Distinct signatures of loss of consciousness in focal impaired awareness versus tonic-clonic seizures

. 2023 Jan 05 ; 146 (1) : 109-123.

Jazyk angličtina Země Velká Británie, Anglie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36383415

Grantová podpora
K23 NS112473 NINDS NIH HHS - United States

Loss of consciousness is a hallmark of many epileptic seizures and carries risks of serious injury and sudden death. While cortical sleep-like activities accompany loss of consciousness during focal impaired awareness seizures, the mechanisms of loss of consciousness during focal to bilateral tonic-clonic seizures remain unclear. Quantifying differences in markers of cortical activation and ictal recruitment between focal impaired awareness and focal to bilateral tonic-clonic seizures may also help us to understand their different consequences for clinical outcomes and to optimize neuromodulation therapies. We quantified clinical signs of loss of consciousness and intracranial EEG activity during 129 focal impaired awareness and 50 focal to bilateral tonic-clonic from 41 patients. We characterized intracranial EEG changes both in the seizure onset zone and in areas remote from the seizure onset zone with a total of 3386 electrodes distributed across brain areas. First, we compared the dynamics of intracranial EEG sleep-like activities: slow-wave activity (1-4 Hz) and beta/delta ratio (a validated marker of cortical activation) during focal impaired awareness versus focal to bilateral tonic-clonic. Second, we quantified differences between focal to bilateral tonic-clonic and focal impaired awareness for a marker validated to detect ictal cross-frequency coupling: phase-locked high gamma (high-gamma phased-locked to low frequencies) and a marker of ictal recruitment: the epileptogenicity index. Third, we assessed changes in intracranial EEG activity preceding and accompanying behavioural generalization onset and their correlation with electromyogram channels. In addition, we analysed human cortical multi-unit activity recorded with Utah arrays during three focal to bilateral tonic-clonic seizures. Compared to focal impaired awareness, focal to bilateral tonic-clonic seizures were characterized by deeper loss of consciousness, even before generalization occurred. Unlike during focal impaired awareness, early loss of consciousness before generalization was accompanied by paradoxical decreases in slow-wave activity and by increases in high-gamma activity in parieto-occipital and temporal cortex. After generalization, when all patients displayed loss of consciousness, stronger increases in slow-wave activity were observed in parieto-occipital cortex, while more widespread increases in cortical activation (beta/delta ratio), ictal cross-frequency coupling (phase-locked high gamma) and ictal recruitment (epileptogenicity index). Behavioural generalization coincided with a whole-brain increase in high-gamma activity, which was especially synchronous in deep sources and could not be explained by EMG. Similarly, multi-unit activity analysis of focal to bilateral tonic-clonic revealed sustained increases in cortical firing rates during and after generalization onset in areas remote from the seizure onset zone. Overall, these results indicate that unlike during focal impaired awareness, the neural signatures of loss of consciousness during focal to bilateral tonic-clonic consist of paradoxical increases in cortical activation and neuronal firing found most consistently in posterior brain regions. These findings suggest differences in the mechanisms of ictal loss of consciousness between focal impaired awareness and focal to bilateral tonic-clonic and may account for the more negative prognostic consequences of focal to bilateral tonic-clonic.

Komentář v

PubMed

Zobrazit více v PubMed

Zack  MM, Kobau  R. National and state estimates of the numbers of adults and children with active epilepsy—United States, 2015. MMWR Morb Mortal Wkly Rep. 2017;66:821–825. PubMed PMC

Kalilani  L, Sun  X, Pelgrims  B, Noack-Rink  M, Villanueva  V. The epidemiology of drug-resistant epilepsy: A systematic review and meta-analysis. Epilepsia. 2018;59:2179–2193. PubMed

Téllez-Zenteno  JF, Dhar  R, Wiebe  S. Long-term seizure outcomes following epilepsy surgery: A systematic review and meta-analysis. Brain. 2005;128:1188–1198. PubMed

Cavanna  AE, Monaco  F. Brain mechanisms of altered conscious states during epileptic seizures. Nat Rev Neurol. 2009;5:267–276. PubMed

Blumenfeld  H. Impaired consciousness in epilepsy. Lancet Neurol. 2012;11:814–826. PubMed PMC

Nevalainen  O, Ansakorpi  H, Simola  M, et al.  Epilepsy-related clinical characteristics and mortality: A systematic review and meta-analysis. Neurology. 2014;83:1968–1977. PubMed

