar A., Boggess M. J., Rockhill A. P., et al. . (2020). Case report of dual-site neurostimulation and chronic recording of cortico-striatal circuitry in a patient with treatment refractory obsessive compulsive disorder. Front. Hum. Neurosci. 14:569973. 10.3389/fnhum.2020.569973 PubMed DOI PMC

Panebianco M., Sridharan K., Ramaratnam S. (2017). Yoga for epilepsy. Cochrane Database Syst. Rev 10:CD001524. 10.1002/14651858.CD001524.pub3 PubMed DOI PMC

Parvizi J., Kastner S. (2018). Promises and limitations of human intracranial electroencephalography. Nat. Neurosci. 21, 474–483. 10.1038/s41593-018-0108-2 PubMed DOI PMC

Penfield W., Boldrey E. (1937). Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60, 389–443. 10.1093/brain/60.4.389 DOI

Pereira F. R. S., Alessio A., Sercheli M. S., Pedro T., Bilevicius E., Rondina J. M., et al. . (2010). Asymmetrical hippocampal connectivity in mesial temporal lobe epilepsy: evidence from resting state fMRI. BMC Neurosci. 11:66. 10.1186/1471-2202-11-66 PubMed DOI PMC

Perini G. I., Tosin C., Carraro C., Bernasconi G., Canevini M. P., Canger R., et al. . (1996). Interictal mood and personality disorders in temporal lobe epilepsy and juvenile myoclonic epilepsy. J. Neurol. Neurosurg. Psychiatry 61, 601–605. 10.1136/jnnp.61.6.601 PubMed DOI PMC

Perucca P., Carter J., Vahle V., Gilliam F. G. (2009). Adverse antiepileptic drug effects: toward a clinically and neurobiologically relevant taxonomy. Neurology 72, 1223–1229. 10.1212/01.wnl.0000345667.45642.61 PubMed DOI PMC

Peter-Derex L., Klimes P., Latreille V., Bouhadoun S., Dubeau F., Frauscher B. (2020). Sleep disruption in epilepsy: ictal and interictal epileptic activity matter. Ann. Neurol. 88, 907–920. 10.1002/ana.25884 PubMed DOI

Pfaff D., Ribeiro A., Matthews J., Kow L.-M. (2008). Concepts and mechanisms of generalized central nervous system arousal. Ann. N Y Acad. Sci. 1129, 11–25. 10.1196/annals.1417.019 PubMed DOI

Pham T., Sauro K. M., Patten S. B., Wiebe S., Fiest K. M., Bulloch A. G. M., et al. . (2017). The prevalence of anxiety and associated factors in persons with epilepsy. Epilepsia 58, e107–e110. 10.1111/epi.13817 PubMed DOI

Pizarro D., Ilyas A., Chaitanya G., Toth E., Irannejad A., Romeo A., et al. . (2019). Spectral organization of focal seizures within the thalamotemporal network. Ann. Clin. Transl. Neurol. 6, 1836–1848. 10.1002/acn3.50880 PubMed DOI PMC

Pritchard W. S. (1992). The brain in fractal time: 1/f-like power spectrum scaling of the human electroencephalogram. Int. J. Neurosci. 66, 119–129. 10.3109/00207459208999796 PubMed DOI

Provenza N. R., Matteson E. R., Allawala A. B., Barrios-Anderson A., Sheth S. A., Viswanathan A., et al. . (2019). The case for adaptive neuromodulation to treat severe intractable mental disorders. Front. Neurosci. 13:152. 10.3389/fnins.2019.00152 PubMed DOI PMC

Rao V. R., Sellers K. K., Wallace D. L., Lee M. B., Bijanzadeh M., Sani O. G., et al. . (2018). Direct electrical stimulation of lateral orbitofrontal cortex acutely improves mood in individuals with symptoms of depression. Curr. Biol. 28, 3893.e4–3902.e4. 10.1016/j.cub.2018.10.026 PubMed DOI

