Mitogenomic analyses support the recent division of the genus Orthotrichum (Orthotrichaceae, Bryophyta)
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28667304
PubMed Central
PMC5493672
DOI
10.1038/s41598-017-04833-z
PII: 10.1038/s41598-017-04833-z
Knihovny.cz E-zdroje
- MeSH
- Bryophyta klasifikace genetika MeSH
- fylogeneze MeSH
- genetická variace MeSH
- genom mitochondriální * MeSH
- genomika * metody MeSH
- jednonukleotidový polymorfismus MeSH
- molekulární evoluce MeSH
- otevřené čtecí rámce MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
A recently presented taxonomical arrangement of the moss genus Orthotrichum Hedw. s.l. substantially changed the traditional view of the taxon that had been accepted throughout the twentieth century. This paper provides the results of mitogenomic studies that strongly support the new taxonomical concept. Comparative analyses presented in this study confirmed the stable structure of moss mitogenomes. Moreover, 17 complete mitogenome sequences were used to identify the major evolutionary groups, including 11 newly sequenced ones, for this study. The analysis of mitochondrial hotspots revealed intron 4 of the cox1 gene to be the most variable non-coding region. The most variable protein-coding genes in the tribe Orthotricheae were ccmFC and tatC. The intergenic and intronic hotspots of Orthotrichum s.l. identified in the present study do not correspond to those described in vascular plant mitogenomes.
Department of Biology and Ecology University of Ostrava Chittussiho 10 710 00 Ostrava Czech Republic
Laboratory of Bryology Institute of Botany Polish Academy of Sciences Lubicz 46 31 512 Kraków Poland
Zobrazit více v PubMed
Goffinet B, Buck WR, Wall MA. Orthotrichum freyanum (Orthotrichaceae), a new epiphytic moss from Chile. Nova Hedwigia. 2007;131:1–11.
Fedosov VE, Ignatova EA. Orthotrichum dagestanicum sp. nov. (Orthotrichaceae, Musci) – a new species from Dagestan (Eastern Caucasus) Arctoa. 2010;19:69–74. doi: 10.15298/arctoa.19.05. DOI
Lara F, Garilleti R, Mazimpaka V. A peculiar new Orthotrichum species (Orthotrichaceae, Bryopsida) from central Argentina. Bot. J. Linn. Soc. 2007;155:477–482. doi: 10.1111/j.1095-8339.2007.00720.x. DOI
Lara F, Garilleti R, Mazimpaka V. Orthotrichum karoo (Orthotrichaceae), a new species with hyaline-owned leaves from southwestern Africa. Bryologist. 2009;112:194–201. doi: 10.1639/0007-2745-112.1.194. DOI
Lara F, Garilleti R, Medina R, Mazimpaka V. A new key to the genus Orthotrichum Hedw. in Europe and the Mediterranean Region. Cryptogam. Bryol. 2009;30:129–142.
Medina R, Lara F, Mazimpaka V, Garilleti R. Orthotrichum norrisii (Orthotrichaceae), a new epiphytic Californian moss. Bryologist. 2008;111:670–675. doi: 10.1639/0007-2745-111.4.670. DOI
Medina R, Lara F, Mazimpaka V, Shevock JR, Garilleti R. Orthotrichum pilosissimum (Orthotrichaceae), a new moss from arid areas of Nevada with unique axillary hairs. Bryologist. 2011;114:316–324. doi: 10.1639/0007-2745.114.2.316. DOI
Medina R, Lara F, Goffinet B, Garilleti R, Mazimpaka V. Integrative taxonomy successfully resolves the pseudocryptic complex of the disjunct epiphytic moss Orthotrichum consimile s.l. (Orthotrichaceae) Taxon. 2012;61:1180–1198.
Medina RF, Lara B, Goffinet R, Garilleti R, Mazimpaka V. Unnoticed diversity within the disjunct moss Orthotrichum tenellum s.l. validated by morphological and molecular approaches. Taxon. 2013;62:1133–1152. doi: 10.12705/626.15. DOI
Plášek V, Sawicki J, Trávníčková V, Pasečná M. Orthotrichum moravicum (Orthotrichaceae), a new species from the Czech Republic. Bryologist. 2009;112:329–336. doi: 10.1639/0007-2745-112.2.329. DOI
Plášek V, Sawicki J, Číhal L. Orthotrichum pamiricum (Bryophyta), a new epiphytic moss species from Pamir Mountains in Central Asia. Turk. J. Bot. 2014;38:754–762.
Garilleti R, Shevock JR, Norris DH, Lara F. Orthotrichum mazimpakanum sp. nov. and O. anodon (Orthotrichaceae), two similar species from California. Bryologist. 2011;114:346–355. doi: 10.1639/0007-2745-114.2.346. DOI
Kiebacher, T. & Lüth, M. Orthotrichum dentatum T.Kiebacher & Lüth sp. nov. (Orthotrichaceae). J. Bryol., doi:10.1080/03736687.2016.1186858 (2016).
