Temperature and Precipitation More Than Tree Cover Affect the Distribution Patterns of Epiphytic Mosses within the Orthotrichaceae Family in China and Adjacent Areas

. 2023 Jan 03 ; 12 (1) : . [epub] 20230103

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36616349

Grantová podpora
SGS14/PřF/2022 University of Ostrava

Epiphytes, including vascular and non-vascular, constitute a large part of global plant biodiversity. Distribution of obligatory epiphytic bryophytes results from climate and local habitat conditions. The most important epiphytic bryophytes and at the same time poorly investigated and taxonomically problematic ones belong to the family Orthotrichaceae. Epiphytic mosses are also ideal organisms for species modelling, because of having no roots, they are highly dependent on external environmental conditions. For this purpose, we used the ecological niche modelling approach to define their potential distribution in China and adjacent areas and explore factors that shape this distribution. We used 617 occurrence records of 23 species from six genera within the Orthotrichaceae family. Our results suggest that the distribution of members of the Orthotrichaceae family is predominantly affected by bioclimatic variables, especially bio10 (mean temperature of the warmest quarter), bio15 (precipitation seasonality), bio18 (precipitation of the warmest quarter), bio19 (precipitation of the coldest quarter), bio9 (mean temperature of the driest quarter), and bio2 (mean diurnal range). However, the distribution of particular genera is ruled by a different set of those variables. The distribution of two genera (Leratia and Ulota) is also highly influenced by land cover (especially mixed/other trees), whereas human footprint shows a moderate contribution to models of three genera (Lewinskya, Orthotrichum, Nyholmiella). Based on the occupied climatic niche and distribution patterns, representatives of the studied family are divided into two groups. The 'western-montane group' is characterised by lower temperatures and lower precipitation whereas the 'eastern-lowland' group' by more humid and warmer conditions.

Zobrazit více v PubMed

Overpeck J., Rind D., Goldberg R. Climate-induced changes in forest disturbance and vegetation. Nature. 1990;343:51–53. doi: 10.1038/343051a0. DOI

Pearson R.G., Dawson T.P. Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful? Glob. Ecol. Biogeogr. 2003;12:361–371. doi: 10.1046/j.1466-822X.2003.00042.x. DOI

Thuiller W., Lavergne S., Roquet C., Boulangeat I., Lafourcade B., Araujo M.B. Consequences of climate change on the tree of life in Europe. Nature. 2011;470:531–534. doi: 10.1038/nature09705. PubMed DOI

Allen A.P., Brown J.H., Gillooly J.F. Global biodiversity, biochemical kinetics, and the energetic-equivalence rule. Science. 2002;297:1545–1548. doi: 10.1126/science.1072380. PubMed DOI

Currie D., Mittelbach G., Cornell H., Field R., Guégan J.-F., Hawkins B., Kaufman D., Kerr J., Oberdorff T., O’Brien E., et al. Predictions and tests of climate-based hypotheses broad-scale variation in taxonomic richness. Ecol. Lett. 2004;7:1121–1134. doi: 10.1111/j.1461-0248.2004.00671.x. DOI

Stein A., Gerstner K., Kreft H. Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecol. Lett. 2014;17:866–880. doi: 10.1111/ele.12277. PubMed DOI

Rana S.K., Price T.D., Qian H. Plant species richness across the Himalaya driven by evolutionary history and current climate. Ecosphere. 2019;10:e02945. doi: 10.1002/ecs2.2945. DOI

Vintsek L., Klichowska E., Nowak A., Nobis M. Genetic differentiation, demographic history and distribution models of high alpine endemic vicariants outline the response of species to predicted climate changes in a Central Asian biodiversity hotspot. Ecol. Indic. 2022;144:e109419. doi: 10.1016/j.ecolind.2022.109419. DOI

Gignac L.D. Bryophytes as Indicators of Climate Change. Bryologist. 2001;104:410–420. doi: 10.1639/0007-2745(2001)104[0410:BAIOCC]2.0.CO;2. DOI

Wierzcholska S., Dyderski M.K., Jagodziński A.M. Potential distribution of an epiphytic bryophyte depends on climate and forest continuity. Glob. Planet. Change. 2020;193:e103270. doi: 10.1016/j.gloplacha.2020.103270. DOI

Draper I., Lara F., Albertos B., Garilleti R., Mazimpaka V. Epiphytic bryoflora of the Atlas and Antiatlas Mountains, including a synthesis of the distribution of epiphytic bryophytes in Morocco. J. Bryol. 2006;28:312–330. doi: 10.1179/174328206X136313. DOI

Mazimpaka V., Medina N.G., Draper I., Lara F. Epiphytic bryophyte flora in dry environments from the Western Mediterranean: The special case of Sierra Alhamilla (Almería, South-eastern Spain) Plant Biosyst. 2009;143:113–125. doi: 10.1080/11263500903220224. DOI

Zotz G., Bader M. Sampling vascular epiphyte diversity-Species richness and community structure. Ecotropica. 2011;17:103–112.

