Case report: Bridging limbic network epilepsy with psychiatric, memory, and sleep comorbidities: case illustrations of reversible psychosis symptoms during continuous, high-frequency ANT-DBS

. 2024 ; 4 () : 1426743. [epub] 20240808

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu kazuistiky, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39175607

Grantová podpora
R01 NS112144 NINDS NIH HHS - United States
U24 NS113637 NINDS NIH HHS - United States
UH2 NS095495 NINDS NIH HHS - United States
UH3 NS095495 NINDS NIH HHS - United States

The network nature of focal epilepsy is exemplified by mesial temporal lobe epilepsy (mTLE), characterized by focal seizures originating from the mesial temporal neocortex, amygdala, and hippocampus. The mTLE network hypothesis is evident in seizure semiology and interictal comorbidities, both reflecting limbic network dysfunction. The network generating seizures also supports essential physiological functions, including memory, emotion, mood, and sleep. Pathology in the mTLE network often manifests as interictal behavioral disturbances and seizures. The limbic circuit is a vital network, and here we review one of the most common focal epilepsies and its comorbidities. We describe two people with drug resistant mTLE implanted with an investigational device enabling continuous hippocampal local field potential sensing and anterior nucleus of thalamus deep brain stimulation (ANT-DBS) who experienced reversible psychosis during continuous high-frequency stimulation. The mechanism(s) of psychosis remain poorly understood and here we speculate that the anti-epileptic effect of high frequency ANT-DBS may provide insights into the physiology of primary disorders associated with psychosis.

Zobrazit více v PubMed

Baker J., Zeman A. (2017). “Accelerated long-term forgetting in epilepsy—and beyond,” in Cognitive neuroscience of memory consolidation. Studies in neuroscience, psychology and behavioral economics. Editors Axmacher N., Rasch B. (Cham: Springer International Publishing; ), 401–417.

Baud M. O., Kleen J. K., Mirro E. A., Andrechak J. C., King-Stephens D., Chang E. F., et al. (2018). Multi-day Rhythms modulate seizure risk in epilepsy. Nat. Commun. 9 (1), 88. 10.1038/s41467-017-02577-y PubMed DOI PMC

Beenhakker M. P., Huguenard J. R. (2009). Neurons that fire together also conspire together: is normal sleep circuitry hijacked to generate epilepsy? Neuron 62 (5), 612–632. 10.1016/j.neuron.2009.05.015 PubMed DOI PMC

Bell B., Lin J. J., Seidenberg M., Hermann B. (2011). The neurobiology of cognitive disorders in temporal lobe epilepsy. Nat. Rev. Neurol. 7 (3), 154–164. 10.1038/nrneurol.2011.3 PubMed DOI PMC

Bell M. L., Rao S., So E. L., Trenerry M., Kazemi N., Matt Stead S., et al. (2009). Epilepsy surgery outcomes in temporal lobe epilepsy with a normal MRI. Epilepsia 50 (9), 2053–2060. 10.1111/j.1528-1167.2009.02079.x PubMed DOI PMC

Ben-Menachem E. (2002). Vagus-nerve stimulation for the treatment of epilepsy. Lancet Neurol. 1 (8), 477–482. 10.1016/s1474-4422(02)00220-x PubMed DOI

Ben-Menachem E., Hellström K., Waldton C., Augustinsson L. E. (1999). Evaluation of refractory epilepsy treated with vagus nerve stimulation for up to 5 years. Neurology 52 (6), 1265–1267. 10.1212/wnl.52.6.1265 PubMed DOI

Berg A. T. (2008). The natural history of mesial temporal lobe epilepsy. Curr. Opin. Neurology 21 (2), 173–178. 10.1097/WCO.0b013e3282f36ccd PubMed DOI

Blake R. V., Wroe S. J., Breen E. K., McCarthy R. A. (2000). Accelerated forgetting in patients with epilepsy: evidence for an impairment in memory consolidation. Brain A J. Neurology 123 (3), 472–483. 10.1093/brain/123.3.472 PubMed DOI

Bølling-Ladegaard E., Dreier J. W., Kessing L. V., Budtz-Jørgensen E., Lolk K., Christensen J. (2023). Directionality of the association between epilepsy and depression: a nationwide register-based cohort study. Neurology 100 (9), e932–e942. 10.1212/WNL.0000000000201542 PubMed DOI PMC

