Behavioral state classification in epileptic brain using intracranial electrophysiology
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, N.I.H., Extramural
Grantová podpora
R01 NS063039
NINDS NIH HHS - United States
R01 NS078136
NINDS NIH HHS - United States
R01 NS092882
NINDS NIH HHS - United States
UH2 NS095495
NINDS NIH HHS - United States
PubMed
28050973
PubMed Central
PMC5460075
DOI
10.1088/1741-2552/aa5688
Knihovny.cz E-zdroje
- MeSH
- algoritmy * MeSH
- diagnóza počítačová metody MeSH
- dospělí MeSH
- elektrokortikografie metody MeSH
- epilepsie diagnóza patofyziologie MeSH
- hipokampus patofyziologie MeSH
- lidé MeSH
- reprodukovatelnost výsledků MeSH
- rozpoznávání automatizované metody MeSH
- senzitivita a specificita MeSH
- stadia spánku * MeSH
- strojové učení MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
OBJECTIVE: Automated behavioral state classification can benefit next generation implantable epilepsy devices. In this study we explored the feasibility of automated awake (AW) and slow wave sleep (SWS) classification using wide bandwidth intracranial EEG (iEEG) in patients undergoing evaluation for epilepsy surgery. APPROACH: Data from seven patients (age [Formula: see text], 4 women) who underwent intracranial depth electrode implantation for iEEG monitoring were included. Spectral power features (0.1-600 Hz) spanning several frequency bands from a single electrode were used to train and test a support vector machine classifier. MAIN RESULTS: Classification accuracy of 97.8 ± 0.3% (normal tissue) and 89.4 ± 0.8% (epileptic tissue) across seven subjects using multiple spectral power features from a single electrode was achieved. Spectral power features from electrodes placed in normal temporal neocortex were found to be more useful (accuracy 90.8 ± 0.8%) for sleep-wake state classification than electrodes located in normal hippocampus (87.1 ± 1.6%). Spectral power in high frequency band features (Ripple (80-250 Hz), Fast Ripple (250-600 Hz)) showed comparable performance for AW and SWS classification as the best performing Berger bands (Alpha, Beta, low Gamma) with accuracy ⩾90% using a single electrode contact and single spectral feature. SIGNIFICANCE: Automated classification of wake and SWS should prove useful for future implantable epilepsy devices with limited computational power, memory, and number of electrodes. Applications include quantifying patient sleep patterns and behavioral state dependent detection, prediction, and electrical stimulation therapies.
Zobrazit více v PubMed
Agarwal R, Gotman J. Digital tools in polysomnography. Journal of Clinical Neurophysiology : Official Publication of the American Electroencephalographic Society. 2002;19(2):136–43. http://doi.org/10.1097/00004691-200203000-00004. PubMed DOI
Andrillon T, Nir Y, Staba RJ, Ferrarelli F, Cirelli C, Tononi G, Fried I. Sleep Spindles in Humans: Insights from Intracranial EEG and Unit Recordings. Journal of Neuroscience. 2011;31(49):17821–17834. http://doi.org/10.1523/JNEUROSCI.2604-11.2011. PubMed DOI PMC
Amir N, Gath I. Segmentation of EEG during sleep using time-varying autoregressive modeling. Biological Cybernetics. 1989;61(6):447–455. http://doi.org/10.1007/BF02414906. PubMed DOI
Bower MR, Stead M, Bower RS, Kucewicz MT, Sulc V, Cimbalnik J, Worrell TGA. Evidence for Consolidation of Neuronal Assemblies after Seizures in Humans. Journal of Neuroscience. 2015;35(3):999–1010. doi: 10.1523/JNEUROSCI.3019-14.2015. PubMed DOI PMC
Botella-Soler V, Valderrama M, Crépon B, Navarro V, Le Van Quyen M. Large-scale cortical dynamics of sleep slow waves. PLoS One. 2012;7(2):e30757. doi: 10.1371/journal.pone.0030757. Epub 2012 Feb 17. PubMed DOI PMC
Bragin A, Wilson CL, Staba RJ, Reddick M, et al. Interictal high-frequency oscillations (80–500 Hz) in the human epileptic brain: entorhinal cortex. Ann Neurol. 2002;52:407–415. PubMed
Brinkmann BH, Bower MR, Stengel KA, Worrell GA, Stead M. Large-scale electrophysiology: acquisition, compression, encryption, and storage of big data. J Neurosci Methods. 2009;180:185–192. PubMed PMC
Brinkmann BH, Patterson EE, Vite C, Vasoli VM, Crepeau D, et al. Forecasting Seizures Using Intracranial EEG Measures and SVM in Naturally Occurring Canine Epilepsy. PLoS One. 2015;10(8):e0133900. doi: 10.1371/journal.pone.0133900. PubMed DOI PMC
Brinkmann BH, Wagenaar J, Abbot D, Adkins P, Bosshard SC, Chen M, Tieng QM, He J, Muñoz-Almaraz FJ, Botella-Rocamora P. Crowdsourcing reproducible seizure forecasting in human and canine epilepsy. Brain. 2016;139:1713–1722. PubMed PMC
Buzsaki G. Rhythms of the Brain. Oxford University Press; 2006.
