Tea plantations and their importance as host plants and hot spots for epiphytic cryptogams
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
GEFNE 192-16
National Geographic Society
CZ.1.05/2.1.00/19.0388
European Union structural funding Operational Programme Research and Development for Innovation
LO1208 "TEWEP"
Ministry of Education, Youth and Sports of the Czech Republic in the "National Feasibility Program I"
PubMed
34521912
PubMed Central
PMC8440766
DOI
10.1038/s41598-021-97315-2
PII: 10.1038/s41598-021-97315-2
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Bryophytes and lichens are outstanding bioindicators, not only of the plant community in which they develop, but also the substrates on which they grow. Some epiphytic cryptogams, particularly the rare ones, are stenotopic and require a long habitat continuity, for example substrates such as old trees. It could also be a tea plantation, this is because the shrubs are not felled, and most of them may have several dozen years. In addition, the shrubs are not subject to sudden changes in microclimatic conditions as only the young leaves are harvested. As the importance of tea plantations as host plants for mosses and lichens has not yet been studied, the present study examines the species diversity of cryptogams of two tea plantations in Georgia (Caucasus). The study also examines the phytogeography, spatial pattern, environmental conditions and ecological indicators of the cryptogams. Thirty-nine cryptogam taxa were identified; typical forest taxa dominated, even in the absence of typical forest communities. Some of these species are obligatory epiphytes, rare or even critically endangered in most European countries (e.g., Orthotrichum stellatum, O. stramineum, Lewinskya striata). The fairly abundant record of such species on tea plantations indicates the importance of these phytocoenoses for the preservation of rare species, and indicates that these habitats are hot spots for these cryptogams in otherwise changed envirnonment. Additionally, as indicated the analysis of the species composition of individual plantations and the mathematical analysis made on this basis, plantations differ from each other. Another interesting result is also the spatial distributions of cryptogams on tea bushes resemble those of forest communities and lichens seems to be more sensitive than bryophytes to antropogenic changes of environment.
Department of Biology and Ecology University of Ostrava Chittussiho 10 710 00 Ostrava Czech Republic
See more in PubMed
Namita P, Mukesh R, Vijay KJ. Camellia Sinensis (Green Tea): A review. Glob. J. Pharmacol. 2012;6(2):52–59.
Chang K. World Tea Production and Trade. Current and Future Development. Rome: FAO; 2015.
Chang K, Brattlof M. World Tea Production and Trade. Current and Future Development. FAO; 2015.
Kochlamazashvili, I. & Kakulia, N. The Georgian Tea Sector: A Value Chain Study. ISET Policy Institute. Study prepared in the framework of ENPARD project Cooperation for Rural Prosperity in Georgia (2015).
Lesica P, McCune B, Cooper SV, Hong WS. Differences in lichen and bryophyte communities between old-growth and managed second-growth forests in the Svan Valley Montana. Can. J. Bot. 1991;69:1745–1755. doi: 10.1139/b91-222. DOI
Nowak A, Plášek V, Nobis M, Nowak S. Epiphytic communities of open habitats in the Western Tian-Shan Mts (Middle Asia: Kyrgyzstan) Cryptog. Bryol. 2016;37(4):415–433. doi: 10.7872/cryb/v37.iss4.2016.415. DOI
Rhoades, F. M. Nonvascular epiphytes in forest canopies: Worldwide distribution, abundance and ecological roles. In Forest Canopies (eds. Lowman, M.D. & Nadkarni, N. M.) 353–408 (1995).
Haines WP, Renwick JAA. Bryophytes as food: Comparative consumption and utilization of mosses by a generalist insect herbivore. Entomol Exp Appl. 2009;133:296–306. doi: 10.1111/j.1570-7458.2009.00929.x. DOI
Kuřavová K, Grucmanová Š, Filipcová Z, Plášek V, Drozd P, Kočárek P. Is feeding on mosses by groundhoppers in the genus Tetrix (Insecta: Orthoptera) opportunistic or selective? Arthropod-Plant Int. 2017;11:35–43. doi: 10.1007/s11829-016-9461-9. DOI
Matuszkiewicz W. Przewodnik do Oznaczania Zbiorowisk Roślinnych Polski. Wyd Nauk, PWN; 2001.
Krestov PV. Forest vegetation of easternmost Russia (Russian Far East) In: Kolbek J, Srutek M, Elgene EO, editors. Forest Vegetation of Northeast Asia. Springer; 2003. pp. 93–180.