Devinsky  O. Sudden, unexpected death in epilepsy. N Engl J Med. 2011;365:1801–1811. PubMed

Devinsky  O, Hesdorffer  DC, Thurman  DJ, Lhatoo  S, Richerson  G. Sudden unexpected death in epilepsy: Epidemiology, mechanisms, and prevention. Lancet Neurol. 2016;15:1075–1088. PubMed

McPherson  A, Rojas  L, Bauerschmidt  A, et al.  Testing for minimal consciousness in complex partial and generalized tonic-clonic seizures. Epilepsia. 2012;53:e180–e183. PubMed PMC

Yang  L, Shklyar  I, Lee  HW, et al.  Impaired consciousness in epilepsy investigated by a prospective responsiveness in epilepsy scale (RES). Epilepsia. 2012;53:437–447. PubMed PMC

Johanson  M, Valli  K, Revonsuo  A, Chaplin  JE, Wedlund  J-E. Alterations in the contents of consciousness in partial epileptic seizures. Epilepsy Behav. 2008;13:366–371. PubMed

Johanson  M, Revonsuo  A, Chaplin  J, Wedlund  J-E. Level and contents of consciousness in connection with partial epileptic seizures. Epilepsy Behav. 2003;4:279–285. PubMed

Shin  JH, Joo  EY, Seo  D-W, Shon  Y-M, Hong  SB, Hong  S-C. Prognostic factors determining poor postsurgical outcomes of mesial temporal lobe epilepsy. PLoS ONE. 2018;13:e0206095. PubMed PMC

Englot  DJ, Yang  L, Hamid  H, et al.  Impaired consciousness in temporal lobe seizures: Role of cortical slow activity. Brain. 2010;133:3764–3777. PubMed PMC

Kundishora  AJ, Gummadavelli  A, Ma  C, et al.  Restoring conscious arousal during focal limbic seizures with deep brain stimulation. Cereb Cortex. 2017;27:1964–1975. PubMed PMC

Filipescu  C, Lagarde  S, Lambert  I, et al.  The effect of medial pulvinar stimulation on temporal lobe seizures. Epilepsia. 2019;60:e25–e30. PubMed

Yoo  JY, Farooque  P, Chen  WC, et al.  Ictal spread of medial temporal lobe seizures with and without secondary generalization: An intracranial electroencephalography analysis. Epilepsia. 2014;55:289–295. PubMed PMC

Weiss  SA, Banks  GP, McKhann  GM, et al.  Ictal high frequency oscillations distinguish two types of seizure territories in humans. Brain. 2013;136:3796–3808. PubMed PMC

Schönberger  J, Birk  N, Lachner-Piza  D, Dümpelmann  M, Schulze-Bonhage  A, Jacobs  J. High-frequency oscillations mirror severity of human temporal lobe seizures. Ann Clin Transl Neurol. 2019;6:2479–2488. PubMed PMC

Schindler  K, Leung  H, Lehnertz  K, Elger  CE. How generalised are secondarily “generalised” tonic clonic seizures?  J Neurol Neurosurg Psychiatry. 2007;78:993–996. PubMed PMC

Blumenfeld  H, Westerveld  M, Ostroff  RB, et al.  Selective frontal, parietal, and temporal networks in generalized seizures. Neuroimage. 2003;19:1556–1566. PubMed

Bagshaw  AP, Jacobs  J, LeVan  P, Dubeau  F, Gotman  J. Effect of sleep stage on interictal high-frequency oscillations recorded from depth macroelectrodes in patients with focal epilepsy. Epilepsia. 2009;50:617–628. PubMed PMC

Smith  EH, Merricks  EM, Liou  J-Y, et al.  Dual mechanisms of ictal high frequency oscillations in human rhythmic onset seizures. Sci Rep. 2020;10:19166. PubMed PMC

Schevon  CA, Weiss  SA, McKhann  G, et al.  Evidence of an inhibitory restraint of seizure activity in humans. Nat Commun. 2012;3:1060. PubMed PMC

Smith  EH, Liou  J, Davis  TS, et al.  The ictal wavefront is the spatiotemporal source of discharges during spontaneous human seizures. Nat Commun. 2016;7:11098. PubMed PMC

Schevon  CA, Tobochnik  S, Eissa  T, et al.  Multiscale recordings reveal the dynamic spatial structure of human seizures. Neurobiol Dis. 2019;127:303–311. PubMed PMC