Cash SS, Halgren E, Dehghani N, Rossetti AO, et al. The human K-complex represents an isolated cortical down-state. Science. 2009;324:1084–1087. PubMed PMC
Cook MJ, O’Brien TJ, Berkovic SF, Murphy M, Morokoff A, Fabinyi G, D’Souza W, Yerra R, Archer J, Litewka L, Hosking S, Lightfoot P, Ruedebusch V, Sheffield WD, Snyder D, Leyde K, Himes D. Prediction of seizure likelihood with a long-term, implanted seizure advisory system in patients with drug-resistant epilepsy: a first-in-man study. Lancet Neurol. 2013;12:563–571. PubMed
Cortes C, Vapnik V. Support-vector networks. Machine Learning. 1995;20(3):273. doi: 10.1007/BF00994018. DOI
Csercsa R, Dombovári B, Fabó D, Wittner L, et al. Laminar analysis of slow wave activity in humans. Brain. 2010;133:2814–2829. PubMed PMC
Danker-Hopfe, Anderer P, Zeitlhofer J, Boeck M, Dorn H, Gruber G, Heller E, Loretz E, Moser D, Parapatics S, Saletu B, Schmidt A, Dorffner G. Interrater reliability for sleep scoring according to the Rechtschaffen & Kales and the new AASM standard. J Sleep Res. 2009 Mar;18(1):74–84. doi: 10.1111/j.1365-2869.2008.00700.x. PubMed DOI
Ferrara M, De Gennaro L. Going local: insights from EEG and stereo-EEG studies of the human sleep-wake cycle. Curr Top Med Chem. 2011;11(19):2423–37. PubMed
Ferri R, Ferri P, Colognola RM, Petrella MA, Musumeci SA, Bergonzi P. Comparison between the results of an automatic and a visual scoring of sleep EEG recordings. Sleep. 1989;12:354–62. PubMed
Hastie, Tibshirani, Friedman . The Elements of Statistical Learning. 2. Springer-Verlag; 2009.
Haustein W, Pilcher J, Klink J, Schulz H. Automatic analysis overcomes limitations of sleep stage scoring. Electroencephalogr Clin Neurophysiol. 1986;64:364–74. PubMed
He BJ, Zempel JM, Snyder AZ, Raichle ME. The temporal structures and functional significance of scale-free brain activity. Neuron. 2010;66:353–369. PubMed PMC
Hu S, Stead M, Dai Q, Worrell GA. On the recording reference contribution to EEG correlation, phase synchorony, and coherence. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics. 2010;40(5):1294–1304. doi: 10.1109/TSMCB.2009.2037237. PubMed DOI PMC
Iber C, Ancoli-Israel S, Chesson A, Quan SF. for the American Academy of Sleep Medicine. The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications. American Academy of Sleep Medicine; Westchester, IL: 2007.