Lewinsky J. A synopsis of the genus Orthotrichum Hedw. (Musci, Orthotrichaceae) Bryobrothera. 1993;2:1–59.
Lewinsky-Haapasaari J, Hedenäs L. A cladistic analysis of the moss genus Orthotrichum. Bryologist. 1998;101:519–555. doi: 10.1639/0007-2745(1998)101[519:ACAOTM]2.0.CO;2. DOI
Goffinet B, Bayer RJ, Vitt DH. Circumscription and phylogeny of the Orthotrichales (Bryopsida) inferred from rbcL sequence analyses. Am. J. Bot. 1998;85:1324–1337. doi: 10.2307/2446642. PubMed DOI
Goffinet B, Shaw AJ, Cox CJ, Wickett NJ, Boles S. Phylogenetic inferences in the Orthotrichoideae (Orthotrichaceae: Bryophyta) based on variation in four loci from all genomes. Monogr. Syst. Bot. Missouri Bot. Gard. 2004;98:270–289.
Sawicki J, Plášek V, Szczecińska M. Preliminary studies on the phylogeny of Orthotrichum inferred from nuclear ITS sequences. Ann. Bot. Fenn. 2009;46:507–515. doi: 10.5735/085.046.0603. DOI
Sawicki J, Plášek V, Szczecińska M. Molecular studies resolve Nyholmiella (Orthotrichaceae) as a separate genus. J. Syst. Evol. 2010;48:183–194. doi: 10.1111/j.1759-6831.2010.00076.x. DOI
Plášek V, Sawicki J, Ochyra R, Szczecińska M, Kulik T. New taxonomical arrangement of the traditionally conceived genera Orthotrichum and Ulota (Orthotrichaceae, Bryophyta) Acta Mus. Siles., Sci. Natur. 2015;64:169–174.
Lara F, et al. Lewinskya, a new genus to accommodate the phaneroporous and monoicous taxa of Orthotrichum (Bryophyta, Orthotrichaceae) Cryptogam., Bryol. 2016;37(4):361–382. doi: 10.7872/cryb/v37.iss4.2016.361. DOI
Ramsay, H. P. Australian Mosses Online. 47. Orthotrichaceae: Ulota. http://www.anbg.gov.au/abrs/Mosses_online/Orthotrichaceae_Ulota.pdf (Accessed 15 August 2016) (2012).
Medina R, Lara F, Goffinet B, Garilleti R, Mazimpaka V. Unnoticed diversity within the disjunct moss Orthotrichum tenellum s.l. validated by morphological and molecular approaches. Taxon. 2013;62:1133–1152. doi: 10.12705/626.15. DOI
Doucet-Beaupre H, et al. Mitochondrial phylogenomics of the Bivalvia (Mollusca): searching for the origin and mitogenomic correlates of doubly uniparental inheritance of mtDNA. BMC Evol. Biol. 2010;10:50. doi: 10.1186/1471-2148-10-50. PubMed DOI PMC
Sawicki J, Szczecińska M, Bednarek-Ochyra H, Ochyra R. Mitochondrial phylogenomics supports splitting the traditionally conceived genus Racomitrium (Bryophyta: Grimmiaceae) Nova Hedwigia. 2015;100:293–317. doi: 10.1127/nova_hedwigia/2015/0248. DOI
Vilstrup JT, et al. Mitochondrial Phylogenomics of Modern and Ancient Equids. PLoS ONE. 2013;8:e55950. doi: 10.1371/journal.pone.0055950. PubMed DOI PMC
Liu Y, Medina R, Goffinet B. 350 My of mitochondrial genome stasis in mosses, an early land plant lineage. Mol. Biol. Evol. 2014;31:2586–2591. doi: 10.1093/molbev/msu199. PubMed DOI
Szczecińska M, Gomolińska A, Szkudlarz P, Sawicki J. Plastid and nuclear genomic resources of a relict and endangered plant species: Chamaedaphne calyculata (L.) Moench (Ericaceae) Turk. J. Bot. 2014;38:1229–1238. doi: 10.3906/bot-1405-80. DOI
Larraín J, Quandt D, Stech M, Muñoz J. Lumping or splitting? The case of Racomitrium (Bryophytina: Grimmiaceae) Taxon. 2013;62:1117–1132. doi: 10.12705/626.45. DOI
Liu Y, Xue J-Y, Wang B, Li L, Qiu Y-L. The mitochondrial genomes of the early land plants Treubia lacunosa and Anomodon rugelii: dynamic and conservative evolution. PLoS ONE. 2011;6:e25836. doi: 10.1371/journal.pone.0025836. PubMed DOI PMC
Sawicki J, Szczecińska M, Kulik T, Gomolińska A, Plášek V. The complete mitochondrial genome of the epiphytic moss Orthotrichum speciosum. Mitochondr. DNA Part A. 2016;27:1709–1710. PubMed
Sawicki J, et al. The complete mitochondrial genome of the rare and endangered Orthotrichum rogeri (Orthotrichaceae, Bryophyta). Mitochondr. DNA. 2015;27:3208–3209. PubMed
Lewinsky J. The genus Orthotrichum Hedw. (Orthotrichaceae, Musci) in Southeast Asia. A taxonomic revision. J. Hattori Bot. Lab. 1992;72:1–88.
