How Does the pH of Tree Bark Change with the Presence of the Epiphytic Bryophytes from the Family Orthotrichaceae in the Interaction with Trunk Inclination?
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
35009067
PubMed Central
PMC8747604
DOI
10.3390/plants11010063
PII: plants11010063
Knihovny.cz E-zdroje
- Klíčová slova
- Orthotrichaceae, acidification, dust deposition, inclination, phorophytes,
- Publikační typ
- časopisecké články MeSH
The pH of tree bark is affected by many factors, amongst them epiphytic bryophytes changing in their active state environment. Thus, we hypothesized that bryophytes can change bark acidity, dependently of the inclination of the branches, as inclination affect the water regime and particle deposition. We measured the pH under bryophyte cushions and compared it to nearby naked bark. Additionally, we compared results with experimental bark covering with neutral cover. We found that the pH of naked bark declines with decreasing inclination of trunks. Although bryophyte cover did not generally change the pH of the bark, there was a significant interaction with inclination: with higher inclination, bryophytes decrease the pH reaction of bark, while with lower inclination they increase it. One possible explanation may lie in changes to alkaline particle deposition, or conversely in the acidification of the bark by leaching. In addition, an experiment with a neutral cover showed that naked bark covering would substantially increase pH. As, on average, bryophytes do not change the pH of bark, there can be mutual interference between the alkalizing effect of the bark cover itself and the acidifying biological effect of bryophytes.
Zobrazit více v PubMed
Kricke R. Measuring bark pH. In: Nimis P.L., Scheidegger C., Wolseley P.A., editors. Monitoring with Lichens—Monitoring Lichens. Springer; Dordrecht, The Netherlands: 2002. pp. 333–336. (NATO Science Series 7).
Chrabąszcz M., Mróz L. Tree Bark, a valuable source of information on air quality. Pol. J. Environ. Stud. 2017;26:453–466. doi: 10.15244/pjoes/65908. DOI
André F., Jonard M., Ponette Q. Influence of species and rain event characteristics on stemflow volume in a temperate mixed oak-beech stand. Hydrol. Process. 2008;22:4455–4466. doi: 10.1002/hyp.7048. DOI
Augusto L., Ranger J., Binkley D., Rothe A. Impact of several common tree species of European temperate forests on soil fertility. Ann. For. Sci. 2002;59:233–253. doi: 10.1051/forest:2002020. DOI
Spier L., van Dobben H., van Dort K. Is bark pH more important than tree species in determining the composition of nitrophytic or acidophytic lichen floras? Environ. Pollut. 2010;158:3607–3611. doi: 10.1016/j.envpol.2010.08.008. PubMed DOI
Nihlgård B. Precipitation, Its Chemical Composition and Effect on Soil Water in a Beech and a Spruce Forest in South Sweden. Oikos. 1970;21:208–217. doi: 10.2307/3543676. DOI
Gonzalez-Ollauri A., Stokes A., Mickovski S. A novel framework to study the effect of tree architectural traits on stemflow yield and its consequences for soil-water dynamics. J. Hydrol. 2020;582:124448. doi: 10.1016/j.jhydrol.2019.124448. DOI
Kelly J. Power Plant Influences on Bulk Precipitation, Throughfall, and Stemflow Nutrient Inputs. J. Environ. Qual. 1984;13:405–409. doi: 10.2134/jeq1984.00472425001300030017x. DOI
Levia D., Van Stan J., Mage S., Kelley-Hauske P. Temporal variability of stemflow volume in a beech-yellow poplar forest in relation to tree species and size. J. Hydrol. 2010;380:112–120. doi: 10.1016/j.jhydrol.2009.10.028. DOI
Wu X., Liu H., Yuan Z., Wang S., Chen A., He B. Concentration, exchange and source identification of polycyclic aromatic hydrocarbons in soil, air and tree bark from the Middle-Lower Yangtze Plain, China. Atmos. Pollut. Res. 2019;10:1276–1283. doi: 10.1016/j.apr.2019.02.011. DOI
Van Stan J., Levia D. Inter- and intraspecific variation of stemflow production from Fagus grandifolia Ehrh. (American beech) and Liriodendron tulipifera L. (yellow poplar) in relation to bark microrelief in the eastern United States. Ecohydrogeomorphology. 2009;3:11–19. doi: 10.1002/eco.83. DOI
McGee G., Cardon M., Kiernan D. Variation in Acer saccharum Marshall (Sugar Maple) Bark and Stemflow Characteristics: Implications for Epiphytic Bryophyte Communities. Northeast. Nat. 2019;26:214–235. doi: 10.1656/045.026.0118. DOI
Fritz Ö., Niklasson M., Churski M. Tree age is a key factor for the conservation of epiphytic lichens and bryophytes in beech forests. Appl. Veg. Sci. 2009;12:93–106. doi: 10.1111/j.1654-109X.2009.01007.x. DOI
Valová M., Bieleszová S. Interspecific variations of bark´s water storage capacity of chosen types of trees and the dependance on occurance of epiphytic mosses. GeoScience Eng. 2008;54:45–51.