Goffinet B., Bayer R.J., Vitt D.H. Circumscription and phylogeny of the Orthotrichales (Bryopsida) inferred from rbcL sequence analyses. Am. J. Bot. 1998;85:1324–1337. doi: 10.2307/2446642. PubMed DOI

Goffinet B., Shaw A.J., Cox C.J., Wickett N.J., Boles S. Phylogenetic inferences in the Orthotrichoideae (Orthotrichaceae: Bryophyta) based on variation in four loci from all genomes. Monogr. Syst. Bot. Mo. Bot. Gard. 2004;98:270–289.

Sawicki J., Plášek V., Szczecińska M. Preliminary studies on the phylogeny of Orthotrichum (Bryophyta) inferred from nuclear ITS sequences. Ann. Bot. Fenn. 2009;46:507–515. doi: 10.5735/085.046.0603. DOI

Sawicki J., Plášek V., Szczecińska M. Molecular studies resolve Nyholmiella (Orthotrichaceae) as a separate genus. J. Syst. Evol. 2010;48:183–194. doi: 10.1111/j.1759-6831.2010.00076.x. DOI

Sawicki J., Plášek V., Szczecińska M. Molecular data do not support the current division of Orthotrichum (Bryophyta) species with immersed stomata. J. Syst. Evol. 2012;50:12–24. doi: 10.1111/j.1759-6831.2011.00168.x. DOI

Sawicki J., Plášek V., Ochyra R., Szczecińska M., Ślipiko M., Myszczyński K., Kulik T. Mitogenomic analyses support the recent division of the genus Orthotrichum (Orthotrichaceae, Bryophyta) Sci. Rep. 2017;7:e4408. doi: 10.1038/s41598-017-04833-z. PubMed DOI PMC

Plášek V., Komínková Z., Číhal L., Guo S.-L. A noteworthy disjunction of the epiphytic moss Lewinskya graphiomitria (Orthotrichaceae) to China. Acta Soc. Bot. Pol. 2020;83:45–53. doi: 10.5586/asbp.8932. DOI

Draper I., Garilleti R., Calleja J.A., Flagmeier M., Mazimpaka V., Vigalondo B., Lara F. Insights into the evolutionary history of the Subfamily Orthotrichoideae (Orthotrichaceae, Bryophyta): New and former supra-specific taxa so far obscured by prevailing homoplasy. Front. Plant Sci. 2021;12:427. doi: 10.3389/fpls.2021.629035. PubMed DOI PMC

Draper I., Villaverde T., Garilleti R., Burleigh J.G., McDaniel S.F., Mazimpaka V., Calleja J.A., Lara F. An NGS-Based Phylogeny of Orthotricheae (Orthotrichaceae, Bryophyta) With the Proposal of the New Genus Rehubryum from Zealandia. Front. Plant Sci. 2022;13:882960. doi: 10.3389/fpls.2022.882960. PubMed DOI PMC

Ma Y., Li D., Yu J., Guo S. Geographical distribution patterns of Macromitrium and Orthotrichum in China and their relationship with climatic factors. Biodivers. Sci. 2013;21:177–184. doi: 10.3724/SP.J.1003.2013.08102. DOI

Shen Y., Yu J., Guo S.L. Macromitrium and Orthotrichum distribution patterns under different climate warming scenarios in China. Acta Ecol. Sin. 2015;35:6449–6459.

