Mitogenomic analyses support the recent division of the genus Orthotrichum (Orthotrichaceae, Bryophyta)

. 2017 Jun 30 ; 7 (1) : 4408. [epub] 20170630

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid28667304
Odkazy

PubMed 28667304
PubMed Central PMC5493672
DOI 10.1038/s41598-017-04833-z
PII: 10.1038/s41598-017-04833-z
Knihovny.cz E-zdroje

A recently presented taxonomical arrangement of the moss genus Orthotrichum Hedw. s.l. substantially changed the traditional view of the taxon that had been accepted throughout the twentieth century. This paper provides the results of mitogenomic studies that strongly support the new taxonomical concept. Comparative analyses presented in this study confirmed the stable structure of moss mitogenomes. Moreover, 17 complete mitogenome sequences were used to identify the major evolutionary groups, including 11 newly sequenced ones, for this study. The analysis of mitochondrial hotspots revealed intron 4 of the cox1 gene to be the most variable non-coding region. The most variable protein-coding genes in the tribe Orthotricheae were ccmFC and tatC. The intergenic and intronic hotspots of Orthotrichum s.l. identified in the present study do not correspond to those described in vascular plant mitogenomes.

Zobrazit více v PubMed

Goffinet B, Buck WR, Wall MA. Orthotrichum freyanum (Orthotrichaceae), a new epiphytic moss from Chile. Nova Hedwigia. 2007;131:1–11.

Fedosov VE, Ignatova EA. Orthotrichum dagestanicum sp. nov. (Orthotrichaceae, Musci) – a new species from Dagestan (Eastern Caucasus) Arctoa. 2010;19:69–74. doi: 10.15298/arctoa.19.05. DOI

Lara F, Garilleti R, Mazimpaka V. A peculiar new Orthotrichum species (Orthotrichaceae, Bryopsida) from central Argentina. Bot. J. Linn. Soc. 2007;155:477–482. doi: 10.1111/j.1095-8339.2007.00720.x. DOI

Lara F, Garilleti R, Mazimpaka V. Orthotrichum karoo (Orthotrichaceae), a new species with hyaline-owned leaves from southwestern Africa. Bryologist. 2009;112:194–201. doi: 10.1639/0007-2745-112.1.194. DOI

Lara F, Garilleti R, Medina R, Mazimpaka V. A new key to the genus Orthotrichum Hedw. in Europe and the Mediterranean Region. Cryptogam. Bryol. 2009;30:129–142.

Medina R, Lara F, Mazimpaka V, Garilleti R. Orthotrichum norrisii (Orthotrichaceae), a new epiphytic Californian moss. Bryologist. 2008;111:670–675. doi: 10.1639/0007-2745-111.4.670. DOI

Medina R, Lara F, Mazimpaka V, Shevock JR, Garilleti R. Orthotrichum pilosissimum (Orthotrichaceae), a new moss from arid areas of Nevada with unique axillary hairs. Bryologist. 2011;114:316–324. doi: 10.1639/0007-2745.114.2.316. DOI

Medina R, Lara F, Goffinet B, Garilleti R, Mazimpaka V. Integrative taxonomy successfully resolves the pseudocryptic complex of the disjunct epiphytic moss Orthotrichum consimile s.l. (Orthotrichaceae) Taxon. 2012;61:1180–1198.

Medina RF, Lara B, Goffinet R, Garilleti R, Mazimpaka V. Unnoticed diversity within the disjunct moss Orthotrichum tenellum s.l. validated by morphological and molecular approaches. Taxon. 2013;62:1133–1152. doi: 10.12705/626.15. DOI

Plášek V, Sawicki J, Trávníčková V, Pasečná M. Orthotrichum moravicum (Orthotrichaceae), a new species from the Czech Republic. Bryologist. 2009;112:329–336. doi: 10.1639/0007-2745-112.2.329. DOI

Plášek V, Sawicki J, Číhal L. Orthotrichum pamiricum (Bryophyta), a new epiphytic moss species from Pamir Mountains in Central Asia. Turk. J. Bot. 2014;38:754–762.

Garilleti R, Shevock JR, Norris DH, Lara F. Orthotrichum mazimpakanum sp. nov. and O. anodon (Orthotrichaceae), two similar species from California. Bryologist. 2011;114:346–355. doi: 10.1639/0007-2745-114.2.346. DOI

Kiebacher, T. & Lüth, M. Orthotrichum dentatum T.Kiebacher & Lüth sp. nov. (Orthotrichaceae). J. Bryol., doi:10.1080/03736687.2016.1186858 (2016).