Weiss  SA, Lemesiou  A, Connors  R, et al.  Seizure localization using ictal phase-locked high gamma: A retrospective surgical outcome study. Neurology. 2015;84:2320–2328. PubMed PMC

Bartolomei  F, Chauvel  P, Wendling  F. Epileptogenicity of brain structures in human temporal lobe epilepsy: A quantified study from intracerebral EEG. Brain. 2008;131:1818–1830. PubMed

Bartolomei  F, Cosandier-Rimele  D, McGonigal  A, et al.  From mesial temporal lobe to temporoperisylvian seizures: A quantified study of temporal lobe seizure networks. Epilepsia. 2010;51:2147–2158. PubMed

Kini  LG, Davis  KA, Wagenaar  JB. Data integration: Combined imaging and electrophysiology data in the cloud. Neuroimage. 2016;124:1175–1181. PubMed PMC

Klatt  J, Feldwisch-Drentrup  H, Ihle  M, et al.  The EPILEPSIAE database: An extensive electroencephalography database of epilepsy patients. Epilepsia. 2012;53:1669–1676. PubMed

Fisher  RS, Cross  JH, D’Souza  C, et al.  Instruction manual for the ILAE 2017 operational classification of seizure types. Epilepsia. 2017;58:531–542. PubMed

Arthuis  M, Valton  L, Régis  J, et al.  Impaired consciousness during temporal lobe seizures is related to increased long-distance cortical-subcortical synchronization. Brain. 2009;132:2091–2101. PubMed

Blenkmann  AO, Phillips  HN, Princich  JP, et al.  Ielectrodes: A comprehensive open-source toolbox for depth and subdural grid electrode localization. Front Neuroinformatics. 2017;11:14. PubMed PMC

Smith  SM, Jenkinson  M, Woolrich  MW, et al.  Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage. 2004;23:S208–S219. PubMed

Lancaster  JL, Woldorff  MG, Parsons  LM, et al.  Automated Talairach atlas labels for functional brain mapping. Hum Brain Mapp. 2000;10:120–131. PubMed PMC

Lancaster  JL, Rainey  LH, Summerlin  JL, et al.  Automated labeling of the human brain: A preliminary report on the development and evaluation of a forward-transform method. Hum Brain Mapp. 1997;5:238–242. PubMed PMC

Lundstrom  BN, Boly  M, Duckrow  R, Zaveri  HP, Blumenfeld  H. Slowing less than 1 Hz is decreased near the seizure onset zone. Sci Rep. 2019;9:6218. PubMed PMC

Delorme  A, Makeig  S. EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods. 2004;134:9–21. PubMed

Kremen  V, Brinkmann  BH, Van Gompel  JJ, Stead  M, St Louis  EK, Worrell  GA. Automated unsupervised behavioral state classification using intracranial electrophysiology. J Neural Eng. 2019;16:026004. PubMed

Reed  CM, Birch  KG, Kamiński  J, et al.  Automatic detection of periods of slow wave sleep based on intracranial depth electrode recordings. J Neurosci Methods. 2017;282:1–8. PubMed PMC

Eissa  TL, Tryba  AK, Marcuccilli  CJ, et al.  Multiscale aspects of generation of high-gamma activity during seizures in human neocortex. Eneuro. 2016;3:ENEURO.0141–15.2016. PubMed PMC

Jirsch  JD, Urrestarazu  E, LeVan  P, Olivier  A, Dubeau  F, Gotman  J. High-frequency oscillations during human focal seizures. Brain. 2006;129:1593–1608. PubMed

Penny  WD, Duzel  E, Miller  KJ, Ojemann  JG. Testing for nested oscillation. J Neurosci Methods. 2008;174:50–61. PubMed PMC

Benjamini  Y, Hochberg  Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol. 1995;57:289–300.

Bates  D, Mächler  M, Bolker  B, Walker  S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67:1–48.

Riedner  BA, Vyazovskiy  VV, Huber  R, et al.  Sleep homeostasis and cortical synchronization: III. A high-density EEG study of sleep slow waves in humans. Sleep. 2007;30:1643–1657. PubMed PMC

Bateman  LM, Schevon  CA. Postictal clinical and EEG activity following intracranially recorded bilateral tonic-clonic seizures. Epilepsia. 2019;60:1746–1747. PubMed PMC

Bateman  LM, Mendiratta  A, Liou  J-Y, et al.  Postictal clinical and electroencephalographic activity following intracranially recorded bilateral tonic-clonic seizures. Epilepsia. 2019;60:74–84. PubMed PMC