Levia D., Herwitz S. Interspecific variation of bark water storage capacity of three deciduous tree species in relation to stemflow yield and solute flux to forest soils. Catena. 2005;64:117–137. doi: 10.1016/j.catena.2005.08.001. DOI
Levia D. Differential winter stemflow generation under contrasting storm conditions in a southern New England broad-leaved deciduous forest. Hydrol. Process. 2004;18:1105–1112. doi: 10.1002/hyp.5512. DOI
Levia D., Herwitz S. Physical properties of water in relation to stemflow leachate dynamics: Implications for nutrient cycling. Can. J. For. Res. 2011;30:662–666. doi: 10.1139/x99-244. DOI
Hansen K., Draaijers G., Ivens W., Gundersen P., Vanleeuwen N. Concentration variations in rain and canopy throughfall collected sequentially during individual rain events. Atmos. Environ. 1994;28:3195–3205. doi: 10.1016/1352-2310(94)00176-L. DOI
Draaijers G., Erisman J., Leeuwen N., Römer F., Winkel B., Veltkamp A., Vermeulen A., Wyers G. The impact of canopy exchange on differences observed between atmospheric deposition and throughfall fluxes. Atmos. Environ. 1997;31:387–397. doi: 10.1016/S1352-2310(96)00164-1. DOI
Van Stan J., Siegert C., Levia D., Scheick C. Effects of wind-driven rainfall on stemflow generation between codominant tree species with differing crown characteristics. Agric. For. Meteorol. 2011;151:1277–1286. doi: 10.1016/j.agrformet.2011.05.008. DOI
Alpert P. Constraints of tolerance: Why are desiccation-tolerant organisms so small or rare? J. Exp. Biol. 2006;209:1575–1584. doi: 10.1242/jeb.02179. PubMed DOI
Ye J., Hao Z., Yu D., Yan H., Feng D. Research advances in bryophyte ecological function. J. Appl. Ecol. 2004;15:1939–1942. PubMed
Bini C., Bresolin F. Soil acidification by acid rain in forest ecosystems: A case study in northern Italy. Sci. Total Environ. 1998;222:1–15. doi: 10.1016/S0048-9697(98)00239-3. DOI
Fojcik B., Chruścińska M., Nadgórska-Socha A., Stebel A. Determinants of occurrence of epiphytic mosses in the urban environment; a case study from Katowice city (S Poland) Acta Mus. Sil. Sci. Nat. 2015;64:275–286. doi: 10.1515/cszma-2015-0035. DOI
Lowman M., Rinker B. Forest Canopies. Elsevier Academic Press; Brighton, UK: 2004. pp. 1–544.
Pypker T., Unsworth M., Bond B. The role of epiphytes in rainfall interception by forests in the Pacific Northwest. I. Laboratory measurements of water storage. Can. J. For. Res. 2006;36:809–818. doi: 10.1139/x05-298. DOI
Shorohova E., Kapitsa E., Kazartsev I., Romashkin I., Polevoi A., Kushnevskaya H. Tree species traits are the predominant control on the decomposition rate of tree log bark in a mesic old-growth boreal forest. For. Ecol. Manag. 2016;377:36–45. doi: 10.1016/j.foreco.2016.06.036. DOI
Duckett J.G., Burch J., Fletcher P., Matcham H.W. In vitro cultivation of bryophytes: A review of practicalities, problems, progress and promise. J. Bryol. 2004;26:3–20. doi: 10.1179/037366803235001742. DOI
Vellak K., Vellak A., Ingerpuu N. Reasons for moss rarity: Study in three neighbouring countries. Biol. Conserv. 2007;135:360–368. doi: 10.1016/j.biocon.2006.10.009. DOI
Young C. Acidity and Moisture in Tree Bark. Proc. Indian Acad. Sci. 1937;1:106–114.