Kuznetsov O. Topology-ecological classification of mire vegetation in the Republic of Karelia (Russia) In: Heikkilä R, Lindholm T, editors. Biodiversity and Conservation of Boreal Nature. Proceedings of the 10 years anniversary symposium of the Nature Reserve Friendship. Elsevier; 2003. pp. 117–123.
Černý, T. Phytosociological Study of Selected Critical Thermophilous Vegetation Complexes in the Czech Republic. A thesis submitted for the degree of Doctor of Philosophy in the Department of Botany Faculty of Sciences, Charles University (2007).
Chytrý M, et al. A modern analogue of the Pleistocene steppe-tundra ecosystem in southern Siberia. Boreas. 2019;48:36–56. doi: 10.1111/bor.12338. DOI
Wolski GJ, Kruk A. Determination of plant communities based on bryophytes: The combined use of Kohonen artificial neural network and indicator species analysis. Ecol. Indic. 2020;113:106160. doi: 10.1016/j.ecolind.2020.106160. DOI
Benzing D. Vulnerabilities of tropical forests to climate change: The significance of resident epiphytes. Clim. Change. 1998;39:519–540. doi: 10.1023/A:1005312307709. DOI
Gustafsson L, Fiskesjö A, Ingelög T, Petterson B, Thor G. Factors of importance to some lichen species of deciduous broad-leaved woods in southern Sweden. Lichenologist. 1992;24:255–266. doi: 10.1017/S0024282992000367. DOI
Frahm JP. Ecology of bryophytes along altitudinal and latitudinal gradients in Chile. Trop. Bryol. 2002;21:67–79.
Číhal L, Kaláb O, Plášek V. Modeling the distribution of rare and interesting moss species of the family Orthotrichaceae (Bryophyta) in Tajikistan and Kyrgyzstan. Acta Soc. Bot. Pol. 2017;86(2):3543. doi: 10.5586/asbp.3543. DOI
Łubek A, Kukwa M, Czortek P, Jaroszewicz B. Impact of Fraxinus excelsior dieback on biota of ash-associated lichen epiphytes at the landscape and community level. Biodivers. Conserv. 2020;29:431–450. doi: 10.1007/s10531-019-01890-w. DOI
Łubek A, Kukwa M, Jaroszewicz B, Czortek P. Identifying mechanisms shaping lichen functional diversity in a primeval forest. For. Ecol. Manag. 2020;475:118434. doi: 10.1016/j.foreco.2020.118434. DOI
Barkman JJ. Phytosociology and Ecology of Cryptogamic Epiphytes. Including a Taxonomic Survey and Description of Their Vegetation Units in Europe, Van Gorcum, Comp. N. V Assen; 1958.
Green TGA, Lange OL. Photosynthesis in poikilohydric plants: A comparison of lichens and bryophytes. In: Schulze E-D, Caldwell MM, editors. Ecophysiology of Photosynthesis. Springer-Verlag; 1995. pp. 319–341.
Scheidegger C, Wolseley PA, Landolt R. Towards conservation of lichens. Forest. Snow Landsc. Res. 2000;75:285–433.
Tønsberg T, Høiland K. A study of the macrolichen flora on the sand-dune areas on Lista, SW Norway. Nor. J. Bot. 1980;27:131–134.
Thiet RK, Doshas A, Smith SM. Effects of biocrusts and lichen-moss mats on plant productivity in a US sand dune ecosystem. Plant Soil. 2014;377(1):235–244. doi: 10.1007/s11104-013-2002-8. DOI
Vaz AS, Marques J, Honrado JP. Patterns of lichen diversity in coastal sand-dunes of northern Portugal. Bot. Complut. 2014;38:89–96. doi: 10.5209/rev_BOCM.2014.v38.45776. DOI
Antoninka A, Bowker MA, Reed SC, Doherty K. Production of greenhouse-grown biocrust mosses and associated cyanobacteria to rehabilitate dryland soil function. Restor. Ecol. 2016;24(3):324–335. doi: 10.1111/rec.12311. DOI
Jüriado I, Kämärä M-L, Oja E. Environmental factors and ground disturbance affecting the composition of species and functional traits of ground layer lichens on grey dunes and dune heaths of Estonia. Nord. J. Bot. 2016;34(2):244–255. doi: 10.1111/njb.00936. DOI
Balogh R, et al. Mosses and lichens in dynamics of acidic sandy grasslands: Specific response to grazing exclosure. Acta Biol. Plant. Agriensis. 2017;5(1):30.