Bower M. R., Kucewicz M. T., St Louis E. K., Meyer F. B., Marsh W. R., Stead M., et al. (2017). Reactivation of seizure-related changes to interictal spike shape and synchrony during postseizure sleep in patients. Epilepsia 58 (1), 94–104. 10.1111/epi.13614 PubMed DOI PMC

Bower M. R., Stead M., Bower R. S., Kucewicz M. T., Sulc V., Cimbalnik J., et al. (2015). Evidence for consolidation of neuronal assemblies after seizures in humans. J. Neurosci. 35 (3), 999–1010. 10.1523/JNEUROSCI.3019-14.2015 PubMed DOI PMC

Boylan L. S., Flint L. A., Labovitz D. L., Jackson S. C., Starner K., Devinsky O. (2004). Depression but not seizure frequency predicts quality of life in treatment-resistant epilepsy. Neurology 62 (2), 258–261. 10.1212/01.wnl.0000103282.62353.85 PubMed DOI

Child N. D., Eduardo E. B. (2013). Anterior nucleus of the thalamus: functional organization and clinical implications. Neurology 81 (21), 1869–1876. 10.1212/01.wnl.0000436078.95856.56 PubMed DOI

Cooper I. S., Upton A. R. M. (1985). Therapeutic implications of modulation of metabolism and functional activity of cerebral cortex by chronic stimulation of cerebellum and thalamus. Biol. Psychiatry 20, 811–813. 10.1016/0006-3223(85)90164-7 PubMed DOI

De Toffol B., Trimble M., Hesdorffer D. C., Taylor L., Sachdev P., Clancy M., et al. (2018). Pharmacotherapy in patients with epilepsy and psychosis. Epilepsy and Behav. 88, 54–60. 10.1016/j.yebeh.2018.09.001 PubMed DOI

Devinsky O., Vezzani A., O’Brien T. J., Jette N., Scheffer I. E., Curtis M. de, et al. (2018). Epilepsy. Nat. Rev. Dis. Prim. 4 (1), 18024. 10.1038/nrdp.2018.24 PubMed DOI

Durazzo T. S., Spencer S. S., Duckrow R. B., Novotny E. J., Spencer D. D., Zaveri H. P. (2008). Temporal distributions of seizure occurrence from various epileptogenic regions. Neurology 70 (15), 1265–1271. 10.1212/01.wnl.0000308938.84918.3f PubMed DOI

Elger C. E. (2014). Epilepsy: lost in translation. Lancet Neurol. 13 (9), 862–863. 10.1016/S1474-4422(14)70125-5 PubMed DOI

Elger C. E., Hoppe C. (2018). Diagnostic challenges in epilepsy: seizure under-reporting and seizure detection. Lancet Neurol. 17 (3), 279–288. 10.1016/S1474-4422(18)30038-3 PubMed DOI

Engel J., Jr. (2001). Mesial temporal lobe epilepsy: what have we learned? Neurosci. A Rev. J. Bringing Neurobiol. Neurology Psychiatry 7 (4), 340–352. 10.1177/107385840100700410 PubMed DOI

Engel J., Jr, Michael P. M. D., Wiebe S., Langfitt J. T., Stern J. M., Dewar S., et al. (2012). Early surgical therapy for drug-resistant temporal lobe epilepsy: a randomized trial. JAMA J. Am. Med. Assoc. 307 (9), 922–930. 10.1001/jama.2012.220 PubMed DOI PMC

Fisher R., Salanova V., Witt T., Worth R., Henry T., Gross R., et al. (2010). Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy. Epilepsia 51 (5), 899–908. 10.1111/j.1528-1167.2010.02536.x PubMed DOI

Fisher R. S. (2012). Therapeutic devices for epilepsy. Ann. Neurology 71 (2), 157–168. 10.1002/ana.22621 PubMed DOI PMC

Fisher R. S. (2023). “Deep brain stimulation (DBS) of thalamus for epilepsy,” in Neurostimulation for epilepsy: advances, applications and opportunities. Editor Rao V. (Academic Press; ), 133–159. (US).

