Thalamocortical seizure onset patterns in drug resistant focal epilepsy
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články, preprinty
Grantová podpora
UH3 NS095495
NINDS NIH HHS - United States
UH3 NS112826
NINDS NIH HHS - United States
PubMed
40321275
PubMed Central
PMC12047945
DOI
10.1101/2025.04.11.25325282
PII: 2025.04.11.25325282
Knihovny.cz E-zdroje
- Klíčová slova
- EEG, epilepsy, neurostimulation, seizure, thalamus,
- Publikační typ
- časopisecké články MeSH
- preprinty MeSH
Drug-resistant epilepsy affects tens of millions of people worldwide and is associated with considerable morbidity and mortality. Thalamic deep brain stimulation and cortical responsive neurostimulation are proven treatments for focal epilepsy. Both have been used to target a range of thalamic nuclei, yet the roles of these thalamic nuclei in focal seizure generation remain incompletely understood. Thirteen patients with drug-resistant focal epilepsy undergoing intracranial EEG were consented to undergo investigation of thalamocortical networks. Sampled regions included cortical, mesial temporal, and thalamic brain regions. Visual and spectral analyses were performed to identify seizure onset patterns and correlate thalamic and cortical seizure activity. Thalamic ictal discharges were observed in all patients, including synchronous thalamocortical seizure onset discharges with distinct onset patterns. These onset patterns ranged from hypersynchronous spiking, low-voltage fast activity, ictal baseline shifts, to broadband suppression. Multiple thalamic nuclei were involved in ictal organization and propagation, with the specific nuclei depending on the cortical seizure network. The thalamus plays a crucial role in focal onset seizure generation and propagation, with distinct seizure onset patterns and nuclei involved. These findings support exploring a broader range of thalamic nuclei in epilepsy neurostimulation and have implications for seizure detection settings in intracranial sensing devices.
Department of Neurology Alfred Health 55 Commercial Rd Melbourne VIC 3004 Australia
Department of Neurology Mayo Clinic 200 1 St SW Rochester MN 55905 USA
Department of Neuroscience Monash University 99 Commercial Rd Melbourne VIC 3004 Australia
Department of Neurosurgery Mayo Clinic 200 1 St SW Rochester MN 55905 USA
Faculty of Biomedical Engineering Czech Technical University Prague Kladno Czech Republic
Zobrazit více v PubMed
Kwan P, Brodie MJ. Early identification of refractory epilepsy. New England Journal of Medicine. Published online 2000. doi:10.1056/NEJM200002033420503 PubMed DOI
Salanova V, Sperling MR, Gross RE, et al. The SANTÉ study at 10 years of follow-up: Effectiveness, safety, and sudden unexpected death in epilepsy. Epilepsia. 2021;62(6):1306–1317. doi:10.1111/EPI.16895 PubMed DOI
Nair DR, Laxer KD, Weber PB, et al. Nine-year prospective efficacy and safety of brain-responsive neurostimulation for focal epilepsy. Neurology. Published online 2020. doi:10.1212/WNL.0000000000010154 PubMed DOI PMC
Simpson HD, Schulze-Bonhage A, Gregory |, et al. Practical considerations in epilepsy neurostimulation. Epilepsia. 2022;00:1–16. doi:10.1111/EPI.17329 PubMed DOI PMC
Valentín A, García Navarrete E, Chelvarajah R, et al. Deep brain stimulation of the centromedian thalamic nucleus for the treatment of generalized and frontal epilepsies. Epilepsia. 2013;54(10):1823–1833. doi:10.1111/epi.12352 PubMed DOI
Dalic LJ, Warren AEL, Bulluss KJ, et al. DBS of thalamic centromedian nucleus for Lennox–Gastaut syndrome ( ESTEL trial). Annals of Neurology. Published online 2021:4-4. doi:10.1002/ana.26280 PubMed DOI
Cukiert A, Cukiert CM, Burattini JA, Mariani PP. Seizure outcome during bilateral, continuous, thalamic centromedian nuclei deep brain stimulation in patients with generalized epilepsy: a prospective, open-label study. Seizure. 2020;81:304–309. doi:10.1016/j.seizure.2020.08.028 PubMed DOI
Burdette D, Mirro EA, Lawrence M, Patra SE. Brain-responsive corticothalamic stimulation in the pulvinar nucleus for the treatment of regional neocortical epilepsy: A case series. Epilepsia Open. 2021;6(3):611–617. doi:10.1002/EPI4.12524 PubMed DOI PMC
Filipescu C, Lagarde S, Lambert I, et al. The effect of medial pulvinar stimulation on temporal lobe seizures. Epilepsia. 2019;60(4):e25–e30. doi:10.1111/epi.14677 PubMed DOI
