Quo Vadis, Orthotrichum pulchellum? A Journey of Epiphytic Moss across the European Continent

. 2022 Oct 11 ; 11 (20) : . [epub] 20221011

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36297693

Grantová podpora
MK000100595 Ministry of Culture of the Czech Republic
SGS14/PřF/2022 University of Ostrava

Orthotrichum pulchellum is a species of epiphytic moss in which a significant expansion from the oceanic part of Europe to the east of the continent has been observed in the recent two decades. The improvement in air quality in Central and Eastern Europe, but also climate change, probably plays a role in this. This study shows what direction of its spreading we can expect in the future. Ecological niche modeling (ENM) is a widespread method to find out species niches in environmental and geographical space, which allows us to highlight areas that have a higher probability of occurrences of the studied species, based on identifying similar environmental conditions to those already known. We also made predictions for different future scenarios (CMIP5 climatology datasets for the years 2041-2060). Because we were not able to distinguish between historical and newly settled areas, and so, had to use some of the traditional approaches when modeling invasive species, we proposed to use niche clusters based on environmental layers to split the data of all known occurrences and make models separately for each cluster. This approach seems reasonable from the ecological species point of view because using all the morphologically same samples could be misleading. Altogether, 2712 samples were used from three separate niche clusters. For building the models, the Maxent algorithm was used as a well-tested, well-accepted, and commonly used method.

Zobrazit více v PubMed

Vitt D.H. A revision of the genus Orthotrichum in North America, North of Mexico. Bryophyt. Bibl. 1973;1:1–208.

Düll R. Distribution of the European and Macaronesian mosses (Bryophytina). Part 2. Bryol. Beiträge. 1985;5:110–232.

Düll R. Distribution of the European and Macaronesian mosses (Bryophytina). Annotations and Progress. Bryol. Beiträge. 1992;8/9:1–223.

Hill M.O., Preston C.D., Smith A.J.E. Atlas of the Bryophytes of Britain and Ireland, Vol. 3. Mosses (Diplolepidae) Harley Books; Colchester, UK: 1984. pp. 1–419.

Dierssen K. Distribution, ecological amplitude and phytosociological characterization of European bryophytes. Bryophyt. Bibl. 2001;56:1–289.

Garilleti R., Lara F., Mazimpaka V., Albertos B., Heras P., Infante M. On the presence of Orthotrichum pulchellum Sm. in Spain. Arctoa. 1998;20:246–249.

Smith A.J.E. The Moss Flora of Britain and Ireland. Cambridge University Press; Cambridge, UK: 2004. pp. 1–1026.

Sotiaux A., Stieperaere H., Vanderpoorten A. Bryophyte checklist and European red list of the Brussels-capital region, Flanders and Wallonia (Belgium) Belg. J. Bot. 2007;140:174–196. doi: 10.2307/20794638. DOI

Cortini Pedrotti C. Flora dei Muschi d’Italia. Antonio Delfino Press; Rome, Italy: 2001. pp. 1–817.

Grgić P. Epifitska i lignifilna vegetacija mahovina u području prašume Perućice u Bosni. Annu. Inst. Biol.—Univ. Sarajevo. 1972;25:5–41.

Martinčič A. Updated Red List of bryophytes of Slovenia. Hacquetia. 2016;15:107–126. doi: 10.1515/hacq-2016-0006. DOI

Pantović J., Veljić M., Grdović S., Sabovljević M.S. An annotated list of moss species of Serbia. Phytotaxa. 2021;479:207–249. doi: 10.11646/phytotaxa.479.3.1. DOI

Hodgetts N., Lockhart N. Checklist and Country Status of European Bryophytes–Update 2020. Irish Wildlife Manuals, No. 123. Department of Culture, Heritage and the Gaeltacht, National Parks and Wildlife Service; Dublin, Ireland: 2020. pp. 1–214.

Schäfer-Verwimp A. Orthotrichum Hedw. In: Nebel M., Philippi G., editors. Die Moose, Baden-Württembergs, Band 2: Spezieller Teil (Bryophytina II, Schistostegales bis Hypnobryales) Verlag Eugen Ulmer; Stuttgart, Germany: 2001. pp. 170–197.

Frahm J.-P. Zur aktuellen Verbreitung von Orthotrichum pulchellum. Bryol. Rundbriefe. 2002;52:1–5.

Müller F. Verbreitungsatlas der Moose Sachsens. Lutra Verlag; Tauer, Germany: 2004. pp. 1–309.

Plášek V., Marková I. Orthotrichum pulchellum (Orthotrichaceae, Musci), new to the Czech Republic. Acta Musei Morav. 2007;92:223–228.