Rodin E. A., Katz M., Lennox K. (1976). Differences between patients with temporal lobe seizures and those with other forms of epileptic attacks. Epilepsia 17, 313–320. 10.1111/j.1528-1157.1976.tb03409.x PubMed DOI

Sadler M. (1999). Lamotrigine associated with insomnia. Epilepsia 40, 322–325. 10.1111/j.1528-1157.1999.tb00712.x PubMed DOI

Salanova V., Witt T., Worth R., Henry T. R., Gross R. E., Nazzaro J. M., et al. . (2015). Long-term efficacy and safety of thalamic stimulation for drug-resistant partial epilepsy. Neurology 84, 1017–1025. 10.1212/WNL.0000000000001334 PubMed DOI PMC

Sani O. G., Yang Y., Lee M. B., Dawes H. E., Chang E. F., Shanechi M. M. (2018). Mood variations decoded from multi-site intracranial human brain activity. Nat. Biotechnol. 36, 954–961. 10.1038/nbt.4200 PubMed DOI

Scangos K. W., Ahmad H. S., Shafi A., Sellers K. K., Dawes H. E., Krystal A., et al. . (2020). Pilot study of an intracranial electroencephalography biomarker of depressive symptoms in epilepsy. J. Neuropsychiatry Clin. Neurosci. 32, 185–190. 10.1176/appi.neuropsych.19030081 PubMed DOI PMC

Scangos K., Makhoul G., Khambhati A. N., Sellers K. K., Chang E. F., Krystal A. D. (2020). Corticocortical evoked potentials and patient response reveal networks underlying depression. Biol. Psychiatry 87:S157. 10.1016/j.biopsych.2020.02.416 DOI

Scangos K. W., Makhoul G. S., Sugrue L. P., Chang E. F., Krystal A. D. (2021). State-dependent responses to intracranial brain stimulation in a patient with depression. Nat. Med. 27, 229–231. 10.1038/s41591-020-01175-8 PubMed DOI PMC

Schmaal L., Pozzi E., C. Ho T., van Velzen L. S., Veer I. M., Opel N., et al. . (2020). ENIGMA MDD: seven years of global neuroimaging studies of major depression through worldwide data sharing. Transl. Psychiatry 10:172. 10.1038/s41398-020-0842-6 PubMed DOI PMC

Sheehan D. V., Lecrubier Y., Sheehan K. H., Amorim P., Janavs J., Weiller E., et al. . (1998). The Mini-International Neuropsychiatric Interview (M.I.N.I): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J. Clin. Psychiatry 59, 22–33. PubMed

Simeral J. D., Hosman T., Saab J., Flesher S. N., Vilela M., Franco B., et al. . (2021). Home use of a percutaneous wireless intracortical brain-computer interface by individuals with tetraplegia. IEEE Trans. Biomed. Eng. 68, 2313–2325. 10.1109/TBME.2021.3069119 PubMed DOI PMC

Sladky V., Nejedly P., Mivalt F., Brinkmann B. H., Kim I., St. Louis E. K., et al. . (2021). Distributed brain co-processor for neurophysiologic tracking and adaptive stimulation: application to drug resistant epilepsy. bioRxiv [Preprint]. 10.1101/2021.03.08.434476 DOI

Smart O., Choi K. S., Riva-Posse P., Tiruvadi V., Rajendra J., Waters A. C., et al. . (2018). Initial unilateral exposure to deep brain stimulation in treatment-resistant depression patients alters spectral power in the subcallosal cingulate. Front. Comput. Neurosci. 12:43. 10.3389/fncom.2018.00043 PubMed DOI PMC

Smart O. L., Tiruvadi V. R., Mayberg H. S. (2015). Multimodal approaches to define network oscillations in depression. Biol. Psychiatry 77, 1061–1070. 10.1016/j.biopsych.2015.01.002 PubMed DOI PMC