Lewinsky J. A synopsis of the genus Orthotrichum Hedw. (Musci, Orthotrichaceae) Bryobrothera. 1993;2:1–59.

Lewinsky-Haapasaari J, Hedenäs L. A cladistic analysis of the moss genus Orthotrichum. Bryologist. 1998;101:519–555. doi: 10.1639/0007-2745(1998)101[519:ACAOTM]2.0.CO;2. DOI

Goffinet B, Bayer RJ, Vitt DH. Circumscription and phylogeny of the Orthotrichales (Bryopsida) inferred from rbcL sequence analyses. Am. J. Bot. 1998;85:1324–1337. doi: 10.2307/2446642. PubMed DOI

Goffinet B, Shaw AJ, Cox CJ, Wickett NJ, Boles S. Phylogenetic inferences in the Orthotrichoideae (Orthotrichaceae: Bryophyta) based on variation in four loci from all genomes. Monogr. Syst. Bot. Missouri Bot. Gard. 2004;98:270–289.

Sawicki J, Plášek V, Szczecińska M. Preliminary studies on the phylogeny of Orthotrichum inferred from nuclear ITS sequences. Ann. Bot. Fenn. 2009;46:507–515. doi: 10.5735/085.046.0603. DOI

Sawicki J, Plášek V, Szczecińska M. Molecular studies resolve Nyholmiella (Orthotrichaceae) as a separate genus. J. Syst. Evol. 2010;48:183–194. doi: 10.1111/j.1759-6831.2010.00076.x. DOI

Plášek V, Sawicki J, Ochyra R, Szczecińska M, Kulik T. New taxonomical arrangement of the traditionally conceived genera Orthotrichum and Ulota (Orthotrichaceae, Bryophyta) Acta Mus. Siles., Sci. Natur. 2015;64:169–174.

Lara F, et al. Lewinskya, a new genus to accommodate the phaneroporous and monoicous taxa of Orthotrichum (Bryophyta, Orthotrichaceae) Cryptogam., Bryol. 2016;37(4):361–382. doi: 10.7872/cryb/v37.iss4.2016.361. DOI

Ramsay, H. P. Australian Mosses Online. 47. Orthotrichaceae: Ulota. http://www.anbg.gov.au/abrs/Mosses_online/Orthotrichaceae_Ulota.pdf (Accessed 15 August 2016) (2012).

Medina R, Lara F, Goffinet B, Garilleti R, Mazimpaka V. Unnoticed diversity within the disjunct moss Orthotrichum tenellum s.l. validated by morphological and molecular approaches. Taxon. 2013;62:1133–1152. doi: 10.12705/626.15. DOI

Doucet-Beaupre H, et al. Mitochondrial phylogenomics of the Bivalvia (Mollusca): searching for the origin and mitogenomic correlates of doubly uniparental inheritance of mtDNA. BMC Evol. Biol. 2010;10:50. doi: 10.1186/1471-2148-10-50. PubMed DOI PMC

Sawicki J, Szczecińska M, Bednarek-Ochyra H, Ochyra R. Mitochondrial phylogenomics supports splitting the traditionally conceived genus Racomitrium (Bryophyta: Grimmiaceae) Nova Hedwigia. 2015;100:293–317. doi: 10.1127/nova_hedwigia/2015/0248. DOI

Vilstrup JT, et al. Mitochondrial Phylogenomics of Modern and Ancient Equids. PLoS ONE. 2013;8:e55950. doi: 10.1371/journal.pone.0055950. PubMed DOI PMC

Liu Y, Medina R, Goffinet B. 350 My of mitochondrial genome stasis in mosses, an early land plant lineage. Mol. Biol. Evol. 2014;31:2586–2591. doi: 10.1093/molbev/msu199. PubMed DOI

Szczecińska M, Gomolińska A, Szkudlarz P, Sawicki J. Plastid and nuclear genomic resources of a relict and endangered plant species: Chamaedaphne calyculata (L.) Moench (Ericaceae) Turk. J. Bot. 2014;38:1229–1238. doi: 10.3906/bot-1405-80. DOI

Larraín J, Quandt D, Stech M, Muñoz J. Lumping or splitting? The case of Racomitrium (Bryophytina: Grimmiaceae) Taxon. 2013;62:1117–1132. doi: 10.12705/626.45. DOI

Liu Y, Xue J-Y, Wang B, Li L, Qiu Y-L. The mitochondrial genomes of the early land plants Treubia lacunosa and Anomodon rugelii: dynamic and conservative evolution. PLoS ONE. 2011;6:e25836. doi: 10.1371/journal.pone.0025836. PubMed DOI PMC

