How Does the pH of Tree Bark Change with the Presence of the Epiphytic Bryophytes from the Family Orthotrichaceae in the Interaction with Trunk Inclination?

. 2021 Dec 25 ; 11 (1) : . [epub] 20211225

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35009067

The pH of tree bark is affected by many factors, amongst them epiphytic bryophytes changing in their active state environment. Thus, we hypothesized that bryophytes can change bark acidity, dependently of the inclination of the branches, as inclination affect the water regime and particle deposition. We measured the pH under bryophyte cushions and compared it to nearby naked bark. Additionally, we compared results with experimental bark covering with neutral cover. We found that the pH of naked bark declines with decreasing inclination of trunks. Although bryophyte cover did not generally change the pH of the bark, there was a significant interaction with inclination: with higher inclination, bryophytes decrease the pH reaction of bark, while with lower inclination they increase it. One possible explanation may lie in changes to alkaline particle deposition, or conversely in the acidification of the bark by leaching. In addition, an experiment with a neutral cover showed that naked bark covering would substantially increase pH. As, on average, bryophytes do not change the pH of bark, there can be mutual interference between the alkalizing effect of the bark cover itself and the acidifying biological effect of bryophytes.

Zobrazit více v PubMed

Kricke R. Measuring bark pH. In: Nimis P.L., Scheidegger C., Wolseley P.A., editors. Monitoring with Lichens—Monitoring Lichens. Springer; Dordrecht, The Netherlands: 2002. pp. 333–336. (NATO Science Series 7).

Chrabąszcz M., Mróz L. Tree Bark, a valuable source of information on air quality. Pol. J. Environ. Stud. 2017;26:453–466. doi: 10.15244/pjoes/65908. DOI

André F., Jonard M., Ponette Q. Influence of species and rain event characteristics on stemflow volume in a temperate mixed oak-beech stand. Hydrol. Process. 2008;22:4455–4466. doi: 10.1002/hyp.7048. DOI

Augusto L., Ranger J., Binkley D., Rothe A. Impact of several common tree species of European temperate forests on soil fertility. Ann. For. Sci. 2002;59:233–253. doi: 10.1051/forest:2002020. DOI

Spier L., van Dobben H., van Dort K. Is bark pH more important than tree species in determining the composition of nitrophytic or acidophytic lichen floras? Environ. Pollut. 2010;158:3607–3611. doi: 10.1016/j.envpol.2010.08.008. PubMed DOI

Nihlgård B. Precipitation, Its Chemical Composition and Effect on Soil Water in a Beech and a Spruce Forest in South Sweden. Oikos. 1970;21:208–217. doi: 10.2307/3543676. DOI

Gonzalez-Ollauri A., Stokes A., Mickovski S. A novel framework to study the effect of tree architectural traits on stemflow yield and its consequences for soil-water dynamics. J. Hydrol. 2020;582:124448. doi: 10.1016/j.jhydrol.2019.124448. DOI

Kelly J. Power Plant Influences on Bulk Precipitation, Throughfall, and Stemflow Nutrient Inputs. J. Environ. Qual. 1984;13:405–409. doi: 10.2134/jeq1984.00472425001300030017x. DOI

Levia D., Van Stan J., Mage S., Kelley-Hauske P. Temporal variability of stemflow volume in a beech-yellow poplar forest in relation to tree species and size. J. Hydrol. 2010;380:112–120. doi: 10.1016/j.jhydrol.2009.10.028. DOI

Wu X., Liu H., Yuan Z., Wang S., Chen A., He B. Concentration, exchange and source identification of polycyclic aromatic hydrocarbons in soil, air and tree bark from the Middle-Lower Yangtze Plain, China. Atmos. Pollut. Res. 2019;10:1276–1283. doi: 10.1016/j.apr.2019.02.011. DOI

Van Stan J., Levia D. Inter- and intraspecific variation of stemflow production from Fagus grandifolia Ehrh. (American beech) and Liriodendron tulipifera L. (yellow poplar) in relation to bark microrelief in the eastern United States. Ecohydrogeomorphology. 2009;3:11–19. doi: 10.1002/eco.83. DOI

McGee G., Cardon M., Kiernan D. Variation in Acer saccharum Marshall (Sugar Maple) Bark and Stemflow Characteristics: Implications for Epiphytic Bryophyte Communities. Northeast. Nat. 2019;26:214–235. doi: 10.1656/045.026.0118. DOI

Fritz Ö., Niklasson M., Churski M. Tree age is a key factor for the conservation of epiphytic lichens and bryophytes in beech forests. Appl. Veg. Sci. 2009;12:93–106. doi: 10.1111/j.1654-109X.2009.01007.x. DOI

Valová M., Bieleszová S. Interspecific variations of bark´s water storage capacity of chosen types of trees and the dependance on occurance of epiphytic mosses. GeoScience Eng. 2008;54:45–51.