Kaplan A, Röschke J, Darkhovsky B, Fell J. Macrostructural EEG characterization based on nonparametric change point segmentation: application to sleep analysis. J Neurosci Methods. 2001;106:81–90. PubMed
Kemp B. A proposal for computer-based sleep/wake analysis. (1993). Consensus report. J Sleep Res. 2:179–85. PubMed
Kelsey M, Politte D, Verner R, Zempel JM, Nolan T, Babajani-Feremi A, Prior F, Larson-Prior LJ. Determination of neural state classification metrics from the power spectrum of human ECoG. Conf Proc IEEE Eng Med Biol Soc. 2012;2012:4336–40. doi: 10.1109/EMBC.2012.6346926. PubMed DOI
Klimes P, Duque JJ, Brinkmann B, Gompel JV, Stead SM, St Louis EK, Halamek J, Jurak P, Worrell GA. The Functional Organization of Human Epileptic Hippocampus. J Neurophysiol. 2016 Mar 30; doi: 10.1152/jn.00089.2016. jn.00089.2016. PubMed DOI PMC
Le Van Quyen M, et al. Large-scale microelectrode recordings of high-frequency gamma oscillations in human cortex during sleep. JNEUROSCI. 2010:5049–09. PubMed PMC
Lee H, Choi S. PCA+HMM+SVM for EEG pattern classification. 7th Proc Int Symp on Signal Processing and Its Applications. 2003;1:541–4.
Liu C, Zhao HB, Li CS, Wang H. Classification of ECoG motor imagery tasks based on CSP and SVM. BMEI: 3rd Int Conf on Biomedical Engineering and Informatics. 2010;2:804–7.
Loomis AL, Harvey EN, Hobart GA. Cerebral states during sleep as studies by human brain potentials. J Exp Psychol. 1937;21:127–44. doi: 10.1037/h0057431. DOI
Lundstrom BN, Van Gompel J, Britton J, Nickels K, Wetjen N, Worrell G, Stead M. Chronic Subthreshold Cortical Stimulation to Treat Focal Epilepsy. JAMA Neurology. 2016;73(11):1370–1372. doi: 10.1001/jamaneurol.2016.2857. PubMed DOI
Nishida M, Uchida S, Hirai N, Miwakeichi F, Maehara T, Kawai K, et al. High frequency activities in the human orbitofrontal cortex in sleep-wake cycle. Neurosci Lett. 2005 May 6;379(2):110–5. Epub 2005 Jan 21. PubMed
Nobili Lino, De Gennaro Luigi, Proserpio Paola, Moroni Fabio, Sarasso Simone, Pigorini Andrea, De Carli Fabrizio, Michele Local aspects of sleep: observations from intracerebral recordings in humans. Ferrara Prog Brain Res. 2012;199:219–32. doi: 10.1016/B978-0-444-59427-3.00013-7. PubMed DOI
Norman RG, Pal I, Stewart C, Walsleben JA, Rapoport DM. Interobserver agreement among sleep scorers from different centers in a large dataset. Sleep. 2000;23:901–8. PubMed
Nir Y, Staba RJ, Andrillon T, Vyazovskiy VV, et al. Regional slow waves and spindles in human sleep. Neuron. 2011;70:153–169. PubMed PMC
Pardey J, Roberts S, Tarassenko L, Stradling J. A new approach to the analysis of the human sleep/wakefulness continuum. J Sleep Res. 1996;5:201–10. PubMed
Pahwa M, Kusner M, Hacker CD, Bundy DT, Weinberger KQ, Leuthardt EC. Optimizing the Detection of Wakeful and Sleep-Like States for Future Electrocorticographic Brain Computer Interface Applications. PLoS One. 2015 Nov 12;10(11):e0142947. doi: 10.1371/journal.pone.0142947. eCollection 2015. PubMed DOI PMC
Priesemann V, Valderrama M, Wibral M, Le Van Quyen M. Neuronal avalanches differ from wakefulness to deep sleep--evidence from intracranial depth recordings in humans. PLoS Comput Biol. 2013;9(3):e1002985. doi: 10.1371/journal.pcbi.1002985. Epub 2013 Mar 21. PubMed DOI PMC
Plesinger F, Jurco J, Halamek J, Jurak P. SignalPlant. Brno, Czech Republic: Institute of Scientific Instruments of CAS; 2015. Retrieved from https://signalplant.codeplex.com.