Fisher R. S., Ana L. V. (2014). Electrical brain stimulation for epilepsy. Nat. Rev. Neurol. 10 (5), 261–270. 10.1038/nrneurol.2014.59 PubMed DOI

Garg D., Charlesworth L., Shukla G. (2022). Sleep and temporal lobe epilepsy – associations, mechanisms and treatment implications. Front. Hum. Neurosci. 16, 849899. 10.3389/fnhum.2022.849899 PubMed DOI PMC

Gregg N., Nasseri M., Kremen V., Patterson E., Sturges B., Denison T., et al. (2020). “Circadian and multiday seizure periodicities, and seizure clusters in canine epilepsy.” brain communications 2(1): fcaa008. G, divyani, laurel Charlesworth, and garima Shukla. 2022. “Sleep and temporal lobe epilepsy – associations, mechanisms and treatment implications.”. Front. Hum. Neurosci. 16. 10.3389/fnhum.2022.849899 PubMed DOI PMC

Grewal S. S., Middlebrooks E. H., Kaufmann T. J., Stead M., Lundstrom B. N., Worrell G. A., et al. (2018). Fast gray matter acquisition T1 inversion recovery MRI to delineate the mammillothalamic tract for preoperative direct targeting of the anterior nucleus of the thalamus for deep brain stimulation in epilepsy. Neurosurg. Focus. 45 (2). 10.3171/2018.4.FOCUS18147 PubMed DOI

Grigg-Damberger M., Foldvary-Schaefer N. (2021). Bidirectional relationships of sleep and epilepsy in adults with epilepsy. Epilepsy and Behav. E&B 116 (107735), 107735. 10.1016/j.yebeh.2020.107735 PubMed DOI

Helmstaedter C., Winter B., Melzer N., Lohmann H., Witt J.-A. (2019). Accelerated long-term forgetting in focal epilepsies with special consideration given to patients with diagnosed and suspected limbic encephalitis. Cortex; a J. Devoted Study Nerv. Syst. Behav. 110 (January), 58–68. 10.1016/j.cortex.2018.01.003 PubMed DOI

Hilger E., Zimprich F., Jung R., Pataraia E., Baumgartner C., Bonelli S. (2013). Postictal psychosis in temporal lobe epilepsy: a case-control study. Eur. J. Neurology Official J. Eur. Fed. Neurological Soc. 20 (6), 955–961. 10.1111/ene.12125 PubMed DOI

Hogan R. E., Kitti K. (2003). The ‘dreamy state’: john hughlings-jackson’s ideas of epilepsy and consciousness. Am. J. Psychiatry 160 (10), 1740–1747. 10.1176/appi.ajp.160.10.1740 PubMed DOI

Horak P. C., Meisenhelter S., Song Y., Testorf M. E., Kahana M. J., Viles W. D., et al. (2017). Interictal epileptiform discharges impair word recall in multiple brain areas. Epilepsia 58 (3), 373–380. 10.1111/epi.13633 PubMed DOI PMC

Hughlings-Jackson J. (1888). On a Particular Variety of Epilepsy (‘Intellectual Aura’), One Case With Symptoms of Organic Brain Disease. Brain A J. Neurology 11 (2), 179–207. 10.1093/brain/11.2.179 DOI

Institute of Medicine (US) Committee on the Public Health Dimensions of the Epilepsies (2012). in Epilepsy across the spectrum: promoting health and understanding. Editors England M. J., Liverman C. T., Schultz A. M., Strawbridge L. M. (Washington, DC: National Academies Press US; ). PubMed

Järvenpää S., Rosti-Otajärvi E., Rainesalo S., Laukkanen L., Lehtimäki K., Peltola J. (2018). Executive functions may predict outcome in deep brain stimulation of anterior nucleus of thalamus for treatment of refractory epilepsy. Front. Neurology 9, 324. 10.3389/fneur.2018.00324 PubMed DOI PMC

Järvenpää S., Rosti-Otajärvi E., Lehtimäki K., Rainesalo S., Möttönen T., Peltola J. (2020). Improving the effectiveness of ANT DBS therapy for epilepsy with optimal current targeting. Epilepsia Open 5, 406–417. 10.1002/epi4.12407 PubMed DOI PMC