Nowak A., Plášek V., Nobis M., Nowak S. Epiphytic communities of open habitats in the western Tian-Shan Mts (Middle Asia: Kyrgyzstan) Cryptogam. Bryol. 2016;37:415–433. doi: 10.7872/cryb/v37.iss4.2016.415. DOI

Plášek V., Ochyra R. Orthotrichum alpestre, a New Addition to the Moss Flora of Poland, with Notes on O. schimperi (Orthotrichaceae: Bryophyta) Acta Soc. Bot. Pol. 2020;89:e89310. doi: 10.5586/asbp.89310. DOI

Medina N.G., Albertos B., Lara F., Mazimpaka V., Garilleti R., Draper D., Hortal J. Species richness of epiphytic bryophytes: Drivers across scales on the edge of the Mediterranean. Ecography. 2014;37:80–93. doi: 10.1111/j.1600-0587.2013.00095.x. DOI

Medina N.G., Bowker M.A., Hortal J., Mazimpaka V., Lara F. Shifts in the importance of the species pool and environmental controls of epiphytic bryophyte richness across multiple scales. Oecologia. 2018;186:805–816. doi: 10.1007/s00442-018-4066-x. PubMed DOI

Wang Q.H., Jia Y. A taxonomic revision of the Asian species of Ulota Mohr (Orthotrichaceae) Bryologist. 2012;115:412–443. doi: 10.1639/0007-2745-115.3.412. DOI

Lou Y.X., Si H., Guo S.L. Using macroclimatic models to estimate the distribution ranges of taxonomically challenging taxa, an example with Macromitrium cavaleriei Cardot & Ther. (Orthotrichaceae) J. Bryol. 2014;36:271–279. doi: 10.1179/1743282014Y.0000000105. DOI

Beck H.E., Zimmermann N.E., McVicar T.R., Vergopolan N., Berg A., Wood E.F. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data. 2018;5:180214. doi: 10.1038/sdata.2018.214. PubMed DOI PMC

Skoupá Z., Ochyra R., Guo S.L., Sulayman M., Plášek V. Distributional novelties for Lewinskya, Nyholmiella and Orthotrichum (Orthotrichaceae) in China. Herzogia. 2017;30:58–73. doi: 10.13158/heia.30.1.2017.58. DOI

Skoupá Z., Ochyra R., Guo S.L., Sulayman M., Plášek V. Three remarkable additions of Orthotrichum species (Orthotrichaceae) to the moss flora of China. Herzogia. 2018;31:88–100. doi: 10.13158/099.031.0105. DOI

Plášek V., Komínková Z., Ochyra R., Fialová L., Guo S., Sulayman M. A Synopsis of Orthotrichum s. lato (Bryophyta, Orthotrichaceae) in China, with Distribution Maps and a Key to Determination. Plants. 2021;10:499. doi: 10.3390/plants10030499. PubMed DOI PMC

Shi Y., Wang G. Changes in building climate zones over China based on high-resolution regional climate projections. Environ. Res. Lett. 2020;15:e114045. doi: 10.1088/1748-9326/abbde8. DOI

Lin G., Fu J., Jiang D., Wang J., Wang Q., Dong D. Spatial variation of the relationship between PM2. 5 concentrations and meteorological parameters in China. BioMed Res. Int. 2015;2015:e84618. doi: 10.1155/2015/684618. PubMed DOI PMC

Peterson A., Soberón J. Species Distribution Modeling and Ecological Niche Modeling: Getting the Concepts Right. Nat. Conserv. 2012;10:1–6. doi: 10.4322/natcon.2012.019. DOI

Jia Y., He S., Guo S.L. Orthotrichaceae. In: Wu P.-C., Crosby M.R., He S., editors. Moss Flora of China: Erpodiaceae–Climaciaceae. Missouri Botanical Garden Press; St. Louis, MO, USA: 2011. pp. 22–117.

Plášek V., Sawicki J., Ochyra R., Szczecińska M., Kulik T. New taxonomical arrangement of the traditionally conceived genera Orthotrichum and Ulota (Orthotrichaceae, Bryophyta) Acta Musei Sil. Sci. Nat. 2015;64:169–174. doi: 10.1515/cszma-2015-0024. DOI

Plášek V., Sawicki J., Ochyra R. Are Orthotrichum and Dorcadion (Orthotrichaceae, Bryophyta) heterotypic generic names? Acta Musei Sil. Sci. Nat. 2016;65:193–202. doi: 10.1515/cszma-2016-0023. DOI

Lara F., Garilleti R., Goffinet B., Draper I., Medina R., Vigalondo B., Mazimpaka V. Lewinskya, a new genus to accommodate the phaneroporous and monoicous taxa of Orthotrichum (Bryophyta, Orthotrichaceae) Cryptogam. Bryol. 2016;37:361–382. doi: 10.7872/cryb/v37.iss4.2016.361. DOI

Crosby M.R., Magill R.E., Allen B., He S. A Checklist of the Mosses. Missouri Botanical Garden, St. Louis, Missouri. [(accessed on 4 September 2022)]. Available online: http://www.mobot.org/MOBOT/tropicos/most/checklist.shtml.