Schiff SJ. Dangerous phase. Neuroinformatics. 2005;3:315–318. PubMed PMC
Quandt F, Reichert C, Hinrichs H, Heinze H, Knight R, Rieger J. Single trial discrimination of individual finger movements on one hand: a combined MEG and EEG study. NeuroImage. 2012;59:3316–24. PubMed PMC
Ramgopal, Sriram, et al. Seizure detection, seizure prediction, and closed-loop warning systems in epilepsy. Epilepsy & Behavior. 2014;37:291–307. PubMed
Rechtschaffen A, Kales A. A Manual of Standardized Terminology, Techniques and Scoring System for Sleep Stages of Human Subjects. U.S. Government Printing Office; Washington, DC: 1968. PubMed
Salanova, Vicenta, et al. Long-term efficacy and safety of thalamic stimulation for drug-resistant partial epilepsy. Neurology. 2015;84(10):1017–1025. PubMed PMC
Schulz Hartmut. Rethinking Sleep Analysis. Comment on the AASM Manual for the Scoring of Sleep and Associated Events. J Clin Sleep Med. 2008 Apr 15;4(2):99–103. PubMed PMC
Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Joliot M. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage. 2002;15(1):273–289. doi: 10.1006/nimg.2001.0978. PubMed DOI
Valderrama M, Crépon B, Botella-Soler V, Martinerie J, Hasboun D, Alvarado-Rojas C, Baulac M, Adam C, Navarro V, Le Van Quyen M. Human gamma oscillations during slow wave sleep. PLoS One. 2012;7(4):e33477. doi: 10.1371/journal.pone.0033477. Epub 2012 Apr 4. PubMed DOI PMC
Walter G. The location of cerebral tumors by electroencephalography. Lancet. 1936;2:305–308.
Warren CP, et al. Synchrony in Normal and Focal Epileptic Brain: The Seizure Onset Zone Is Functionally Disconnected. Journal of Neurophysiology. 2010 Oct 6;104(6):3530–39. doi: 10.1152/jn.00368.2010. PubMed DOI PMC
Worrell GA, Parish L, Cranstoun SD, Jonas R, Baltuch G, Litt B. High-frequency oscillations and seizure generation in neocortical epilepsy. Brain. 2004;127:1496–1506. PubMed
Worrell GA, Gardner AB, Stead SM, Hu S, et al. High-frequency oscillations in human temporal lobe: simultaneous microwire and clinical macroelectrode recordings. Brain. 2008;131:928–937. PubMed PMC
Worrell GA, Jerbi K, Kobayashi K, Lina JM, et al. Recording and analysis techniques for high-frequency oscillations. Prog Neurobiol. 2012;98:265–278. PubMed PMC
Zaveri HP, Duckrow RB, Spencer SS. The effect of a scalp reference signal on coherence measurements of intracranial electroencephalograms. Clin Neurophysiol. 2000;111:1293–1299. PubMed
Zempel JM, Politte DG, Kelsey M, Verner R, Nolan TS, Babajani-Feremi A, Prior F, Larson-Prior LJ. Characterization of scale-free properties of human electrocorticography in awake and slow wave sleep States. Front Neurol. 2012 Jun 12;3:76. doi: 10.3389/fneur.2012.00076. eCollection 2012. PubMed DOI PMC
Impedance Rhythms in Human Limbic System
Automated sleep classification with chronic neural implants in freely behaving canines
Phase-Amplitude Coupling Localizes Pathologic Brain with Aid of Behavioral Staging in Sleep
Electrical brain stimulation and continuous behavioral state tracking in ambulatory humans
Multi-feature localization of epileptic foci from interictal, intracranial EEG