Stanslaski S., Herron J., Chouinard T., Bourget D., Isaacson B., Kremen V., et al. . (2018). A chronically implantable neural coprocessor for investigating the treatment of neurological disorders. IEEE Trans. Biomed. Circuits Syst. 12, 1230–1245. 10.1109/TBCAS.2018.2880148 PubMed DOI PMC

Starnes K., Miller K., Wong-Kisiel L., Lundstrom B. N. (2019). A review of neurostimulation for epilepsy in pediatrics. Brain Sci. 9:283. 10.3390/brainsci9100283 PubMed DOI PMC

Starr L. R., Davila J. (2012). Temporal patterns of anxious and depressed mood in generalized anxiety disorder: a daily diary study. Behav. Res. Ther. 50, 131–141. 10.1016/j.brat.2011.11.005 PubMed DOI PMC

Stone A. A., Shiffman S. (1994). Ecological momentary assessment (Ema) in behavioral medicine. Ann. Behav. Med. 16, 199–202. 10.1093/abm/16.3.199 DOI

Substance Abuse and Mental Health Services Administration . (2020). Key Substance Use and Mental Health Indicators in the United States: Results from the 2019 National Survey on Drug Use and Health (HHS Publication. No. PEP20–07-01–001, NSDUH Series H-55). Rockville, MD: Center for Behavioral Health Statistics and Quality, Substance Abuse and Mental Health Services Administration. Available online at: https://www.samhsa.gov/data/.

Sullivan C. R. P., Olsen S., Widge A. S. (2021). Deep brain stimulation for psychiatric disorders: from focal brain targets to cognitive networks. NeuroImage 225:117515. 10.1016/j.neuroimage.2020.117515 PubMed DOI PMC

Swinkels W. A., Kuyk J., de Graaf E. H., van Dyck R., Spinhoven P. (2001). Prevalence of psychopathology in dutch epilepsy inpatients: a comparative study. Epilepsy Behav. 2, 441–447. 10.1006/ebeh.2001.0242 PubMed DOI

Swinkels W. A. M., Kuyk J., Dyck R. V., Spinhoven P. (2005). Psychiatric comorbidity in epilepsy. Epilepsy Behav. 7, 37–50. 10.1016/j.yebeh.2005.04.012 PubMed DOI

Taneja R., Hunter K., Burakgazi-Dalkilic E., Carran M. (2017). Effect of sleep patterns on levetiracetam induced mood changes. Epilepsy Behav. 75, 237–240. 10.1016/j.yebeh.2017.07.038 PubMed DOI

Tavakol S., Royer J., Lowe A. J., Bonilha L., Tracy J. I., Jackson G. D., et al. . (2019). Neuroimaging and connectomics of drug-resistant epilepsy at multiple scales: from focal lesions to macroscale networks. Epilepsia 60, 593–604. 10.1111/epi.14688 PubMed DOI PMC

Tebartz van Elst L., Woermann F. G., Lemieux L., Trimble M. R. (1999). Amygdala enlargement in dysthymia—a volumetric study of patients with temporal lobe epilepsy. Biol. Psychiatry 46, 1614–1623. 10.1016/s0006-3223(99)00212-7 PubMed DOI

Tellez-Zenteno J. F., Patten S. B., Jetté N., Williams J., Wiebe S. (2007). Psychiatric comorbidity in epilepsy: a population-based analysis. Epilepsia 48, 2336–2344. 10.1111/j.1528-1167.2007.01222.x PubMed DOI

Topalovic U., Aghajan Z. M., Villaroman D., Hiller S., Christov-Moore L., Wishard T. J., et al. . (2020). Wireless programmable recording and stimulation of deep brain activity in freely moving humans. Neuron 108, 322.e9–334.e9. 10.1016/j.neuron.2020.08.021 PubMed DOI PMC