Wiklund K., Rydin H. Ecophysiological constraints on spore establishment in bryophytes. Funct. Ecol. 2004;18:907–913. doi: 10.1111/j.0269-8463.2004.00906.x. DOI
Pereira I., Müller F., Moya M. Influence of Nothofagus bark pH on the lichen and bryophytes richness, Central Chile. Gayana Botánica. 2014;71:120–130. doi: 10.4067/S0717-66432014000100012. DOI
Per D., Nils C. Bryophytes in black alder swamps in south Sweden: Habitat classification, environmental factors and life-strategies. Lindbergia. 2011;34:9–29.
Bates J. Influence of Chemical and Physical Factors on Quercus and Fraxinus Epiphytes at Loch Sunart, Western Scotland: A Multivariate Analysis. J. Ecol. 1992;80:163–179. doi: 10.2307/2261073. DOI
Adams K. Proposal for a 5-km2 mapping scheme for eastern England. Bull. Br. Bryol. Soc. 1990;55:14–17.
Dymytrova L. Epiphytic lichens and bryophytes as indicators of air pollution in Kyiv city (Ukraine) Folia Cryptog. Estonica. 2009;46:33–44.
Hazell P., Kellner O., Rydin H., Gustafsson L. Presence and abundance of four epiphytic bryophytes in relation to density of aspen (Populus tremula) and other stand characteristics. For. Ecol. Manag. 1998;107:147–158. doi: 10.1016/S0378-1127(97)00330-7. DOI
Zotz G., Vollrath B. The epiphyte vegetation of the palm Socratea exorrhiza—Correlations with tree size, tree age and bryophyte cover. J. Trop. Ecol. 2003;19:81–90. doi: 10.1017/S0266467403003092. DOI
Rose F. Temperate forest management: Its effects on bryophyte and lichen floras and habitats. In: Bates J.W., Farmer A.M., editors. Bryophytes and Lichens in a Changing Environment. Agris, Clarendon; Oxford, UK: 1992. pp. 211–233.
Whitelaw M., Burton M. Diversity and distribution of epiphytic bryophytes on Bramley’s Seedling trees in East of England apple orchards. Glob. Ecol. Conserv. 2015;4:380–387. doi: 10.1016/j.gecco.2015.07.014. DOI
Putna S., Mežaka A. Preferences of epiphytic bryophytes for forest stand and substrate in North-East Latvia. Folia Cryptog. Estonica. 2014;51:75–83. doi: 10.12697/fce.2014.51.08. DOI
Plášek V., Komínková Z., Ochyra R., Fialová L., Guo S., Sulayman M. A Synopsis of Orthotrichum s. lato (Bryophyta, Orthotrichaceae) in China, with Distribution Maps and a Key to Determination. Plants. 2021;10:499. doi: 10.3390/plants10030499. PubMed DOI PMC
Steindor K., Palowski B., Goras P., Nadgórska-Socha A. Assessment of Bark Reaction of Select Tree Species as an Indicator of Acid Gaseous Pollution. Pol. J. Environ. Stud. 2010;20:619–622.
Schmidt J., Kricke R., Feige G. Measurements of bark pH with a modified flathead electrode. Lichenologist. 2001;33:456–460. doi: 10.1006/lich.2001.0341. DOI
Radzi Abas M., Ahmad-Shah A., Nor Awang M. Fluxes of ions in precipitation, throughfall and stemflow in an urban forest in Kuala Lumpur, Malaysia. Environ. Pollut. 1992;75:209–213. doi: 10.1016/0269-7491(92)90041-8. PubMed DOI
Herwitz S. Raindrop impact and water flow on the vegetative surfaces of trees and the effects on stemflow and throughfall generation. Earth Surf. Process. Landf. 1987;12:425–432. doi: 10.1002/esp.3290120408. DOI
Veneklaas E., Zagt R., Leerdam A., Ek R.V., Broekhoven A.J., Genderen M.V. Hydrological properties of the epiphyte mass of a montane tropical rain forest, Colombia. Vegetatio. 1990;89:183–192. doi: 10.1007/BF00032170. DOI
Foster N., Nicolson J.A. Acid Deposition and Nutrient Leaching from Deciduous Vegetation and Podzolic Soils at the Turkey Lakes Watershed. Can. J. Fish. Aquat. Sci. 1988;45:96–100. doi: 10.1139/f88-272. DOI
Chen S., Cao R., Yoshitake S., Ohtsuka T. Stemflow hydrology and DOM flux in relation to tree size and rainfall event characteristics. Agric. For. Meteorol. 2019;279:107753. doi: 10.1016/j.agrformet.2019.107753. DOI