Podpěra, L. Conspectus Muscorum Europaeorum. 1–697 (ČSAV, Prague, Czech Republic, 1954).
Iwatsuki Z, Sharp AJ. Interesting mosses from Formosa. J. Hattori Bot. Lab. 1970;33:161–170.
Villarreal JC, Renner SS. Correlates of monoicy and dioicy in hornworts, the apparent sister group to vascular plants. BMC Evol. Biol. 2013;13:239. doi: 10.1186/1471-2148-13-239. PubMed DOI PMC
McDaniel SF, Atwood J, Burleigh JG. Recurrent evolution of dioecy in bryophytes. Evolution. 2013;67:567–572. doi: 10.1111/j.1558-5646.2012.01808.x. PubMed DOI
Tanurdzic M, Banks JA. Sex-Determining Mechanism in Land Plants. The Plant Cell. 2004;16:61–71. doi: 10.1105/tpc.016667. PubMed DOI PMC
Milewicz M, Sawicki J. Mechanisms of Sex Determination in Plants. Cas. Slez. Muz. Opava (A) 2012;61:123–129.
Tessler M, Cunningham SW, Clark TA. Noteworthy habitat and phylogeny updates for eastern US Ulota (Orthotrichaceae, Bryophyta). Mitochond. DNA. 2016;6:1–5. PubMed
Caparrós R, Lara F, Draper I, Mazimpaka V, Garilleti R. Integrative taxonomy sheds light on an old problem: the Ulota crispa complex (Orthotrichaceae, Musci) Bot. J. Linn. Soc. 2016;180:427–451. doi: 10.1111/boj.12397. DOI
Myszczyński K, et al. The complete mitochondrial genome of the cryptic species C of Aneura pinguis. Mitochodr. DNA. 2015;18:1–2. PubMed
Lewis L, Liu Y, Rozzi R, Goffinet B. Infraspecific variation within and across complete organellar genomes and nuclear ribosomal repeats in a moss. Mol. Phylogenet. Evol. 2016;96:195–199. doi: 10.1016/j.ympev.2015.12.005. PubMed DOI
Vigalondo B, et al. Comparing three complete mitochondrial genomes of the moss genus Orthotrichum Hedw. Mitochondr. DNA Part B: Res. 2016;1:168–170. doi: 10.1080/23802359.2016.1149784. PubMed DOI PMC
Cui P, et al. A complete mitochondrial genome of wheat (Triticum aestivum cv. Chinese Yumai), and fast evolving mitochondrial genes in higher plants. J. Genet. 2009;88:299–307. doi: 10.1007/s12041-009-0043-9. PubMed DOI
Tang M, et al. Rapid evolutionary divergence of Gossypium barbadense and G. hirsutum mitochondrial genomes. BMC Genomics. 2015;16:770. doi: 10.1186/s12864-015-1988-0. PubMed DOI PMC
Barr CM, Keller SR, Ingvarsson PK, Sloan DB, Taylor DR. Variation in mutation rate and polymorphism among mitochondrial genes of Silene vulgaris. Mol. Biol. Evol. 2007;24:1783–1791. doi: 10.1093/molbev/msm106. PubMed DOI
Jaramillo-Correa JP, Aguirre-Planter E, Eguiarte LE, Khasa DP, Bousquet J. Evolution of an ancient microsatellite hotspot in the conifer mitochondrial genome and comparison with other plants. J. Mol. Evol. 2013;76:146–57. doi: 10.1007/s00239-013-9547-2. PubMed DOI
Chaw S-M, Shih AC-C, Wang D, Wu Y-W, Liu S-M. The mitochondrial genome of the gymnosperm Cycas taitungensis contains a novel family of short interspersed elements, Bpu sequences, and abundant RNA editing sites. Mol. Biol. Evol. 2008;25:603–615. doi: 10.1093/molbev/msn009. PubMed DOI
André C, Levy A, Walbot V. Small repeated sequences and the structure of plant mitochondrial genomes. Trends Genet. 1992;8:128–132. PubMed
Maréchal A, Brisson N. Recombination and the maintenance of plant organelle genome stability. New Phytol. 2010;186:299–317. doi: 10.1111/j.1469-8137.2010.03195.x. PubMed DOI
Arrieta-Montiel MP, Shedge V, Davila J, Christensen AC, Mackenzie SA. Diversity of the Arabidopsis mitochondrial genome occurs via nuclear-controlled recombination activity. Genetics. 2009;183:1261–1268. doi: 10.1534/genetics.109.108514. PubMed DOI PMC