Blockeel T.L., Bednarek-Ochyra H., Ochyra R., Duckett J.G., Erzberger P., Hedenäs L., Hugonnot V., Maier E., Marková I., Matcham H.W., et al. New national and regional bryophyte records, 18. J. Bryol. 2008;30:161–167. doi: 10.1179/174328208X282463. DOI

Marková I., Plášek V. Orthotrichum pulchellum Brunt. ex Sm. (Bryophyta) in the Czech Republic. Distribution and ecology. Čas. Slez. Muz. Opava. 2013;62:73–82. doi: 10.2478/cszma-2013-0007. DOI

Ruthe R. Verzeichnis der in der Umgebung von Bärwalde in der Neumark beobachteten Moose nebst Bemerkungen zu einigen Arten. Verh. Bot. Ver. Prov. Brandenbg. 1867;9:44–75.

Plášek V., Ochyra R., Smoczyk M., Wiaderny A., Koopman J. Recent rediscovery of the epiphytic moss Orthotrichum pulchellum Brunt. in Poland. Čas. Slez. Muz. Opava. 2013;62:97–100. doi: 10.2478/cszma-2013-0010. DOI

Górski P., Rusińska A. New distributional data on bryophytes of Poland, 2. Steciana. 2015;19:60–61.

Smoczyk M. Mszaki Gryżyńskiego Parku Krajobrazowego. In: Maciantowicz M., editor. 20 Lat—Gryżyński Park Krajobrazowy. Zespół Parków Krajobrazowych Województwa Lubuskiego; Zielona Góra, Poland: 2016. pp. 111–125.

Stebel A., Smoczyk M. Further spreading of the moss Orthotrichum pulchellum in Poland. Herzogia. 2017;30:296–299. doi: 10.13158/heia.30.1.2017.296. DOI

Bosanquet S. Orthotrichum—Britain’s bristle-mosses. Br. Wildl. 2009;20:187–194.

Plášek V., Nowak A., Nobis M., Kusza G., Kochanowska K. Effect of 30 years of road traffic abandonment on epiphytic moss diversity. Environ. Monit. Assess. 2014;186:8943–8959. doi: 10.1007/s10661-014-4056-3. PubMed DOI PMC

He X., He K.S., Hyvönen J. Will bryophytes survive in a warming world? Perspect. Plant Ecol. Evol. Syst. 2016;19:49–60. doi: 10.1016/j.ppees.2016.02.005. DOI

Pavlíková I., Motyka O., Plášek V., Bitta J. Monitoring of Heavy Metals and Nitrogen Concentrations in Mosses in the Vicinity of an Integrated Iron and Steel Plant: Case Study in Czechia. Appl. Sci. 2021;11:8262. doi: 10.3390/app11178262. DOI

Anders I., Stagl J., Auer I., Pavlik D. Climate Change in Central and Eastern Europe. In: Rannow S., Neubert M., editors. Managing Protected Areas in Central and Eastern Europe under Climate Change. Springer; Amsterdam, The Netherlands: 2009. pp. 17–30. DOI

Hooper D.U., Adair E.C., Cardinale B.J., Byrnes J.E.K., Hungate B.A., Matulich K.L., Gonzalez A., Duffy J.E., Gamfeldt L., O’Connor M.I. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature. 2012;486:105–108. doi: 10.1038/nature11118. PubMed DOI

Sawicki J., Plášek V., Szczecińska M. Preliminary studies on the phylogeny of Orthotrichum (Bryophyta) inferred from nuclear ITS sequences. Ann. Bot. Fenn. 2009;46:507–515. doi: 10.5735/085.046.0603. DOI

Sawicki J., Plášek V., Szczecińska M. Molecular studies resolve Nyholmiella (Orthotrichaceae) as a separate genus. J. Syst. Evol. 2010;48:183–194. doi: 10.1111/j.1759-6831.2010.00076.x. DOI

Sawicki J., Plášek V., Ochyra R., Szczecińska M., Ślipiko M., Myszczyński K., Kulik T. Mitogenomic analyses support the recent division of the genus Orthotrichum (Orthotrichaceae, Bryophyta) Sci. Rep. 2017;7:4408. doi: 10.1038/s41598-017-04833-z. PubMed DOI PMC

Wan J.-Z., Wang C.-J., Yu F.-H. Effects of occurrence record number, environmental variable number, and spatial scales on MaxEnt distribution modelling for invasive plants. Biologia. 2019;74:757–766. doi: 10.2478/s11756-019-00215-0. DOI

Zizka A., Silvestro D., Andermann T., Azevedo J., Duarte Ritter C., Edler D., Farooq H., Herdean A., Ariza M., Scharn R., et al. COORDINATECLEANER: Standardized cleaning of occurrence records from biological collection databases. Methods Ecol. Evol. 2019;10:744–751. doi: 10.1111/2041-210X.13152. DOI