Johnson E. K., Jones J. E., Seidenberg M., Hermann B. P. (2004). The relative impact of anxiety, depression, and clinical seizure features on health-related quality of life in epilepsy. Epilepsia 45 (5), 544–550. 10.1111/j.0013-9580.2004.47003.x PubMed DOI

Kanner A. M. (2009). Psychiatric issues in epilepsy: the complex relation of mood, anxiety disorders, and epilepsy. Epilepsy and Behav. E&B 15 (1), 83–87. 10.1016/j.yebeh.2009.02.034 PubMed DOI

Kanner A. M., Ribot R., Mazarati A. (2018). Bidirectional relations among common psychiatric and neurologic comorbidities and epilepsy: do they have an impact on the course of the seizure disorder? Epilepsia Open 3 (S2), 210–219. 10.1002/epi4.12278 PubMed DOI PMC

Karoly P. J., Rao V. R., Gregg N. M., Worrell G. A., Bernard C., Cook M. J., et al. (2021). Cycles in epilepsy. Nat. Rev. Neurol. 17 (5), 267–284. 10.1038/s41582-021-00464-1 PubMed DOI

Kleen J. K., Scott R. C., Holmes G. L., Roberts D. W., Rundle M. M., Testorf M., et al. (2013). Hippocampal interictal epileptiform activity disrupts cognition in humans. Neurology 81 (1), 18–24. 10.1212/WNL.0b013e318297ee50 PubMed DOI PMC

Kremen V., Brinkmann B. H., Kim I., Guragain H., Nasseri M., Magee A. L., et al. (2018). Integrating brain implants with local and distributed computing devices: a next generation epilepsy management system. IEEE J. Transl. Eng. Health Med. 6, 2500112. 10.1109/JTEHM.2018.2869398 PubMed DOI PMC

Kremen V., Sladky V., Mivalt F., Gregg N. M., Balzekas I., Marks V., et al. (2024). A platform for brain network sensing and stimulation with quantitative behavioral tracking: application to limbic circuit epilepsy. medRxiv, 02 (09), 24302358. 10.1101/2024.02.09.24302358 DOI

Kwan P., Schachter S. C., Brodie M. J. (2011). Drug-resistant epilepsy. New England J. Med. 365 (10), 919–926. 10.1056/NEJMra1004418 PubMed DOI

Lehnertz K., Bröhl T., Wrede R. V. (2023). Epileptic-network-based prediction and control of seizures in humans. Neurobiol. Dis. 181, 106098. 10.1016/j.nbd.2023.106098 PubMed DOI

Lemesle B., Barbeau E. J., Rigal E. M., Denuelle M., Valton L., Pariente Jérémie. (2021). Hidden objective memory deficits behind subjective memory complaints in patients with temporal lobe epilepsy. Neurology 98 (8), e818–e828. 10.1212/WNL.0000000000013212 PubMed DOI

Leutmezer F., Podreka I., Asenbaum S., Pietrzyk U., Lucht H., Back Claude. (2003). Postictal psychosis in temporal lobe epilepsy. Epilepsia 44 (4), 582–590. 10.1046/j.1528-1157.2003.32802.x PubMed DOI

Lundstrom B., Gregg N. (2023). What should we expect for real-world outcomes of deep brain stimulation of the anterior nucleus of the thalamus for epilepsy. Neurology 100 (18), 845–846. 10.1212/WNL.0000000000201455 PubMed DOI

MacLean (1949). Psychosomatic disease and the visceral brain; recent developments bearing on the Papez theory of emotion. Psychosom. Med. 11 (6), 338–353. 10.1097/00006842-194911000-00003 PubMed DOI

Matsumoto J. Y., Stead M., Kucewicz M. T., Matsumoto A. J., Peters P. A., Brinkmann B. H., et al. (2013). Network oscillations modulate interictal epileptiform spike rate during human memory. Brain A J. Neurology 136 (Pt 8), 2444–2456. 10.1093/brain/awt159 PubMed DOI PMC

McAuley J. W., Elliott J. O., Patankar S., Hart S., Long L., Layne Moore J., et al. (2010). Comparing patients’ and practitioners’ views on epilepsy concerns: a call to address memory concerns. Epilepsy and Behav. E&B 19 (4), 580–583. 10.1016/j.yebeh.2010.09.001 PubMed DOI

McIntyre D. C., Kelly M. E., Staines W. A. (2006). “Preface: material-specific and generalized memory loss.” In: Wasterlain C. G., Treiman D. M. (eds) Status epilepticus Mech. Manag. MIT Press Camb. MA, pp229–238.