Sawicki J, Plášek V, Szczecińska M. Molecular data do not support the current division of Orthotrichum (Bryophyta) species with immersed stomata. J. Syst. Evol. 2012;50:12–24. doi: 10.1111/j.1759-6831.2011.00168.x. DOI
Darling ACE, Mau B, Blattner FR, Perna NT. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 2014;14:1394–1403. doi: 10.1101/gr.2289704. PubMed DOI PMC
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–1313. doi: 10.1093/bioinformatics/btu033. PubMed DOI PMC
Huson DH, Bryant D. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 2006;23:254–267. doi: 10.1093/molbev/msj030. PubMed DOI
Liu Y, Cox CJ, Wang W, Goffinet B. Mitochondrial phylogenomics of early land plants: mitigating the effects of saturation, compositional heterogeneity, and codon-usage bias. Syst. Biol. 2014;63(6):862–878. doi: 10.1093/sysbio/syu049. PubMed DOI
Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T. & Calcott, B. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol., doi:10.1093/molbev/msw260 (2016). PubMed
Huelsenbeck JP, Ronquist FR. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics. 2001;17:754–755. doi: 10.1093/bioinformatics/17.8.754. PubMed DOI
Rambaut, A. & Drummond, A. J. Tracer v1.3. 2003. http://evolve.zoo.ox.ac.uk (Accessed 20 August 2016) (2003).
Morton BR, Clegg MT. A chloroplast DNA mutational hotspot and gene conversion in a noncoding region near rbcL in the grass family (Poaceae) Curr. Genet. 1993;24:357–365. doi: 10.1007/BF00336789. PubMed DOI
Gilley L, Yong-Ming Y, Küpfer D, Taberlet P. Phylogenetic use of noncoding regions in the genus Gentiana L. Chloroplast trnL (UAA) intron versus nuclear ribosomal internal transcribed spacer sequences. Mol. Phylogenet. Evol. 1996;3:460–466. doi: 10.1006/mpev.1996.0042. PubMed DOI
O’Donnell K. Ribosomal DNA internal transcribed spacers are highly divergent in the phytopathogenic ascomycete Fusarium sambucinum (Gibberella pulicaris) Curr. Genet. 1992;22:213–220. doi: 10.1007/BF00351728. PubMed DOI
Shaw J, Lickey EB, Schilling EE, Small RL. Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: The tortoise and the hare III. Am. J. Bot. 2007;94:275–288. doi: 10.3732/ajb.94.3.275. PubMed DOI
Szczecińska M, Sawicki J. Genomic resources of three Pulsatilla species reveal evolutionary hotspots, species-specific sites and variable plastid structure in the family Ranunculaceae. Int. J. Mol. Sci. 2015;16:22258–22279. doi: 10.3390/ijms160922258. PubMed DOI PMC
Krzywinski M, et al. Circos: An information Aesthetic for Comparative Genomics. Genome Res. 2009;19:1639–1645. doi: 10.1101/gr.092759.109. PubMed DOI PMC
Kimura M. Preponderance of synonymous changes as evidence for the neutral theory of molecular evolution. Nature. 1977;267:275–276. doi: 10.1038/267275a0. PubMed DOI
Nei M, Gojobori T. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol. Biol. Evol. 1986;3:418–426. PubMed
Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016;33(7):1870–1874. doi: 10.1093/molbev/msw054. PubMed DOI PMC
Xia X, Xie Z, Salemi M, Chen L, Wang Y. An index of substitution saturation and its application. Mol. Phylogenet. Evol. 2003;26(1):1–7. doi: 10.1016/S1055-7903(02)00326-3. PubMed DOI
Xia X. DAMBE5: A comprehensive software package for data analysis in molecular biology and evolution. Mol. Biol. Evol. 2013;30(7):1720–1728. doi: 10.1093/molbev/mst064. PubMed DOI PMC
Orthotrichumcamanchacanum, a remarkable new moss species from Chile (Bryopsida, Orthotrichaceae)
Quo Vadis, Orthotrichum pulchellum? A Journey of Epiphytic Moss across the European Continent
Tea plantations and their importance as host plants and hot spots for epiphytic cryptogams