Triantafillou S., Saeb S., Lattie E. G., Mohr D. C., Kording K. P. (2019). Relationship between sleep quality and mood: ecological momentary assessment study. JMIR Ment. Health 6:e12613. 10.2196/12613 PubMed DOI PMC

Ung H., Baldassano S. N., Bink H., Krieger A. M., Williams S., Vitale F., et al. . (2017). Intracranial EEG fluctuates over months after implanting electrodes in human brain. J. Neural Eng. 14:056011. 10.1088/1741-2552/aa7f40 PubMed DOI PMC

van Diessen E., Hanemaaijer J. I., Otte W. M., Zelmann R., Jacobs J., Jansen F. E., et al. . (2013). Are high frequency oscillations associated with altered network topology in partial epilepsy? NeuroImage 82, 564–573. 10.1016/j.neuroimage.2013.06.031 PubMed DOI

Van Gompel J. J., Worrell G. A., Bell M. L., Patrick T. A., Cascino G. D., Raffel C., et al. . (2008). Intracranial electroencephalography with subdural grid electrodes: techniques, complications, outcomes. Neurosurgery 63, 498–506. 10.1227/01.NEU.0000324996.37228.F8 PubMed DOI

Varatharajah Y., Iyer R. K., Berry B. M., Worrell G. A., Brinkmann B. H. (2017). Seizure forecasting and the preictal state in canine epilepsy. Int. J. Neural Syst. 27:1650046. 10.1142/S0129065716500465 PubMed DOI PMC

Veerakumar A., Tiruvadi V., Howell B., Waters A. C., Crowell A. L., Voytek B., et al. . (2019). Field potential 1/f activity in the subcallosal cingulate region as a candidate signal for monitoring deep brain stimulation for treatment-resistant depression. J. Neurophysiol. 122, 1023–1035. 10.1152/jn.00875.2018 PubMed DOI PMC

Videbech P., Ravnkilde B. (2004). Hippocampal volume and depression: a meta-analysis of MRI studies. Am. J. Psychiatry 161, 1957–1966. 10.1176/appi.ajp.161.11.1957 PubMed DOI

Voges B. R., Schmitt F. C., Hamel W., House P. M., Kluge C., Moll C. K. E., et al. . (2015). Deep brain stimulation of anterior nucleus thalami disrupts sleep in epilepsy patients. Epilepsia 56, e99–e103. 10.1111/epi.13045 PubMed DOI

Voytek B., Kramer M. A., Case J., Lepage K. Q., Tempesta Z. R., Knight R. T., et al. . (2015). Age-related changes in 1/f neural electrophysiological noise. J. Neurosci. 35, 13257–13265. 10.1523/JNEUROSCI.2332-14.2015 PubMed DOI PMC

Walker W. H., II., Walton J. C., DeVries A. C., Nelson R. J. (2020). Circadian rhythm disruption and mental health. Transl. Psychiatry 10:28. 10.1038/s41398-020-0694-0 PubMed DOI PMC

Wells K. B., Golding J. M., Burnam M. A. (1988). Psychiatric disorder in a sample of the general population with and without chronic medical conditions. Am. J. Psychiatry 145, 976–981. 10.1176/ajp.145.8.976 PubMed DOI

White J. R., Walczak T. S., Leppik I. E., Rarick J., Tran T., Beniak T. E., et al. . (2003). Discontinuation of levetiracetam because of behavioral side effects: a case-control study. Neurology 61, 1218–1221. 10.1212/01.wnl.0000091865.46063.67 PubMed DOI

Widge A. S., Ellard K. K., Paulk A. C., Basu I., Yousefi A., Zorowitz S., et al. . (2017). Treating refractory mental illness with closed-loop brain stimulation: progress towards a patient-specific transdiagnostic approach. Exp. Neurol. 287, 461–472. 10.1016/j.expneurol.2016.07.021 PubMed DOI