Sawicki J, Szczecińska M, Kulik T, Gomolińska A, Plášek V. The complete mitochondrial genome of the epiphytic moss Orthotrichum speciosum. Mitochondr. DNA Part A. 2016;27:1709–1710. PubMed

Sawicki J, et al. The complete mitochondrial genome of the rare and endangered Orthotrichum rogeri (Orthotrichaceae, Bryophyta). Mitochondr. DNA. 2015;27:3208–3209. PubMed

Lewinsky J. The genus Orthotrichum Hedw. (Orthotrichaceae, Musci) in Southeast Asia. A taxonomic revision. J. Hattori Bot. Lab. 1992;72:1–88.

Podpěra, L. Conspectus Muscorum Europaeorum. 1–697 (ČSAV, Prague, Czech Republic, 1954).

Iwatsuki Z, Sharp AJ. Interesting mosses from Formosa. J. Hattori Bot. Lab. 1970;33:161–170.

Villarreal JC, Renner SS. Correlates of monoicy and dioicy in hornworts, the apparent sister group to vascular plants. BMC Evol. Biol. 2013;13:239. doi: 10.1186/1471-2148-13-239. PubMed DOI PMC

McDaniel SF, Atwood J, Burleigh JG. Recurrent evolution of dioecy in bryophytes. Evolution. 2013;67:567–572. doi: 10.1111/j.1558-5646.2012.01808.x. PubMed DOI

Tanurdzic M, Banks JA. Sex-Determining Mechanism in Land Plants. The Plant Cell. 2004;16:61–71. doi: 10.1105/tpc.016667. PubMed DOI PMC

Milewicz M, Sawicki J. Mechanisms of Sex Determination in Plants. Cas. Slez. Muz. Opava (A) 2012;61:123–129.

Tessler M, Cunningham SW, Clark TA. Noteworthy habitat and phylogeny updates for eastern US Ulota (Orthotrichaceae, Bryophyta). Mitochond. DNA. 2016;6:1–5. PubMed

Caparrós R, Lara F, Draper I, Mazimpaka V, Garilleti R. Integrative taxonomy sheds light on an old problem: the Ulota crispa complex (Orthotrichaceae, Musci) Bot. J. Linn. Soc. 2016;180:427–451. doi: 10.1111/boj.12397. DOI

Myszczyński K, et al. The complete mitochondrial genome of the cryptic species C of Aneura pinguis. Mitochodr. DNA. 2015;18:1–2. PubMed

Lewis L, Liu Y, Rozzi R, Goffinet B. Infraspecific variation within and across complete organellar genomes and nuclear ribosomal repeats in a moss. Mol. Phylogenet. Evol. 2016;96:195–199. doi: 10.1016/j.ympev.2015.12.005. PubMed DOI

Vigalondo B, et al. Comparing three complete mitochondrial genomes of the moss genus Orthotrichum Hedw. Mitochondr. DNA Part B: Res. 2016;1:168–170. doi: 10.1080/23802359.2016.1149784. PubMed DOI PMC

Cui P, et al. A complete mitochondrial genome of wheat (Triticum aestivum cv. Chinese Yumai), and fast evolving mitochondrial genes in higher plants. J. Genet. 2009;88:299–307. doi: 10.1007/s12041-009-0043-9. PubMed DOI

Tang M, et al. Rapid evolutionary divergence of Gossypium barbadense and G. hirsutum mitochondrial genomes. BMC Genomics. 2015;16:770. doi: 10.1186/s12864-015-1988-0. PubMed DOI PMC

Barr CM, Keller SR, Ingvarsson PK, Sloan DB, Taylor DR. Variation in mutation rate and polymorphism among mitochondrial genes of Silene vulgaris. Mol. Biol. Evol. 2007;24:1783–1791. doi: 10.1093/molbev/msm106. PubMed DOI

Jaramillo-Correa JP, Aguirre-Planter E, Eguiarte LE, Khasa DP, Bousquet J. Evolution of an ancient microsatellite hotspot in the conifer mitochondrial genome and comparison with other plants. J. Mol. Evol. 2013;76:146–57. doi: 10.1007/s00239-013-9547-2. PubMed DOI

Chaw S-M, Shih AC-C, Wang D, Wu Y-W, Liu S-M. The mitochondrial genome of the gymnosperm Cycas taitungensis contains a novel family of short interspersed elements, Bpu sequences, and abundant RNA editing sites. Mol. Biol. Evol. 2008;25:603–615. doi: 10.1093/molbev/msn009. PubMed DOI