McGonigal  A, Marquis  P, Medina  S, et al.  Postictal stereo-EEG changes following bilateral tonic-clonic seizures. Epilepsia. 2019;60:1743–1745. PubMed

Quiroga  RQ, Nadasdy  Z, Ben-Shaul  Y. Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering. Neural Comput. 2004;16:1661–1687. PubMed

Merricks  EM, Smith  EH, McKhann  GM, et al.  Single unit action potentials in humans and the effect of seizure activity. Brain. 2015;138:2891–2906. PubMed PMC

Hill  DN, Mehta  SB, Kleinfeld  D. Quality metrics to accompany spike sorting of extracellular signals. J Neurosci. 2011;31:8699–8705. PubMed PMC

Merricks  EM, Smith  EH, Emerson  RG, et al.  Neuronal firing and waveform alterations through ictal recruitment in humans. J Neurosci. 2021;41:766–779. PubMed PMC

Blumenfeld  H, Varghese  GI, Purcaro  MJ, et al.  Cortical and subcortical networks in human secondarily generalized tonic-clonic seizures. Brain. 2009;132:999–1012. PubMed PMC

Palva  JM, Palva  S, Kaila  K. Phase synchrony among neuronal oscillations in the human cortex. J Neurosci. 2005;25:3962–3972. PubMed PMC

Canolty  RT, Edwards  E, Dalal  SS, et al.  High gamma power is phase-locked to theta oscillations in human neocortex. Science. 2006;313:1626–1628. PubMed PMC

Bartolomei  F, Wendling  F, Régis  J, Gavaret  M, Guye  M, Chauvel  P. Pre-ictal synchronicity in limbic networks of mesial temporal lobe epilepsy. Epilepsy Res. 2004;61:89–104. PubMed

Tobochnik  S, Bateman  LM, Akman  CI, et al.  Tracking multisite seizure propagation using ictal high-gamma activity. J Clin Neurophysiol. 2021. Online ahead of print. PubMed PMC

Gale  K. Subcortical structures and pathways involved in convulsive seizure generation. J Clin Neurophysiol. 1992;9:264–277. PubMed

Moruzzi  G, Magoun  HW. Brain stem reticular formation and activation of the EEG. Electroencephalogr Clin Neurophysiol. 1949;1:455–473. PubMed

Browning  RA. Role of the brain-stem reticular formation in tonic-clonic seizures: Lesion and pharmacological studies. Fed Proc. 1985;44:2425–2431. PubMed

Gastaut  H, Naquet  R, Fischerwilliams  M. The pathophysiology of grand mal seizures generalized from the start. J Nerv Ment Dis. 1958;127:21–33. PubMed

Brudzynski  SM, Cruickshank  JW, McLachlan  RS. Cholinergic mechanisms in generalized seizures: Importance of the zona incerta. Can J Neurol Sci. 1995;22:116–120. PubMed

Wang  X, Chou  X-L, Zhang  LI, Tao  HW. Zona incerta: An integrative node for global behavioral modulation. Trends Neurosci. 2020;43:82–87. PubMed PMC

Power  BD, Mitrofanis  J. Zona incerta: substrate for contralateral interconnectivity in the thalamus of rats. J Comp Neurol. 2001;436:52–63. PubMed

Bauerschmidt  A, Koshkelashvili  N, Ezeani  CC, et al.  Prospective assessment of ictal behavior using the revised responsiveness in epilepsy scale (RES-II). Epilepsy Behav. 2013;26:25–28. PubMed PMC

Boly  M, Massimini  M, Tsuchiya  N, Postle  BR, Koch  C, Tononi  G. Are the neural correlates of consciousness in the front or in the back of the cerebral cortex? Clinical and neuroimaging evidence. J Neurosci. 2017;37:9603–9613. PubMed PMC

Jobst  BC, Williamson  PD, Neuschwander  TB, Darcey  TM, Thadani  VM, Roberts  DW. Secondarily generalized seizures in mesial temporal epilepsy: Clinical characteristics, lateralizing signs, and association with sleep-wake cycle. Epilepsia. 2001;42:1279–1287. PubMed

Siclari  F, Baird  B, Perogamvros  L, et al.  The neural correlates of dreaming. Nat Neurosci. 2017;20:872–878. PubMed PMC

Touloumes  G, Morse  E, Chen  WC, et al.  Human bedside evaluation versus automatic responsiveness testing in epilepsy (ARTiE). Epilepsia. 2016;57:e28–e32. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...