Osorio-Olvera L., Lira-Noriega A., Soberón J., Townsend Peterson A., Falconi M., Contreras-Díaz R.G., Martínez-Meyer E., Barve V., Barve N. NTBOX: An r package with graphical user interface for modelling and evaluating multidimensional ecological niches. Methods Ecol. Evol. 2020;11:1199–1206. doi: 10.1111/2041-210X.13452. DOI

Gallien L., Douzet R., Pratte S., Zimmermann N.E., Thuiller W. Invasive species distribution models—How violating the equilibrium assumption can create new insights. Glob. Ecol. Biogeogr. 2012;21:1126–1136. doi: 10.1111/j.1466-8238.2012.00768.x. DOI

Karger D.N., Conrad O., Böhner J., Kawohl T., Kreft H., Soria-Auza R.W., Zimmermann N.E., Linder H.P., Kessler M. Climatologies at high resolution for the earth’s land surface areas. Sci. Data. 2017;4:170122. doi: 10.1038/sdata.2017.122. PubMed DOI PMC

Pradhan P. Strengthening MaxEnt modelling through screening of redundant explanatory bioclimatic variables with variance inflation factor analysis. Researcher. 2016;8:29–34. doi: 10.7537/marsrsj080516.05. DOI

Mbatudde M., Mwanjololo M., Kyomugisha Kakudidi E., Dalitz H. Modelling the potential distribution of endangered Prunus africana (Hook. f.) Kalkm. in East Africa. Afr. J. Ecol. 2012;50:393–403. doi: 10.1111/j.1365-2028.2012.01327.x. DOI

Pradhan P., Dutta A.K., Roy A., Basu S.K., Acharya K. Inventory and spatial ecology of macrofungi in the Shorea robusta forest ecosystem of lateritic region of West Bengal. Biodiversity. 2012;13:88–99. doi: 10.1080/14888386.2012.690560. DOI

Campbell L.P., Luther C., Moo-Llanes D., Ramsey J.M., Danis-Lozano R., Townsend Peterson A. Climate change influences on global distributions of dengue and chikungunya virus vectors. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2015;370:20140135. doi: 10.1098/rstb.2014.0135. PubMed DOI PMC

Escobar L.E., Lira-Noriega A., Medina-Vogel G., Townsend Peterson A. Potential for spread of the white-nose fungus (Pseudogymnoascus destructans) in the Americas: Use of Maxent and NicheA to assure strict model transference. Geospat. Health. 2014;9:221–229. doi: 10.4081/gh.2014.19. PubMed DOI

Cobos M.E., Townsend Peterson A., Osorio-Olvera L. Kuenm: An R package for detailed development of ecological niche models using Maxent. PeerJ. 2019;7:e6281. doi: 10.7717/peerj.6281. PubMed DOI PMC

Sanderson B.M., Knutti R., Caldwell P. A representative democracy to reduce interdependency in a multimodel ensemble. J. Clim. 2015;28:5171–5194. doi: 10.1175/JCLI-D-14-00362.1. DOI

Phillips S.J., Dudík M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography. 2008;31:161–175. doi: 10.1111/j.0906-7590.2008.5203.x. DOI

Barve N., Barve V., Jiménez-Valverde J., Lira-Noriega A., Maher S.P., Townsend Peterson A., Soberón J., Villalobos F. The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol. Modell. 2011;11:1810–1819. doi: 10.1016/j.ecolmodel.2011.02.011. DOI

Phillips S.J., Dudík M., Schapire R.E. Maxent Software for Modeling Species Niches and Distributions (Version 3.4.4) 2020. [(accessed on 8 January 2022)]. Available online: http://biodiversityinformatics.amnh.org/open_source/maxent/

Phillips S.J. A Brief Tutorial on Maxent. 2017. [(accessed on 8 January 2022)]. Available online: http://biodiversityinformatics.amnh.org/open_source/maxent/

Elith J., Graham C.H., Anderson R.P., Dudík M., Ferrier S., Guisan A., Hijmans R.J., Huettmann F., Leathwick J.R., Lehmann A., et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography. 2006;29:129–151. doi: 10.1111/j.2006.0906-7590.04596.x. DOI

Hernandez P.A., Graham C.H., Master L.L., Albert D.L. The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography. 2006;29:773–785. doi: 10.1111/j.0906-7590.2006.04700.x. DOI

Kumar S., Spaulding S.A., Stohlgren T.J., Hermann K.A., Schmidt T.S., Bahls L.L. Potential habitat distribution for the freshwater diatom Didymosphenia geminata in the continental US. Front. Ecol. Environ. 2008;7:415–420. doi: 10.1890/080054. DOI

Mesgaran M.B., Cousens R.D., Webber B.L. Here be dragons: A tool for quantifying novelty due to covariate range and correlation change when projecting species distribution models. Divers. Distrib. 2014;20:1147–1159. doi: 10.1111/ddi.12209. DOI

QGIS.org. QGIS 3.10. Geographic Information System Developers Manual. QGIS Association. 2021. [(accessed on 1 May 2022)]. Electronic Document. Available online: https://docs.qgis.org/3.10/en/docs/developers_guide/index.html.