Concostrina-Zubiri L, Arenas JM, Martínez I, Escudero A. Unassisted establishment of biological soil crusts on dryland road slopes. Web Ecol. 2019;19(1):39–51. doi: 10.5194/we-19-39-2019. DOI
Kubiak D, Oszyczka P. Non-forested vs forest environments: The effect of habitat conditionson host tree parameters and the occurrence of associated epiphyticlichens. Fungal Ecol. 2020;47:100957. doi: 10.1016/j.funeco.2020.100957. DOI
Gradstein SR, Sporn SG. Land-use change and epiphytic bryophyte diversity in the Tropics. Nova Hedwigia. 2010;138:311–323.
Guevara S, Purata SE, Van der Maarel E. The role of remnant forest trees in tropical secondary succession. Vegetatio. 1986;66:77–84.
Sillett SC, Gradstein SR, Griffin D. Bryophyte diversity of Ficus tree crowns from cloud forest and pasture in Costa Rica. Bryologist. 1995;98(2):251–260. doi: 10.2307/3243312. DOI
Werner F, Homeier J, Gradstein SR. Diversity of vascular epiphytes on isolated remnant trees in the montane forest belt of southern Ecuador. Ecotropica. 2005;11:21–40.
Lara F, Garilleti R, Mazimpaka V. Orthotrichum karoo (Orthotrichaceae), a new species with hyaline-awned leaves from southwestern Africa. Bryologist. 2009;112(1):194–201. doi: 10.1639/0007-2745-112.1.194. DOI
Lara F, Mazimpaka V. Ma´s sobre la presencia de Orthotrichum acuminatum en la Península Ibérica. Cryptog. Bryol. Lichenol. 1992;13(4):349–354.
Garilleti R, Lara F, Mazimpaka V. Orthotrichum anodon (Orthotrichaceae, Bryopsida), a new species from California, and its relationships with other Orthotricha sharing puckered capsule mouths. Bryologist. 2006;109(2):188–196. doi: 10.1639/0007-2745(2006)109[188:OAOANS]2.0.CO;2. DOI
Hallingbäck T, Hodgetts N. Mosses Liverworts and Hornworts. Status survey and conservation action plan for bryophytes. Cambridge University Press; 2000.
Belinchón R, Martínez I, Escudero A, Aragón G, Valladares F. Edge effects on epiphytic communities in a Mediterranean Quercus pyrenaica forest. J. Veg. Sci. 2007;18:81–90. doi: 10.1111/j.1654-1103.2007.tb02518.x. DOI
Boudreault C, Gauthier S, Bergeron Y. Epiphytic lichens and bryophytes on Populus Tremuloides along a chronosequence in the Southwestern Boreal Forest of Quebec, Canada. Bryologist. 2009;103:725–738. doi: 10.1639/0007-2745(2000)103[0725:ELABOP]2.0.CO;2. DOI
Rambo T. Structure and composition of corticolous epiphyte communities in a Sierra Nevada old-growth mixed-conifer forest. Bryologist. 2010;113:55–71. doi: 10.1639/0007-2745-113.1.55. DOI
Plášek V, Nowak A, Nobis M, Kusza G, Kochanowska K. Effect of 30 years of road traffic abandonment on epiphytic moss diversity. Environ. Monit. Assess. 2014;186:8943–8959. doi: 10.1007/s10661-014-4056-3. PubMed DOI PMC
Skoupá Z, Ochyra R, Guo SL, Sulayman M, Plášek V. Distributional novelties for Lewinskya, Nyholmiella and Orthotrichum (Orthotrichaceae) in China. Herzogia. 2017;30:58–73. doi: 10.13158/heia.30.1.2017.58. DOI
Skoupá Z, Ochyra R, Guo S-L, Sulayman M, Plášek V. Three remarkable additions of Orthotrichum species (Orthotrichaceae) to the moss flora of China. Herzogia. 2018;31:88–100. doi: 10.13158/099.031.0105. DOI
Gradstein R, et al. Bryophytes of Mount Patuha, West Java, Indonesia. Reinwardtia. 2010;13(2):107–123.
Saat A, Talib MS, Harun N, Hamzah Z, Wood AK. Spatial variability of arsenic and heavy metals in a highland tea plantation using lichens and mosses as bio-monitors. Asian J. Nat. Appl. Sci. 2016;5(1):10–21.