Levia D., Herwitz S. Interspecific variation of bark water storage capacity of three deciduous tree species in relation to stemflow yield and solute flux to forest soils. Catena. 2005;64:117–137. doi: 10.1016/j.catena.2005.08.001. DOI

Levia D. Differential winter stemflow generation under contrasting storm conditions in a southern New England broad-leaved deciduous forest. Hydrol. Process. 2004;18:1105–1112. doi: 10.1002/hyp.5512. DOI

Levia D., Herwitz S. Physical properties of water in relation to stemflow leachate dynamics: Implications for nutrient cycling. Can. J. For. Res. 2011;30:662–666. doi: 10.1139/x99-244. DOI

Hansen K., Draaijers G., Ivens W., Gundersen P., Vanleeuwen N. Concentration variations in rain and canopy throughfall collected sequentially during individual rain events. Atmos. Environ. 1994;28:3195–3205. doi: 10.1016/1352-2310(94)00176-L. DOI

Draaijers G., Erisman J., Leeuwen N., Römer F., Winkel B., Veltkamp A., Vermeulen A., Wyers G. The impact of canopy exchange on differences observed between atmospheric deposition and throughfall fluxes. Atmos. Environ. 1997;31:387–397. doi: 10.1016/S1352-2310(96)00164-1. DOI

Van Stan J., Siegert C., Levia D., Scheick C. Effects of wind-driven rainfall on stemflow generation between codominant tree species with differing crown characteristics. Agric. For. Meteorol. 2011;151:1277–1286. doi: 10.1016/j.agrformet.2011.05.008. DOI

Alpert P. Constraints of tolerance: Why are desiccation-tolerant organisms so small or rare? J. Exp. Biol. 2006;209:1575–1584. doi: 10.1242/jeb.02179. PubMed DOI

Ye J., Hao Z., Yu D., Yan H., Feng D. Research advances in bryophyte ecological function. J. Appl. Ecol. 2004;15:1939–1942. PubMed

Bini C., Bresolin F. Soil acidification by acid rain in forest ecosystems: A case study in northern Italy. Sci. Total Environ. 1998;222:1–15. doi: 10.1016/S0048-9697(98)00239-3. DOI

Fojcik B., Chruścińska M., Nadgórska-Socha A., Stebel A. Determinants of occurrence of epiphytic mosses in the urban environment; a case study from Katowice city (S Poland) Acta Mus. Sil. Sci. Nat. 2015;64:275–286. doi: 10.1515/cszma-2015-0035. DOI

Lowman M., Rinker B. Forest Canopies. Elsevier Academic Press; Brighton, UK: 2004. pp. 1–544.

Pypker T., Unsworth M., Bond B. The role of epiphytes in rainfall interception by forests in the Pacific Northwest. I. Laboratory measurements of water storage. Can. J. For. Res. 2006;36:809–818. doi: 10.1139/x05-298. DOI

Shorohova E., Kapitsa E., Kazartsev I., Romashkin I., Polevoi A., Kushnevskaya H. Tree species traits are the predominant control on the decomposition rate of tree log bark in a mesic old-growth boreal forest. For. Ecol. Manag. 2016;377:36–45. doi: 10.1016/j.foreco.2016.06.036. DOI

Duckett J.G., Burch J., Fletcher P., Matcham H.W. In vitro cultivation of bryophytes: A review of practicalities, problems, progress and promise. J. Bryol. 2004;26:3–20. doi: 10.1179/037366803235001742. DOI

Vellak K., Vellak A., Ingerpuu N. Reasons for moss rarity: Study in three neighbouring countries. Biol. Conserv. 2007;135:360–368. doi: 10.1016/j.biocon.2006.10.009. DOI

Young C. Acidity and Moisture in Tree Bark. Proc. Indian Acad. Sci. 1937;1:106–114.

Wiklund K., Rydin H. Ecophysiological constraints on spore establishment in bryophytes. Funct. Ecol. 2004;18:907–913. doi: 10.1111/j.0269-8463.2004.00906.x. DOI

Pereira I., Müller F., Moya M. Influence of Nothofagus bark pH on the lichen and bryophytes richness, Central Chile. Gayana Botánica. 2014;71:120–130. doi: 10.4067/S0717-66432014000100012. DOI

Per D., Nils C. Bryophytes in black alder swamps in south Sweden: Habitat classification, environmental factors and life-strategies. Lindbergia. 2011;34:9–29.