Frey W., Stech M. Marchantiophyta, Bryophyta, Anthocerotophyta. In: Frey W., editor. Syllabus of Plant Families. A. Engler´s Syllabus der Pflanzenfamilien. Gebr. Borntraeger; Stuttgart, Germany: 2009. pp. 1–419.

Vitt D.H., Ramsay H.P. The Macromitrium complex in Australasia (Orthotrichaceae, Bryopsida). Part I. Taxonomy and phylogenetic relationships. J. Hattori Bot. Lab. 1985;59:325–451.

Vitt D.H. The infrageneric evolution, phylogeny, and taxonomy of the genus Orthotrichum (Musci) in North America. Nova Hedwig. 1971;21:683–711.

Lewinsky J. The genus Orthotrichum. Morphological studies and evolutionary remarks. J. Hattori Bot. Lab. 1977;3:31–61.

Otnyukova T.N. A new species of Orthotrichum (Orthotrichaceae, Musci) from Tuva Republic (South Siberia) Arctoa. 2001;10:155–156. doi: 10.15298/arctoa.10.15. DOI

Gao C., Lai M.-J. Illustrations of Bryophytes of China. SMC Publishing Inc.; Taipei, China: 2003. pp. 1–1313.

Wang Q., Jia Y. A taxonomic revision of Ulota Mohr (Orthotrichaceae) in South and Central America. Plant Divers. 2016;38:65–88. doi: 10.1016/j.pld.2016.03.003. PubMed DOI PMC

Zizka A., Azevedo J., Leme E., Neves B., Ferreira da Costa A., Caceres D., Zizka G. Biogeography and conservation status of the pineapple family (Bromeliaceae) Divers. Distrib. 2019;18:183–195. doi: 10.1111/ddi.13004. DOI

Hijmans R.J., Phillips S., Leathwick J., Elith J. DISMO: Species Distribution Modeling. R Package Version 1.1-4. 2017. [(accessed on 4 September 2022)]. Available online: https://CRAN.R-project.org/package=dismo.

R Development Core Team R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. 2020. [(accessed on 4 September 2022)]. Available online: http://www.R-project.org.

QGIS Development Team QGIS Geographic Information System. Open Source Geospatial Foundation Project. 2020. [(accessed on 4 September 2022)]. Available online: http://qgis.osgeo.org.

Phillips S.J., Anderson R.P., Schapire R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006;190:231–259. doi: 10.1016/j.ecolmodel.2005.03.026. DOI

Fick S.E., Hijmans R.J. Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climat. 2017;32:4302–4315. doi: 10.1002/joc.5086. DOI

Tuanmu M.N., Jetz W. A global 1-km consensus land-cover product for biodiversity and ecosystem modeling. Global Ecol. Biogeogr. 2014;23:1031–1045. doi: 10.1111/geb.12182. DOI

Venter O., Sanderson E.W., Magrach A., Allan J.R., Beher J., Jones K.R., Possingham H.P., Laurance W.F., Wood P., Fekete B.M., et al. Last of the Wild Project Version 3 (LWP-3): 2009 Human Footprint. NASA Socioeconomic Data and Applications Center (SEDAC); New York, NY, USA: 2018. DOI

Rodríguez-Castañeda G., Hof A.R., Jansson R., Harding L.E. Predicting the Fate of Biodiversity Using Species’ Distribution Models: Enhancing Model Comparability and Repeatability. PLoS ONE. 2012;7:e44402. doi: 10.1371/journal.pone.0044402. PubMed DOI PMC

Phillips S.J., Dudík M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography. 2008;31:161–175. doi: 10.1111/j.0906-7590.2008.5203.x. DOI

ESRI, Inc. Cell Size and Resampling in Analysis. [(accessed on 4 September 2022)]. Available online: https://desktop.arcgis.com/en/arcmap/latest/extensions/spatial-analyst/performing-analysis/cell-size-and-resampling-in-analysis.html.

Dormann C.F., Elith J., Bacher S., Buchmann C., Carl G., Carré G., García M.J., Gruber B., Lafourcade B., Leitão P.J., et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography. 2013;36:27–46. doi: 10.1111/j.1600-0587.2012.07348.x. DOI

TIBCO, STATISTICA (Data Analysis Software System) 2017. [(accessed on 4 September 2022)]. Available online: https://docs.tibco.com/products/tibco-statistica/archive.

