Automated unsupervised behavioral state classification using intracranial electrophysiology
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01 NS092882
NINDS NIH HHS - United States
UH2 NS095495
NINDS NIH HHS - United States
PubMed
30277223
DOI
10.1088/1741-2552/aae5ab
Knihovny.cz E-zdroje
- MeSH
- algoritmy MeSH
- bdění fyziologie MeSH
- chování fyziologie MeSH
- dospělí MeSH
- elektrokortikografie metody MeSH
- epilepsie chirurgie MeSH
- hluboká mozková stimulace MeSH
- implantované elektrody MeSH
- lidé středního věku MeSH
- lidé MeSH
- polysomnografie MeSH
- reprodukovatelnost výsledků MeSH
- spánek pomalých vln fyziologie MeSH
- stadia spánku fyziologie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
OBJECTIVE: Automated behavioral state classification in intracranial EEG (iEEG) recordings may be beneficial for iEEG interpretation and quantifying sleep patterns to enable behavioral state dependent neuromodulation therapy in next generation implantable brain stimulation devices. Here, we introduce a fully automated unsupervised framework to differentiate between awake (AW), sleep (N2), and slow wave sleep (N3) using intracranial EEG (iEEG) only and validated with expert scored polysomnography. APPROACH: Data from eight patients undergoing evaluation for epilepsy surgery (age [Formula: see text], three female) with intracranial depth electrodes for iEEG monitoring were included. Spectral power features (0.1-235 Hz) spanning several frequency bands from a single electrode were used to classify behavioral states of patients into AW, N2, and N3. MAIN RESULTS: Overall, classification accuracy of 94%, with 94% sensitivity and 93% specificity across eight subjects using multiple spectral power features from a single electrode was achieved. Classification performance of N3 sleep was significantly better (95%, sensitivity 95%, specificity 93%) than that of the N2 sleep phase (87%, sensitivity 78%, specificity 96%). SIGNIFICANCE: Automated, unsupervised, and robust classification of behavioral states based on iEEG data is possible, and it is feasible to incorporate these algorithms into future implantable devices with limited computational power, memory, and number of electrodes for brain monitoring and stimulation.
Citace poskytuje Crossref.org
Impedance Rhythms in Human Limbic System
Automated sleep classification with chronic neural implants in freely behaving canines
Electrical brain stimulation and continuous behavioral state tracking in ambulatory humans