Bates J. Influence of Chemical and Physical Factors on Quercus and Fraxinus Epiphytes at Loch Sunart, Western Scotland: A Multivariate Analysis. J. Ecol. 1992;80:163–179. doi: 10.2307/2261073. DOI

Adams K. Proposal for a 5-km2 mapping scheme for eastern England. Bull. Br. Bryol. Soc. 1990;55:14–17.

Dymytrova L. Epiphytic lichens and bryophytes as indicators of air pollution in Kyiv city (Ukraine) Folia Cryptog. Estonica. 2009;46:33–44.

Hazell P., Kellner O., Rydin H., Gustafsson L. Presence and abundance of four epiphytic bryophytes in relation to density of aspen (Populus tremula) and other stand characteristics. For. Ecol. Manag. 1998;107:147–158. doi: 10.1016/S0378-1127(97)00330-7. DOI

Zotz G., Vollrath B. The epiphyte vegetation of the palm Socratea exorrhiza—Correlations with tree size, tree age and bryophyte cover. J. Trop. Ecol. 2003;19:81–90. doi: 10.1017/S0266467403003092. DOI

Rose F. Temperate forest management: Its effects on bryophyte and lichen floras and habitats. In: Bates J.W., Farmer A.M., editors. Bryophytes and Lichens in a Changing Environment. Agris, Clarendon; Oxford, UK: 1992. pp. 211–233.

Whitelaw M., Burton M. Diversity and distribution of epiphytic bryophytes on Bramley’s Seedling trees in East of England apple orchards. Glob. Ecol. Conserv. 2015;4:380–387. doi: 10.1016/j.gecco.2015.07.014. DOI

Putna S., Mežaka A. Preferences of epiphytic bryophytes for forest stand and substrate in North-East Latvia. Folia Cryptog. Estonica. 2014;51:75–83. doi: 10.12697/fce.2014.51.08. DOI

Plášek V., Komínková Z., Ochyra R., Fialová L., Guo S., Sulayman M. A Synopsis of Orthotrichum s. lato (Bryophyta, Orthotrichaceae) in China, with Distribution Maps and a Key to Determination. Plants. 2021;10:499. doi: 10.3390/plants10030499. PubMed DOI PMC

Steindor K., Palowski B., Goras P., Nadgórska-Socha A. Assessment of Bark Reaction of Select Tree Species as an Indicator of Acid Gaseous Pollution. Pol. J. Environ. Stud. 2010;20:619–622.

Schmidt J., Kricke R., Feige G. Measurements of bark pH with a modified flathead electrode. Lichenologist. 2001;33:456–460. doi: 10.1006/lich.2001.0341. DOI

Radzi Abas M., Ahmad-Shah A., Nor Awang M. Fluxes of ions in precipitation, throughfall and stemflow in an urban forest in Kuala Lumpur, Malaysia. Environ. Pollut. 1992;75:209–213. doi: 10.1016/0269-7491(92)90041-8. PubMed DOI

Herwitz S. Raindrop impact and water flow on the vegetative surfaces of trees and the effects on stemflow and throughfall generation. Earth Surf. Process. Landf. 1987;12:425–432. doi: 10.1002/esp.3290120408. DOI

Veneklaas E., Zagt R., Leerdam A., Ek R.V., Broekhoven A.J., Genderen M.V. Hydrological properties of the epiphyte mass of a montane tropical rain forest, Colombia. Vegetatio. 1990;89:183–192. doi: 10.1007/BF00032170. DOI

Foster N., Nicolson J.A. Acid Deposition and Nutrient Leaching from Deciduous Vegetation and Podzolic Soils at the Turkey Lakes Watershed. Can. J. Fish. Aquat. Sci. 1988;45:96–100. doi: 10.1139/f88-272. DOI

Chen S., Cao R., Yoshitake S., Ohtsuka T. Stemflow hydrology and DOM flux in relation to tree size and rainfall event characteristics. Agric. For. Meteorol. 2019;279:107753. doi: 10.1016/j.agrformet.2019.107753. DOI

Pearson J., Wells D.M., Seller K.J., Bennett A., Soares A., Woodall J., Ingrouille M.J. Traffic exposure increases natural 15 N and heavy metal concentrations in mosses. New Phytol. 2000;147:317–326. doi: 10.1046/j.1469-8137.2000.00702.x. DOI