Stohlgren T.J., Jarnevich C.S., Esaias W.E., Morisette J.T. Bounding species distribution models. Curr. Zool. 2011;57:642–647. doi: 10.1093/czoolo/57.5.642. DOI

Swets J.A. Measuring the accuracy of diagnostic systems. Science. 1988;240:1285–1293. doi: 10.1126/science.3287615. PubMed DOI

Leadley P., Pereira H.M., Alkemade R., Fernandez-Manjarres J.F., Proenca V., Scharlemann J.P.W., Walpole M.J. Biodiversity scenarios: Projections of 21st Century Change in Biodiversity and Associated Ecosystem Services. Secretariat of the Convention on Biological Diversity; Montreal, Canada: 2010. pp. 1–132. (Technical Series no. 50).

Zanatta F., Engler R., Collart F., Broennimann O., Mateo R.G., Papp B., Muñoz J., Baurain D., Guisan A., Vanderpoorten A. Bryophytes are predicted to lag behind future climate change despite their high dispersal capacities. Nat. Commun. 2020;11:5601. doi: 10.1038/s41467-020-19410-8. PubMed DOI PMC

Bellard C., Bertelsmeier C., Leadley P., Thuiller W., Courchamp F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 2012;15:365–377. doi: 10.1111/j.1461-0248.2011.01736.x. PubMed DOI PMC

Lavergne S., Mouquet N., Thuiller W., Ronce O. Biodiversity and climate change: Integrating evolutionary and ecological responses of species and communities. Annu. Rev. Ecol. Evol. Syst. 2010;41:321–350. doi: 10.1146/annurev-ecolsys-102209-144628. DOI

Pereira H.M., Leadley P.W., Proenca V., Alkemade R., Scharlemann J.P.W., Fernandez-Manjarres J.F., Araujo M.B., Balvanera P., Biggs R., Cheung W.W.L., et al. Scenarios for global biodiversity in the 21st century. Science. 2010;330:1496–1501. doi: 10.1126/science.1196624. PubMed DOI

Salamin N., Wüest R.O., Lavergne S., Thuiller W., Pearman P.B. Assessing rapid evolution in a changing environment. Trends Ecol. Evol. 2010;25:692–698. doi: 10.1016/j.tree.2010.09.009. PubMed DOI

Meinunger L., Schröder W. Verbreitungsatlas der Moose Deutschlands, Band 3. Regensburgische Botanische Gesellschaft; Regensburg, Germany: 2007. pp. 1–709.

Pearson R.G. Climate change and the migration capacity of species. Trends Ecol. Evol. 2006;21:111–113. doi: 10.1016/j.tree.2005.11.022. PubMed DOI

Seifert E. Epiphytische Moose im Erzgebirge (1997–2008) Nat. Erzgebirg. Vogtland. Spez. 2009;8:1–62.

Seifert E. Bemerkenswerte Funde epiphytischer Moose im Erzgebirge im vergangenen Jahrzehnt (2000−2009)—Praktische und theoretische Probleme der Artbestimmung. Veröffentlichungen Mus. Nat. Chemnitz. 2009;32:55–92.

Ellis L.T., Ah-Peng C., Aslan G., Bakalin V.A., Bergamini A., Callaghan D.A., Campisi P., Raimondo F.M., Choi S.S., Csiky J., et al. New national and regional bryophyte records, 65. J. Bryol. 2021;43:67–91. doi: 10.1080/03736687.2021.1878804. DOI

Ellis L.T., Aleffi M., Bączkiewicz A., Buczkowska K., Bambe B., Boiko M., Zagorodniuk N., Brusa G., Burghardt M., Calleja J.A., et al. New national and regional bryophyte records, 60. J. Bryol. 2019;41:285–299. doi: 10.1080/03736687.2019.1643117. DOI

Ahrens M. Zum Vorkommen von Orthotrichum acuminatum H. Philib. und O. consimile Mitt. (Bryopsida, Orthotrichaceae) im Nordschwarzwald. Carolinea. 2004;62:81–85.

Müller F. Lewinskya acuminata (Orthotrichaceae, Bryopsida), a new species for the bryoflora of the Czech Republic. Acta Mus. Siles. Sci. Natur. 2019;68:189–193. doi: 10.2478/cszma-2019-0019. DOI

Biedermann S., Müller F., Seifert E. Neu- und Wiederfunde für die Moosflora Sachsens. Herzogia. 2014;27:215–219. doi: 10.13158/heia.27.1.2014.215. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...