Lundstrom BN, Osman GM, Starnes K, Gregg NM, Simpson HD. Emerging approaches in neurostimulation for epilepsy. Current Opinion in Neurology. 2023;36(2):69–76. doi:10.1097/WCO.0000000000001138 PubMed DOI PMC
Herlopian A, Cash SS, Eskandar EM, Jennings T, Cole AJ. Responsive neurostimulation targeting anterior thalamic nucleus in generalized epilepsy. Annals of Clinical and Translational Neurology. 2019;6(10):2104–2109. doi:10.1002/acn3.50858 PubMed DOI PMC
Tatum WO, Freund B, Middlebrooks EH, et al. CM-Pf deep brain stimulation in polyneuromodulation for epilepsy. Epileptic Disorders. n/a(n/a). doi:10.1002/epd2.20255 PubMed DOI
Nanda P, Sisterson N, Walton A, et al. Centromedian region thalamic responsive neurostimulation mitigates idiopathic generalized and multifocal epilepsy with focal to bilateral tonic–clonic seizures. Epilepsia. n/a(n/a). doi:10.1111/epi.18070 PubMed DOI
Wu TQ, Kaboodvand N, McGinn RJ, et al. Multisite thalamic recordings to characterize seizure propagation in the human brain. Brain. 2023;146(7):2792–2802. doi:10.1093/brain/awad121 PubMed DOI PMC
Pizzo F, Roehri N, Giusiano B, et al. The Ictal Signature of Thalamus and Basal Ganglia in Focal Epilepsy: A SEEG Study. Neurology. 2021;96(2):e280–e293. doi:10.1212/WNL.0000000000011003 PubMed DOI
McGinn R, Von Stein EL, Datta A, et al. Ictal Involvement of the Pulvinar and the Anterior Nucleus of the Thalamus in Patients With Refractory Epilepsy. Neurology. 2024;103(11):e210039. doi:10.1212/WNL.0000000000210039 PubMed DOI PMC
Romeo A, Roach ATI, Toth E, et al. Early ictal recruitment of midline thalamus in mesial temporal lobe epilepsy. Annals of Clinical and Translational Neurology. 2019;6(8):1552–1558. doi:10.1002/ACN3.50835 PubMed DOI PMC
Pizarro D, Ilyas A, Chaitanya G, et al. Spectral organization of focal seizures within the thalamotemporal network. Annals of Clinical and Translational Neurology. 2019;6(9):1836–1848. doi:10.1002/ACN3.50880 PubMed DOI PMC
Gregg NM, Marks VS, Sladky V, et al. Anterior nucleus of the thalamus seizure detection in ambulatory humans. Epilepsia. 2021;62(10):e158–e164. doi:10.1111/EPI.17047 PubMed DOI PMC
Norden AD, Blumenfeld H. The role of subcortical structures in human epilepsy. Epilepsy & Behavior. 2002;3(3):219–231. doi:10.1016/S1525-5050(02)00029-X PubMed DOI
Lüttjohann A, van Luijtelaar G. The role of thalamic nuclei in genetic generalized epilepsies. Epilepsy Research. 2022;182:106918. doi:10.1016/j.eplepsyres.2022.106918 PubMed DOI
Lagarde S, Buzori S, Trebuchon A, et al. The repertoire of seizure onset patterns in human focal epilepsies: Determinants and prognostic values. Epilepsia. 2019;60(1):85–95. doi:10.1111/EPI.14604 PubMed DOI
Ilyas A, Toth E, Chaitanya G, Riley K, Pati S. Ictal high-frequency activity in limbic thalamic nuclei varies with electrographic seizure-onset patterns in temporal lobe epilepsy. Clinical Neurophysiology. 2022;137:183–192. doi:10.1016/j.clinph.2022.01.134 PubMed DOI
Sladky V, Nejedly P, Mivalt F, et al. Distributed brain co-processor for tracking spikes, seizures and behaviour during electrical brain stimulation. Brain Communications. 2022;4(3). doi:10.1093/BRAINCOMMS/FCAC115 PubMed DOI PMC
Horn A, Kühn AA. Lead-DBS: A toolbox for deep brain stimulation electrode localizations and visualizations. NeuroImage. 2015;107:127–135. doi:10.1016/j.neuroimage.2014.12.002 PubMed DOI
Einevoll GT, Kayser C, Logothetis NK, Panzeri S. Modelling and analysis of local field potentials for studying the function of cortical circuits. Nature Reviews Neuroscience 2013 14:11. 2013;14(11):770–785. doi:10.1038/nrn3599 PubMed DOI
Lundstrom BN, Gompel JV, Khadjevand F, Worrell G, Stead M. Chronic subthreshold cortical stimulation and stimulation-related EEG biomarkers for focal epilepsy. Brain Communications. 2019;1(1):fcz010. doi:10.1093/braincomms/fcz010 PubMed DOI PMC
Gadot R, Korst G, Shofty B, Gavvala JR, Sheth SA. Thalamic stereoelectroencephalography in epilepsy surgery: a scoping literature review. Journal of Neurosurgery. 2022;1(aop):1–16. doi:10.3171/2022.1.JNS212613 PubMed DOI
Edmonds B, Miyakoshi M, Gianmaria Remore L, et al. Characteristics of ictal thalamic EEG in pediatric-onset neocortical focal epilepsy. Clinical Neurophysiology. 2023;154:116–125. doi:10.1016/j.clinph.2023.07.007 PubMed DOI PMC