Leith I., Mitchell R., Truscott A., Cape J., van Dijk N., Smith R., Fowler D., Sutton M. The influence of nitrogen in stemflow and precipitation on epiphytic bryophytes, Isothecium myosuroides Brid., Dicranum scoparium Hewd. and Thuidium tamariscinum (Hewd.) Schimp of Atlantic oakwoods. Environ. Pollut. 2008;155:237–246. doi: 10.1016/j.envpol.2007.11.031. PubMed DOI

Mizuno T., Momohara A., Okitsu S. The effects of bryophyte communities on the establishment and survival of an epiphytic fern. Folia Geobot. Phytotax. 2015;50:331–337. doi: 10.1007/s12224-015-9229-5. DOI

Tremblay R.L., Zimmerman J., Lebrón L., Bayman P., Sastre I., Axelrod F., Alers-García J. Host specificity and low reproductive success in the rare endemic Puerto Rican orchid Lepanthes caritensis. Biol. Conserv. 1998;85:297–304. doi: 10.1016/S0006-3207(97)00163-8. DOI

Scheu S., Poser G. The soil macrofauna (Diplopoda, Isopoda, Lumbricidae and Chilopoda) near tree trunks in a beechwood on limestone: Indications for stemflow induced changes in community structure. Appl. Soil Ecol. 1996;3:115–125. doi: 10.1016/0929-1393(95)00079-8. DOI

Thoms C., Gattinger A., Jacob M., Thomas F.M., Gleixner G. Direct and indirect effects of tree diversity drive soil microbial diversity in temperate deciduous forest. Soil Biol. Biochem. 2010;42:1558–1565. doi: 10.1016/j.soilbio.2010.05.030. DOI

Subramoniam A., Subhisha S. Antifungal activities of a steroid from Pallavicinia lyellii, a liverwort. Indian J. Pharmacol. 2005;37:304–308. doi: 10.4103/0253-7613.16854. DOI

Singh M., Rawat A.K.S., Raghavan G. Antimicrobial activity of some Indian mosses. Fitoterapia. 2007;78:156–158. doi: 10.1016/j.fitote.2006.10.008. PubMed DOI

Karpiński T., Adamczak A. Antibacterial activity of ethanolic extracts of some moss species. Herba Pol. 2017;63:11–17. doi: 10.1515/hepo-2017-0014. DOI

Löbel S., Rydin H. Trade-offs and habitat constraints in the establishment of epiphytic bryophytes. Funct. Ecol. 2010;24:887–897. doi: 10.1111/j.1365-2435.2010.01705.x. DOI

Friedel A., von Oheimb G., Dengler J., Haerdtle W. Species diversity and species composition of epiphytic bryophytes and lichens a comparison of managed and unmanaged beech forests in NE Germany. Feddes Repert. 2006;117:172–185. doi: 10.1002/fedr.200511084. DOI

Mcgee G., Kimmerer R. Forest age and management effects on epiphytic bryophyte communities in Adirondack northern hardwood forests, New York, USA. Can. J. For. Res. 2002;32:1562–1576. doi: 10.1139/x02-083. DOI

Kříž V. Moravskoslezský Kraj—Klimatické a Hydrologické Poměry. University of Ostrava; Ostrava, Czech Republic: 2004. Moravian-Silesian region—Climatic and hydrological conditions; pp. 1–43.

Rychlík Š. Týdenní Analýza Atmosférických Srážek. CHMI. 2019. [(accessed on 15 November 2021)]. Available online: https://www.chmi.cz/files/portal/docs/uoco/isko/tab_roc/2019_enh/precipitation_week/week_TBKRF_CZ.html.

Rychlík Š. Týdenní Analýza Atmosférických Srážek. CHMI. 2020. [(accessed on 15 November 2021)]. Available online: https://www.chmi.cz/files/portal/docs/uoco/isko/tab_roc/2020_enh/precipitation_week/week_TBKRF_CZ.html.

Mištera L., Demek J., Bašovský O. Geografie Československé Socialistické Republiky. 1st ed. SPN; Praha, Czech Republic: 1984.

Čihař M. Naše Hory. Cesty; Praha, Czech Republic: 2002.

Sawicki J., Plášek V., Ochyra R., Szczecińska M., Slipiko M., Myszczyński K., Kulik T. Mitogenomic analyses support the recent division of the genus Orthotrichum (Orthotrichaceae, Bryophyta) Sci. Rep. 2017;7:4408. doi: 10.1038/s41598-017-04833-z. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...