Pearson J., Wells D.M., Seller K.J., Bennett A., Soares A., Woodall J., Ingrouille M.J. Traffic exposure increases natural 15 N and heavy metal concentrations in mosses. New Phytol. 2000;147:317–326. doi: 10.1046/j.1469-8137.2000.00702.x. DOI
Leith I., Mitchell R., Truscott A., Cape J., van Dijk N., Smith R., Fowler D., Sutton M. The influence of nitrogen in stemflow and precipitation on epiphytic bryophytes, Isothecium myosuroides Brid., Dicranum scoparium Hewd. and Thuidium tamariscinum (Hewd.) Schimp of Atlantic oakwoods. Environ. Pollut. 2008;155:237–246. doi: 10.1016/j.envpol.2007.11.031. PubMed DOI
Mizuno T., Momohara A., Okitsu S. The effects of bryophyte communities on the establishment and survival of an epiphytic fern. Folia Geobot. Phytotax. 2015;50:331–337. doi: 10.1007/s12224-015-9229-5. DOI
Tremblay R.L., Zimmerman J., Lebrón L., Bayman P., Sastre I., Axelrod F., Alers-García J. Host specificity and low reproductive success in the rare endemic Puerto Rican orchid Lepanthes caritensis. Biol. Conserv. 1998;85:297–304. doi: 10.1016/S0006-3207(97)00163-8. DOI
Scheu S., Poser G. The soil macrofauna (Diplopoda, Isopoda, Lumbricidae and Chilopoda) near tree trunks in a beechwood on limestone: Indications for stemflow induced changes in community structure. Appl. Soil Ecol. 1996;3:115–125. doi: 10.1016/0929-1393(95)00079-8. DOI
Thoms C., Gattinger A., Jacob M., Thomas F.M., Gleixner G. Direct and indirect effects of tree diversity drive soil microbial diversity in temperate deciduous forest. Soil Biol. Biochem. 2010;42:1558–1565. doi: 10.1016/j.soilbio.2010.05.030. DOI
Subramoniam A., Subhisha S. Antifungal activities of a steroid from Pallavicinia lyellii, a liverwort. Indian J. Pharmacol. 2005;37:304–308. doi: 10.4103/0253-7613.16854. DOI
Singh M., Rawat A.K.S., Raghavan G. Antimicrobial activity of some Indian mosses. Fitoterapia. 2007;78:156–158. doi: 10.1016/j.fitote.2006.10.008. PubMed DOI
Karpiński T., Adamczak A. Antibacterial activity of ethanolic extracts of some moss species. Herba Pol. 2017;63:11–17. doi: 10.1515/hepo-2017-0014. DOI
Löbel S., Rydin H. Trade-offs and habitat constraints in the establishment of epiphytic bryophytes. Funct. Ecol. 2010;24:887–897. doi: 10.1111/j.1365-2435.2010.01705.x. DOI
Friedel A., von Oheimb G., Dengler J., Haerdtle W. Species diversity and species composition of epiphytic bryophytes and lichens a comparison of managed and unmanaged beech forests in NE Germany. Feddes Repert. 2006;117:172–185. doi: 10.1002/fedr.200511084. DOI
Mcgee G., Kimmerer R. Forest age and management effects on epiphytic bryophyte communities in Adirondack northern hardwood forests, New York, USA. Can. J. For. Res. 2002;32:1562–1576. doi: 10.1139/x02-083. DOI
Kříž V. Moravskoslezský Kraj—Klimatické a Hydrologické Poměry. University of Ostrava; Ostrava, Czech Republic: 2004. Moravian-Silesian region—Climatic and hydrological conditions; pp. 1–43.
Rychlík Š. Týdenní Analýza Atmosférických Srážek. CHMI. 2019. [(accessed on 15 November 2021)]. Available online: https://www.chmi.cz/files/portal/docs/uoco/isko/tab_roc/2019_enh/precipitation_week/week_TBKRF_CZ.html.
Rychlík Š. Týdenní Analýza Atmosférických Srážek. CHMI. 2020. [(accessed on 15 November 2021)]. Available online: https://www.chmi.cz/files/portal/docs/uoco/isko/tab_roc/2020_enh/precipitation_week/week_TBKRF_CZ.html.
Mištera L., Demek J., Bašovský O. Geografie Československé Socialistické Republiky. 1st ed. SPN; Praha, Czech Republic: 1984.
Čihař M. Naše Hory. Cesty; Praha, Czech Republic: 2002.
Sawicki J., Plášek V., Ochyra R., Szczecińska M., Slipiko M., Myszczyński K., Kulik T. Mitogenomic analyses support the recent division of the genus Orthotrichum (Orthotrichaceae, Bryophyta) Sci. Rep. 2017;7:4408. doi: 10.1038/s41598-017-04833-z. PubMed DOI PMC