Milner B. (1998). “Preface: material-specific and generalized memory loss.” Neuropsychologia 6 (3): 175–179. 10.1016/0028-3932(68)90017-1 DOI

Mivalt F., Kremen V., Sladky V., Balzekas I., Nejedly P., Gregg N. M., et al. (2022). Electrical brain stimulation and continuous behavioral state tracking in ambulatory humans. J. Neural Eng. 19 (1), 016019. 10.1088/1741-2552/ac4bfd PubMed DOI PMC

Mivalt F., Kremen V., Sladky V., Cui J., Gregg N. M., Balzekas I., et al. (2023). Impedance Rhythms in human limbic system. J. Neurosci. Official J. Soc. Neurosci. 43 (39), 6653–6666. 10.1523/JNEUROSCI.0241-23.2023 PubMed DOI PMC

Moore J. L., Carvalho D. Z., St Louis E. K., Bazil C. (2021). Sleep and epilepsy: a focused review of pathophysiology, clinical syndromes, Co-morbidities, and therapy. Neurother. J. Am. Soc. Exp. Neurother. 18 (1), 170–180. 10.1007/s13311-021-01021-w PubMed DOI PMC

Morrell M. J. RNS System in Epilepsy Study Group (2011). Responsive cortical stimulation for the treatment of medically intractable partial epilepsy. Neurology 77 (13), 1295–1304. 10.1212/WNL.0b013e3182302056 PubMed DOI

Morrell M. J. (2014). In response: the RNS System multicenter randomized double-blinded controlled trial of responsive cortical stimulation for adjunctive treatment of intractable partial epilepsy: knowledge and insights gained. Epilepsia 55, 1470–1471. 10.1111/epi.12736 PubMed DOI

Nadkarni S., Arnedo V., Devinsky O. (2007). Psychosis in epilepsy patients. Epilepsia 48 (Suppl. 9), 17–19. 10.1111/j.1528-1167.2007.01394.x PubMed DOI

Osorio I. (2014). The NeuroPace trial: missing knowledge and insights. Epilepsia 55 (9), 1469–1470. 10.1111/epi.12701 PubMed DOI

Papez J. W. (1937). A proposed mechanism of emotion. Archives Neurology Psychiatry 38 (4), 725. 10.1001/archneurpsyc.1937.02260220069003 DOI

Paré D., Headley D. (2023). The amygdala mediates the facilitating influence of emotions on memory through multiple interacting mechanisms. Neurobiol. Stress 24, 100529. 10.1016/j.ynstr.2023.100529 PubMed DOI PMC

Redinbaugh M. J., Phillips J. M., Kambi N. A., Mohanta S., Andryk S., Dooley G. L., et al. (2020). Thalamus modulates consciousness via layer-specific control of cortex. Neuron 106 (1), 66–75. 10.1016/j.neuron.2020.01.005 PubMed DOI PMC

Salanova V., Sperling M. R., Gross R. E., Irwin C. P., Vollhaber J. A., Giftakis J. E., et al. (2021). The SANTÉ study at 10 years of follow-up: effectiveness, safety, and sudden unexpected death in epilepsy. Epilepsia 62 (6), 1306–1317. 10.1111/epi.16895 PubMed DOI

Salanova V., Witt T., Worth R., Henry T. R., Gross R. E., Nazzaro J. M., et al. (2015). Long-term efficacy and safety of thalamic stimulation for drug-resistant partial epilepsy. Neurology 84 (10), 1017–1025. 10.1212/WNL.0000000000001334 PubMed DOI PMC

Sladky V., Nejedly P., Mivalt F., Brinkmann B. H., Kim I., St. Louis E. K., et al. (2022). Distributed brain Co-processor for tracking spikes, seizures and behaviour during electrical brain stimulation. Brain Commun. 4 (3), fcac115. 10.1093/braincomms/fcac115 PubMed DOI PMC