Fick SE, Hijmans RJ. WorldClim 2: New 1km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017;37(12):4302–4315. doi: 10.1002/joc.5086. DOI
Wirth V. Ökologische Zeigerwerte von Flechten. Herzogia. 2010;23(2):229–248. doi: 10.13158/heia.23.2.2010.229. DOI
Ellenberger H, Weber HE, Düll R, Wirth V, Werner W, Paulissen D. Zeigerwerte von Planzen in Mitteleuropa. Scr. Geobot. 1991;18:1–248.
Smith CW, Aptroot A, Coppins BJ, Fletcher A, Gilbert OL, James PW, et al. The Lichens of Great Britain and Ireland. British Lichen Society; 2009. p. 1046.
Hodgetts N, et al. An annotated checklist of bryophytes of Europe, Macaronesia and Cyprus. J. Bryol. 2020;42(1):1–116. doi: 10.1080/03736687.2019.1694329. DOI
Pancho JV. Some bryophytes in tea plantations, Pagilaran Central Java. Biotrop. Bull. 1979;11:279–282.
Tan BC, Ho B-C, Linis V, Iskandar EAP, Nurhasanah I, Damayanti L, Mulyati S, Haerida I. Mosses of Gunung Halimun National Park, West Java, Indonesia. Reinwardtia. 2006;12:205–214.
Ohsawa M. Weeds of tea plantations. In: Holzner W, Numata M, editors. Biology and Ecology of Weeds. Geobotany. Springer; 1982.
Gradstein R, Kien-Thai Y, Suleiman M, Putrika A, Apriani D, Yuniati E, Kanak FAG, Ulum FB, Wahyuni I, Wongkuna K, Lubos L, Tam LT, Puspaningrum MR, Serudin MRPG, Zuhri M, Min NA, Junita N, Pasaribu N, Kornochalert S. Bryophytes of Mount Patuha, West Java, Indonesia. Reinwardtia. 2010;13:107–123.
Whitelaw M, Burton MAS. Diversity and distribution of epiphytic bryophytes on Bramley’s Seedling trees in East of England apple orchards. Glob. Ecol. Conserv. 2015;4:380–387. doi: 10.1016/j.gecco.2015.07.014. DOI
Söderström L. Bryophytes and decaying wood – a comparison between manager and natural forest. Holarc. Ecol. 1991;14:121–130.
Cieśliński, S. et al. Relikty lasu puszczańskiego, In Białowieski Park Narodowy (1921–1996) w badaniach geobotanicznych. Phytocoenosis, 8 (N.S.), Seminarium Geobotanicum (ed. Faliński, J. B.) 4, 47–64 (1996).
Vanderpoorten A, Engels P, Sotiaux A. Trends in diversity and abundance of obligate epiphytic bryophytes in a highly managed landscape. Ecography. 2004;27:567–576. doi: 10.1111/j.0906-7590.2004.03890.x. DOI
Ódor P, van Dort K, Aude E, Heilmann-Clausen J, Christensen M. Diversity and composition of dead wood inhabiting bryophyte communities in European beech forest. Biol. Soc. Esp. Briol. 2005;26–27:85–102.
Friedel A, Oheimb GV, Dengler J, Härdtle W. Species diversity and species composition of epiphytic bryophytes and lichens: A comparison of managed and unmanaged beech forests in NE Germany. Feddes Repert. 2006;117(1–2):172–185. doi: 10.1002/fedr.200511084. DOI
Wolski GJ. Siedliskowe Uwarunkowania Występowania Mszaków w Rezerwatach Przyrody Chroniących Jodłę Pospolitą w Polsce Środkowej. Praca doktorska wykonana w Katedrze Geobotaniki i Ekologii Roślin UŁ; 2013.