André C, Levy A, Walbot V. Small repeated sequences and the structure of plant mitochondrial genomes. Trends Genet. 1992;8:128–132. PubMed

Maréchal A, Brisson N. Recombination and the maintenance of plant organelle genome stability. New Phytol. 2010;186:299–317. doi: 10.1111/j.1469-8137.2010.03195.x. PubMed DOI

Arrieta-Montiel MP, Shedge V, Davila J, Christensen AC, Mackenzie SA. Diversity of the Arabidopsis mitochondrial genome occurs via nuclear-controlled recombination activity. Genetics. 2009;183:1261–1268. doi: 10.1534/genetics.109.108514. PubMed DOI PMC

Sawicki J, Plášek V, Szczecińska M. Molecular data do not support the current division of Orthotrichum (Bryophyta) species with immersed stomata. J. Syst. Evol. 2012;50:12–24. doi: 10.1111/j.1759-6831.2011.00168.x. DOI

Darling ACE, Mau B, Blattner FR, Perna NT. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 2014;14:1394–1403. doi: 10.1101/gr.2289704. PubMed DOI PMC

Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–1313. doi: 10.1093/bioinformatics/btu033. PubMed DOI PMC

Huson DH, Bryant D. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 2006;23:254–267. doi: 10.1093/molbev/msj030. PubMed DOI

Liu Y, Cox CJ, Wang W, Goffinet B. Mitochondrial phylogenomics of early land plants: mitigating the effects of saturation, compositional heterogeneity, and codon-usage bias. Syst. Biol. 2014;63(6):862–878. doi: 10.1093/sysbio/syu049. PubMed DOI

Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T. & Calcott, B. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol., doi:10.1093/molbev/msw260 (2016). PubMed

Huelsenbeck JP, Ronquist FR. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics. 2001;17:754–755. doi: 10.1093/bioinformatics/17.8.754. PubMed DOI

Rambaut, A. & Drummond, A. J. Tracer v1.3. 2003. http://evolve.zoo.ox.ac.uk (Accessed 20 August 2016) (2003).

Morton BR, Clegg MT. A chloroplast DNA mutational hotspot and gene conversion in a noncoding region near rbcL in the grass family (Poaceae) Curr. Genet. 1993;24:357–365. doi: 10.1007/BF00336789. PubMed DOI

Gilley L, Yong-Ming Y, Küpfer D, Taberlet P. Phylogenetic use of noncoding regions in the genus Gentiana L. Chloroplast trnL (UAA) intron versus nuclear ribosomal internal transcribed spacer sequences. Mol. Phylogenet. Evol. 1996;3:460–466. doi: 10.1006/mpev.1996.0042. PubMed DOI

O’Donnell K. Ribosomal DNA internal transcribed spacers are highly divergent in the phytopathogenic ascomycete Fusarium sambucinum (Gibberella pulicaris) Curr. Genet. 1992;22:213–220. doi: 10.1007/BF00351728. PubMed DOI

Shaw J, Lickey EB, Schilling EE, Small RL. Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: The tortoise and the hare III. Am. J. Bot. 2007;94:275–288. doi: 10.3732/ajb.94.3.275. PubMed DOI

Szczecińska M, Sawicki J. Genomic resources of three Pulsatilla species reveal evolutionary hotspots, species-specific sites and variable plastid structure in the family Ranunculaceae. Int. J. Mol. Sci. 2015;16:22258–22279. doi: 10.3390/ijms160922258. PubMed DOI PMC

Krzywinski M, et al. Circos: An information Aesthetic for Comparative Genomics. Genome Res. 2009;19:1639–1645. doi: 10.1101/gr.092759.109. PubMed DOI PMC

Kimura M. Preponderance of synonymous changes as evidence for the neutral theory of molecular evolution. Nature. 1977;267:275–276. doi: 10.1038/267275a0. PubMed DOI

Nei M, Gojobori T. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol. Biol. Evol. 1986;3:418–426. PubMed

Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016;33(7):1870–1874. doi: 10.1093/molbev/msw054. PubMed DOI PMC

Xia X, Xie Z, Salemi M, Chen L, Wang Y. An index of substitution saturation and its application. Mol. Phylogenet. Evol. 2003;26(1):1–7. doi: 10.1016/S1055-7903(02)00326-3. PubMed DOI

Xia X. DAMBE5: A comprehensive software package for data analysis in molecular biology and evolution. Mol. Biol. Evol. 2013;30(7):1720–1728. doi: 10.1093/molbev/mst064. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...