Baldwin R.A. Use of maximum entropy modelling in wildlife research. Entropy. 2009;11:854–866. doi: 10.3390/e11040854. DOI

Brown J., Bennett J., French C. SDMtoolbox 2.0: The next generation Python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. PeerJ. 2017;5:e4095. doi: 10.7717/peerj.4095. PubMed DOI PMC

Janžekovič F., Novak T. PCA—A Powerful Method for Analyze Ecological Niches. In: Sanguansat P., editor. Principal Component Analysis—Multidisciplinary Applications. IntechOpen; London, UK: 2012. DOI

Escoriza D., Ben Hassine J., Boix D. Factors regulating the invasive success of an alien frog: A comparison of the ecology of the native and alien populations. Hydrobiologia. 2014;30:127–138. doi: 10.1007/s10750-014-1827-3. DOI

Hsin-Shih C., Dian-an Y. A study on climate-vegetation interaction in China: The ecological model for global change. Coenoses. 1993;8:105–119.

China Meteorological Administration (CHMA) Climate. CHMA: Beijing, China. [(accessed on 4 September 2022)];2022 Available online: https://www.cma.gov.cn/en2014/climate/shtml.

Proctor M.C.F. Climate responses and limits of bryophytes: Comparisons and contracts with vascular plants. In: Slack N., Tuba Z., Stark L.R., editors. Bryophyte Ecology and Climate Change. Cambridge University Press; Cambridge, UK: 2011. pp. 35–54.

Ódor P., Király I., Tinya F., Bortignon F., Nascimbene J. Patterns and drivers of species composition of epiphytic bryophytes and lichens in managed temperate forests. For. Ecol. Manag. 2013;306:256–265. doi: 10.1016/j.foreco.2013.07.001. DOI

Plášek V., Sawicki J., Číhal L. Orthotrichum pamiricum (Bryophyta), a new epiphytic moss species from Pamir Mountains in Central Asia. Turk. J. Bot. 2014;38:754–762. doi: 10.3906/bot-1312-23. DOI

Fudali E. Recent tendiences in distribution of epiphytic bryophytes in urban areas: A Wroclaw case study (south-west Poland) Polish Bot. J. 2012;57:231–241.

Stebel A., Fojcik B. Changes in the epiphytic bryophyte flora in Katowice city (Poland) Cryptogam. Bryol. 2016;37:399–414. doi: 10.7872/cryb/v37.iss4.2016.399. DOI

Oishi Y. Urban heat island effects on moss gardens in Kyoto, Japan. Landsc. Ecol. Eng. 2019;15:177–184. doi: 10.1007/s11355-018-0356-z. DOI

Żołnierz L., Fudali E., Szymanowski M. Epiphytic Bryophytes in an Urban Landscape: Which Factors Determine Their Distribution, Species Richness, and Diversity? A Case Study in Wroclaw, Poland. Int. J. Environ. Res. Public. Health. 2022;19:6274. doi: 10.3390/ijerph19106274. PubMed DOI PMC

Zheng J., Yin Y., Li B. A new scheme for climate regionalization in China. Acta Geogr. Sin. 2010;65:3–13.

Číhal L., Kaláb O., Plášek V. Modeling the distribution of rare and interesting moss species of the family Orthotrichaceae (Bryophyta) in Tajikistan and Kyrgyzstan. Acta Soc. Bot. Pol. 2017;86:e3543. doi: 10.5586/asbp.3543. DOI

Lourenço G.M., Soares G.R., Santos T.P., Dáttilo W., Freitas A.V., Ribeiro S.P. Equal but Different: Natural Ecotones Are Dissimilar to Anthropic Edges. PLoS ONE. 2019;14:e0213008. doi: 10.1371/journal.pone.0213008. PubMed DOI PMC

Malanson G.P., Resler L.M., Tomback D.F. Ecotone Response to Climatic Variability Depends on Stress Gradient Interactions. Clim. Chang. Resp. 2017;4:1. doi: 10.1186/s40665-017-0029-4. DOI

Holland M.M., Risser P.G., Naiman R.J. Ecotones: The Role of Landscape Boundaries in the Management and Restoration of Changing Environments. Chapman and Hall; New York, NY, USA: 1991. pp. 1–165.

Kent M., Moyeed R.A., Reid C.L., Pakeman R., Weaver R. Geostatistics, spatial rate of change analysis and boundary detection in plant ecology and biogeography. Prog. Phys. Geogr. 2006;30:201–231. doi: 10.1191/0309133306pp477ra. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...