Fudali E, Wolski GJ. Ecological diversity of bryophytes on tree trunks in protected forests (a case study from Central Poland) Herzogia. 2015;28(1):91–107. doi: 10.13158/heia.28.1.2015.87. DOI
Shi X-M, et al. Epiphytic bryophytes as bio-indicators of atmospheric nitrogen deposition in a subtropical montane cloud forest: Response patterns, mechanism, and critical load. Environ. Pollut. 2017;229:932–941. doi: 10.1016/j.envpol.2017.07.077. PubMed DOI
Cornelissen JHC, Gradstein SR. On the occurrence of bryophytes and macrolichens in different lowland rain forest types of Mabura Hill, Guyana. Trop. Bryol. 1990;3:29–35. doi: 10.11646/bde.3.1.4. DOI
Lyons B, Nadkarni NM, North MP. Spatial distribution and succession of epiphytes on Tsuga heterophylla (western hemlock) in an old-growth Douglas-fir forest. Can. J. Bot. 2000;78(7):957–968. doi: 10.1139/cjb-78-7-957. DOI
Cornelissen JHC, Steege HT. Distribution and ecology of epiphytic bryophytes and lichens in dry evergreen forest of Guyana. J. Trop. Ecol. 1989;5:131–150. doi: 10.1017/S0266467400003400. DOI
Woods CL, Cardelús CL, Dewalt SJ, Piper F. Microhabitat associations of vascular epiphytes in a wet tropical forest canopy. J. Ecol. 2015;103(2):421–430. doi: 10.1111/1365-2745.12357. DOI
Sporn SG, Bos MM, Kessler M, Gradstein SR. Vertical distribution of epiphytic bryophytes in an Indonesian rainforest. Biodivers. Conserv. 2010;19(3):745–760. doi: 10.1007/s10531-009-9731-2. DOI
Czerepko J, et al. How sensitive are epiphytic and epixylic cryptogams as indicators of forest naturalness? Testing bryophyte and lichen predictive power in stands under different management regimes in the Białowieża forest. Ecol. Indic. 2021;125:107532. doi: 10.1016/j.ecolind.2021.107532. DOI
Putna S, Mězaka A. Preferences of epiphytic bryophytes for forest stand and substrate in North-East Latvia. Folia Cryptog. Estonica. 2014;51:75–83. doi: 10.12697/fce.2014.51.08. DOI
Manakyan VA. Results of bryological studies in Armenia. Arctoa. 1995;5:15–33. doi: 10.15298/arctoa.05.02. DOI
Redfearn PL, Tan BC, He S. A newly updated and annotated checklist of Chines mosses. J. Hattori Bot. Lab. 1996;79:163–357.
Kürschner H. Bryophyte Flora of the Arabian Peninsula and Socotra. Bryophytorum Bibliotheca. JCramer in der Gebrüder Borntraeger Verlagsbuchhandlung; 2000.
Higuchi M, Nishimura N. Mosses of Pakistan. J. Hattori Bot. Lab. 2003;93:273–291.
Ignatov MS, Afonina OM, Ignatova EA. Check-list of mosses of East Europe and North Asia. Arctoa. 2006;15:1–130. doi: 10.15298/arctoa.15.01. DOI
Sabovljević M, et al. Check-list of the mosses of SE Europe. Phytol. Balcan. 2008;14(2):207–244.
Dandotiya D, Govindapyari H, Suman S, Uniyal PL. Checklist of the bryophytes of India. Arch. Bryol. 2011;88:71–72.
Hodgetts, N. G. Checklist and Country Status of European bryophytes—Towards a New Red List for Europe. Irish Wildlife Manuals, No. 84. (National Parks and Wildlife Service, Department of Arts, Heritage and the Gaeltacht, 2011). https://www.hdl.handle.net/2262/73373.
Kürschner H, Frey W. Liverworts, Mosses and Hornworts of Southwest Asia (Marchantiophyta, Bryophyta, Anthoceroptophyta) Nova Hedwigia. 2011;139:179–180.
Suzuki T. A revised new catalog of the mosses of Japan. Hattoria. 2016;7:9–223. doi: 10.18968/hattoria.7.0_9. DOI
Kürschner H, Frey W. Liverworts, mosses and hornworts of Afghanistan—our present knowledge. Acta Mus. Siles. Sci. Natur. 2019;68:11–24.
Brotherus VF. Enumeratio muscorum Caucasi. Acta Soc. Sci. Fenn. 1892;19:1–170.
Chikovani N, Svanidze T. Checklist of bryophyte species of Georgia. Braun-Blanquetia. 2004;34:97–116. doi: 10.13158/heia.26.1.2013.213. DOI
Doroshina GY. New moss records from Georgia. 1. Arctoa. 2010;19:281.
Sohrabi M, Ahti T, Urbanavichus G. Parmelioid lichens of Iran and the caucasus Region. Mycol. Balc. 2007;4:21–30.
Hawksworth DL, Blanco O, Divakar PK, Ahti T, Crespo A. A first checklist of parmelioid and similar lichens in Europe and some adjacent territories, adopting revised generic circumscriptions and with indications of species distributions. Lichenologist. 2008;40(1):1–21. doi: 10.1017/S0024282908007329. DOI
Syrek M, Kukwa M. Taxonomy of the lichen Cladonia rei and its status in Poland. Biologia. 2008;63(4):493–497. doi: 10.2478/s11756-008-0092-1. DOI
Burgaz AR, Ahti T, Inashvili T, Batsatsashvili K, Kupradze I. Study of georgian Cladoniaceae. Bot. Complut. 2018;42:19–55. doi: 10.5209/BOCM.61367. DOI
Fałtynowicz W. The lichens, lichenicolous and allied fungi of Poland. An annotated checklist. In: Mirek A, editor. Biodiversity of Poland. W. Szafer Institute of Botany, Polish Academy of Sciences; 2003. pp. 1–435.