Wiglusz M. S., Landowski J., Cubała W. J. (2019). Interictal dysphoric disorder of epilepsy: a continuing diagnostic challenge. Epilepsy Behav. 95, 34–38. 10.1016/j.yebeh.2019.03.036 PubMed DOI

Willard K. S., Licht B. G., Gilmore R. L., Licht M. H., Sackellares J. C., Eisenschenk S. J., et al. . (2006). Affect in patients with epilepsy undergoing video/EEG monitoring: retrospective versus momentary assessment and temporal relationship to seizures. Epilepsy Behav. 8, 625–634. 10.1016/j.yebeh.2006.02.005 PubMed DOI

Winkelman J. W., Lecea L. D. (2020). Sleep and neuropsychiatric illness. Neuropsychopharmacology 45, 1–2. 10.1038/s41386-019-0514-5 PubMed DOI PMC

Wise T., Marwood L., Perkins A. M., Herane-Vives A., Joules R., Lythgoe D. J., et al. . (2017). Instability of default mode network connectivity in major depression: a two-sample confirmation study. Transl. Psychiatry 7:e1105. 10.1038/tp.2017.40 PubMed DOI PMC

Worrell G. A., Jerbi K., Kobayashi K., Lina J. M., Zelmann R., Le Van Quyen M. (2012). Recording and analysis techniques for high-frequency oscillations. Prog. Neurobiol. 98, 265–278. 10.1016/j.pneurobio.2012.02.006 PubMed DOI PMC

Xia C. H., Ma Z., Ciric R., Gu S., Betzel R. F., Kaczkurkin A. N., et al. . (2018). Linked dimensions of psychopathology and connectivity in functional brain networks. Nat. Commun. 9:3003. 10.1038/s41467-018-05317-y PubMed DOI PMC

Yang K. I., Grigg-Damberger M., Andrews N., O’Rourke C., Bena J., Foldvary-Schaefer N. (2016). Severity of self-reported insomnia in adults with epilepsy is related to comorbid medical disorders and depressive symptoms. Epilepsy Behav. 60, 27–32. 10.1016/j.yebeh.2016.03.023 PubMed DOI

Yilmazer-Hanke D., O’Loughlin E., McDermott K. (2016). Contribution of amygdala pathology to comorbid emotional disturbances in temporal lobe epilepsy. J. Neurosci. Res. 94, 486–503. 10.1002/jnr.23689 PubMed DOI

Youngerman B. E., Khan F. A., McKhann G. M. (2019). Stereoelectroencephalography in epilepsy, cognitive neurophysiology and psychiatric disease: safety, efficacy, and place in therapy. Neuropsychiatr. Dis. Treat. 15, 1701–1716. 10.2147/NDT.S177804 PubMed DOI PMC

Yu T., Wang X., Li Y., Zhang G., Worrell G., Chauvel P., et al. . (2018). High-frequency stimulation of anterior nucleus of thalamus desynchronizes epileptic network in humans. Brain 141, 2631–2643. 10.1093/brain/awy187 PubMed DOI

Zangaladze A., Nei M., Liporace J. D., Sperling M. R. (2008). Characteristics and clinical significance of subclinical seizures. Epilepsia 49, 2016–2021. 10.1111/j.1528-1167.2008.01672.x PubMed DOI

Zhu X., He Z., Luo C., Qiu X., He S., Peng A., et al. . (2018). Altered spontaneous brain activity in MRI-negative refractory temporal lobe epilepsy patients with major depressive disorder: a resting-state fMRI study. J. Neurol. Sci. 386, 29–35. 10.1016/j.jns.2018.01.010 PubMed DOI

Zuk P., Torgerson L., Sierra-Mercado D., Lázaro-Muñoz G. (2018). Neuroethics of neuromodulation: an update. Curr. Opin. Biomed. Eng. 8, 45–50. 10.1016/j.cobme.2018.10.003 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...