Spencer D. D., Gerrard J. L., Zaveri H. P. (2018). The roles of surgery and technology in understanding focal epilepsy and its comorbidities. Lancet Neurol. 17, 373–382. 10.1016/S1474-4422(18)30031-0 PubMed DOI

Squire L. R. (2009). The legacy of patient H.M. For neuroscience. Neuron 61 (1), 6–9. 10.1016/j.neuron.2008.12.023 PubMed DOI PMC

Squire L. R., Zola-Morgan S. (1991). The medial temporal lobe memory system. Sci. (New York, N.Y.) 253 (5026), 1380–1386. 10.1126/science.1896849 PubMed DOI

Stypulkowski P. H., Stanslaski S. R., Jensen R. M., Denison T. J., Giftakis J. E. (2014). Brain stimulation for epilepsy--local and remote modulation of network excitability. Brain Stimul. 7 (3), 350–358. 10.1016/j.brs.2014.02.002 PubMed DOI

Szabó J. P., Fabó D., Pető N., Sákovics A., Bódizs R. (2022). Role of anterior thalamic circuitry during sleep. Epilepsy Res. 186 (106999), 106999. 10.1016/j.eplepsyres.2022.106999 PubMed DOI

Tellez-Zenteno J. F., Patten S. B., Jetté N., Williams J., Wiebe S. (2007). Psychiatric comorbidity in epilepsy: a population-based analysis. Epilepsia 48 (12), 2336–2344. 10.1111/j.1528-1167.2007.01222.x PubMed DOI

Temkin O. (1994). The falling sickness: a history of epilepsy from the Greeks to the beginnings of modern neurology (softshell books). 2nd ed. Baltimore, MD: Johns Hopkins University Press.

Tröster A. I., Meador K. J., Irwin C. P., Fisher R. S. SANTE Study Group (2017). Memory and mood outcomes after anterior thalamic stimulation for refractory partial epilepsy. Seizure 45, 133–141. 10.1016/j.seizure.2016.12.014 PubMed DOI

Upton A. R., Cooper I. S., Springman M., Amin I. (1985). Suppression of seizures and psychosis of limbic system origin by chronic stimulation of anterior nucleus of the thalamus. Int. J. Neurology 19-20, 223–230. PubMed

Velasco F., Velasco M., Ogarrio C., Fanghanel G. (1987). Electrical stimulation of the centromedian thalamic nucleus in the treatment of convulsive seizures: a preliminary report. Epilepsia 28, 421–430. 10.1111/j.1528-1157.1987.tb03668.x PubMed DOI

Voges B. R., Schmitt F. C., Hamel W., House P. M., Kluge C., Moll C. K. E., et al. (2015). Deep brain stimulation of anterior nucleus thalami disrupts sleep in epilepsy patients. Epilepsia 56 (8), e99–e103. 10.1111/epi.13045 PubMed DOI

Wiebe S., Blume W. T., Girvin J. P., Eliasziw M. Effectiveness and Efficiency of Surgery for Temporal Lobe Epilepsy Study Group (2001). A randomized, controlled trial of surgery for temporal-lobe epilepsy. New England J. Med. 345 (5), 311–318. 10.1056/NEJM200108023450501 PubMed DOI

Worrell G., Gotman J. (2011). High-frequency oscillations and other electrophysiological biomarkers of epilepsy: clinical studies. Biomarkers Med. 5 (5), 557–566. 10.2217/bmm.11.74 PubMed DOI PMC

Youngerman B. E., Banu M. A., Khan F., McKhann G. M., Schevon C. A., Jagid J. R., et al. (2023). Long-term outcomes of mesial temporal laser interstitial thermal therapy for drug-resistant epilepsy and subsequent surgery for seizure recurrence: a multi-centre cohort study. J. Neurology, Neurosurg. Psychiatry 94 (11), 879–886. 10.1136/jnnp-2022-330979 PubMed DOI PMC

Yu T., Wang X., Li Y., Zhang G., Worrell G. A., Chauvel P., et al. (2018). High-frequency stimulation of anterior nucleus of thalamus desynchronizes epileptic network in humans. Brain A J. Neurology 141 (9), 2631–2643. 10.1093/brain/awy187 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...