Plášek V, Sawicki J, Ochyra R, Szczecińska M, Kulik T. New taxonomical arrangement of the traditionally conceived genera Orthotrichum and Ulota (Orthotrichaceae, Bryophyta) Acta Mus. Sil. 2015;64:169–174. doi: 10.1515/cszma-2015-0024. DOI
Lara F, et al. Lewinskya, a new genus to accommodate the phaneroporous and monoicous taxa of Orthotrichum (Bryophyta, Orthotrichaceae) Cryptog. Bryol. 2016;37:361–382. doi: 10.7872/cryb/v37.iss4.2016.361. DOI
Sawicki J, et al. Mitogenomic analyses support the recent division of the genus Orthotrichum (Orthotrichaceae, Bryophyta) Sci. Rep. 2017;7:4408. doi: 10.1038/s41598-017-04833-z. PubMed DOI PMC
Kürschner H, Batsatsashvili K, Parolly G. Noteworthy additions to the bryophyte flora of Georgia. Herzogia. 2013;26:213–216. doi: 10.13158/heia.26.1.2013.213. DOI
Ellis LT, et al. New national and regional bryophyte records, 49. J. Bryol. 2016;38(4):327–347. doi: 10.1080/03736687.2016.1225777. DOI
Ellis LT, et al. New national and regional bryophyte records, 51. J. Bryol. 2017;39(2):177–190. doi: 10.1080/03736687.2017.1298297. DOI
Eckstein J, Garilleti R, Lara F. Lewinskya transcaucasica (Orthotrichaceae, Bryopsida) sp. nov. A contribution to the bryophyte flora of Georgia. J. Bryol. 2018;40(1):31–38. doi: 10.1080/03736687.2017.1365218. DOI
Eckstein J, Zündorf H-J. Orthotrichaceous mosses (Orthotricheae, Orthotrichaceae) of the Genera Lewinskya, Nyholmiella, Orthotrichum, Pulvigera and Ulota Contributions to the bryophyte flora of Georgia 1. Cryptog. Bryol. 2017;38(4):365–382. doi: 10.7872/cryb/v38.iss4.2017.365. DOI
Schäfer-Verwimp A. Orthotrichum Hedw. In: Nebel M, Philippi G, editors. Die Moose Baden-Württembergs. Band 2: Spezieller Teil (Bryophytina II, Schistostegales bis Hypnobryales) Eugen Ulmer; 2001. pp. 170–197.
Lara F, Garilleti R. Orthotrichum Hedw. In: Guerra J, Brugués CM, editors. Flora briofítica Ibérica. Universidad de Murcia Sociedad Española de Briología; 2014. pp. 50–135.
Lewinsky J. The genus Orthotrichum Hedw. (Orthotrichaceae, Musci) in Southeast Asia. A taxonomic revision. J. Hattori Bot. Lab. 1992;72:1–88.
Schäfer-Verwimp A, Gruber JP. Orthotrichum (Orthotrichaceae, Bryopsida) in Pakistan. Trop. Bryol. 2002;21:1–9. doi: 10.11646/bde.21.1.2. DOI
Draper I, Mazimpaka V, Albertos B, Garilleti R, Lara F. A survey of the epiphytic bryophyte flora of the Rif and Tazzeka Mountains (northern Morocco) J. Bryol. 2005;27:23–34. doi: 10.1179/174328205X40554. DOI
Brassard GR. Orthotrichum stramineum new to North America. Bryologist. 1984;87:168. doi: 10.2307/3243128. DOI
Lewinsky-Haapasaari J, Long DG. Orthotrichum stramineum Hornsch. new to China. J. Bryol. 1996;19:350–352. doi: 10.1179/jbr.1996.19.2.350. DOI
Plášek V, Komínková Z, Ochyra R, Fialová L, Guo S, Sulayman M. A synopsis of Orthotrichum s. lato (Bryophyta, Orthotrichaceae) in China, with distribution maps and a key to determination. Plants. 2021;10:499. doi: 10.3390/plants10030499. PubMed DOI PMC