The Influence of Metabolic Inhibitors, Antibiotics, and Microgravity on Intact Cell MALDI-TOF Mass Spectra of the Cyanobacterium Synechococcus Sp. UPOC S4
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
IGA_PrF_2019_022
Univerzita Palackého v Olomouci
PubMed
33802864
PubMed Central
PMC8002600
DOI
10.3390/molecules26061683
PII: molecules26061683
Knihovny.cz E-zdroje
- Klíčová slova
- MALDI, Synechococcus, antibiotic, cyanobacterium, inhibitor, metabolism,
- MeSH
- antibakteriální látky toxicita MeSH
- antimycin A analogy a deriváty toxicita MeSH
- azidy toxicita MeSH
- buněčné dýchání účinky léků MeSH
- chloramfenikol toxicita MeSH
- citrátový cyklus účinky léků MeSH
- deoxyglukosa toxicita MeSH
- fluoracetáty toxicita MeSH
- glykolýza účinky léků MeSH
- malonáty toxicita MeSH
- proteosyntéza účinky léků MeSH
- pyruváty toxicita MeSH
- reprodukovatelnost výsledků MeSH
- spektrometrie hmotnostní - ionizace laserem za účasti matrice metody MeSH
- stav beztíže MeSH
- streptomycin toxicita MeSH
- Synechococcus chemie účinky léků izolace a purifikace metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky MeSH
- antimycin A MeSH
- antimycin MeSH Prohlížeč
- azidy MeSH
- bromopyruvate MeSH Prohlížeč
- chloramfenikol MeSH
- deoxyglukosa MeSH
- fluoracetáty MeSH
- fluoroacetic acid MeSH Prohlížeč
- malonáty MeSH
- malonic acid MeSH Prohlížeč
- pyruváty MeSH
- streptomycin MeSH
The aim and novelty of this paper are found in assessing the influence of inhibitors and antibiotics on intact cell MALDI-TOF mass spectra of the cyanobacterium Synechococcus sp. UPOC S4 and to check the impact on reliability of identification. Defining the limits of this method is important for its use in biology and applied science. The compounds included inhibitors of respiration, glycolysis, citrate cycle, and proteosynthesis. They were used at 1-10 μM concentrations and different periods of up to 3 weeks. Cells were also grown without inhibitors in a microgravity because of expected strong effects. Mass spectra were evaluated using controls and interpreted in terms of differential peaks and their assignment to protein sequences by mass. Antibiotics, azide, and bromopyruvate had the greatest impact. The spectral patterns were markedly altered after a prolonged incubation at higher concentrations, which precluded identification in the database of reference spectra. The incubation in microgravity showed a similar effect. These differences were evident in dendrograms constructed from the spectral data. Enzyme inhibitors affected the spectra to a smaller extent. This study shows that only a long-term presence of antibiotics and strong metabolic inhibitors in the medium at 10-5 M concentrations hinders the correct identification of cyanobacteria by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF).
Zobrazit více v PubMed
Palinska K.A., Surosz W. Taxonomy of cyanobacteria: A contribution to consensus approach. Hydrologia. 2014;740:1–11. doi: 10.1007/s10750-014-1971-9. DOI
Clark A.E., Kaleta E.J., Arora A., Wolk D.M. Matrix-assisted laser desorption ionization–time of flight mass apectrometry: A fundamental shift in the routine practice of clinical microbiology. Clin. Microbiol. Rev. 2013;26:547–603. doi: 10.1128/CMR.00072-12. PubMed DOI PMC
Drissner D., Freimoser F.M. MALDI-TOF mass spectroscopy of yeasts and filamentous fungi for research and diagnostics in the agricultural value chain. Chem. Biol. Technol. Agric. 2017;4:13. doi: 10.1186/s40538-017-0095-7. DOI
Tadros M., Petrich A. Evaluation of MALDI-TOF mass spectrometry and Sepsityper Kit™ for the direct identification of organisms from sterile body fluids in a Canadian pediatric hospital. Can. J. Infect. Dis. Med. Microbiol. 2013;24:191–194. doi: 10.1155/2013/701093. PubMed DOI PMC
Hou T.Y., Chiang-Ni C., Teng S.H. Current status of MALDI-TOF mass spectrometry in clinical microbiology. J. Food Drug Anal. 2019;27:404–414. doi: 10.1016/j.jfda.2019.01.001. PubMed DOI PMC
Ge M.C., Kuo A.J., Liu K.L., Wen Y.H., Chia J.H., Chang P.Y., Lee M.H., Wu T.L., Chang S.C., Lu J.J. Routine identification of microorganisms by matrix-assisted laser desorption ionization time-of-flight mass spectrometry: Success rate, economic analysis, and clinical outcome. J. Microbiol. Immunol. Infect. 2017;50:662–668. doi: 10.1016/j.jmii.2016.06.002. PubMed DOI
Khot P.D., Fisher M.A. Novel approach for differentiating Shigella species and Escherichia coli by matrix-assisted laser desorption ionization–time of flight mass spectrometry. J. Clin. Microbiol. 2013;51:3711–3716. doi: 10.1128/JCM.01526-13. PubMed DOI PMC
Sauget M., Valot B., Bertrand X., Hocquet D. Can MALDI-TOF mass spectrometry reasonably type bacteria? Trends Microbiol. 2017;25:447–455. doi: 10.1016/j.tim.2016.12.006. PubMed DOI
Sun L.W., Jiang W.J., Sato H., Kawachi M., Lu X.W. Rapid classification and identification of Microcystis aeruginosa strains using MALDI–TOF MS and polygenetic analysis. PLoS ONE. 2016;11:e0156275. doi: 10.1371/journal.pone.0156275. PubMed DOI PMC
Šebela M., Jahodářová E., Raus M., Lenobel R., Hašler P. Intact cell MALDI-TOF mass spectrometric analysis of Chroococcidiopsis cyanobacteria for taxonomic purposes and identification of marker proteins. PLoS ONE. 2018;13:e0208275. doi: 10.1371/journal.pone.0208275. PubMed DOI PMC
Peng X., Yang J., Gao Y. Proteomic analyses of changes in Synechococcus sp. PCC7942 following UV-C stress. Photochem. Photobiol. 2017;93:1073–1080. doi: 10.1111/php.12726. PubMed DOI
Hongsthong A., Sirijuntarut M., Prommeenate P., Lertladaluck K., Porkaew K., Cheevadhanarak S., Tanticharoen M. Proteome analysis at the subcellular level of the cyanobacterium Spirulina platensis in response to low-temperature stress conditions. FEMS Microbiol. Lett. 2008;288:92–101. doi: 10.1111/j.1574-6968.2008.01330.x. PubMed DOI
Kurdrid P., Senachak J., Sirijuntarut M., Yutthanasirikul R., Phuengcharoen P., Jeamton W., Roytrakul S., Cheevadhanarak S., Hongsthong A. Comparative analysis of the Spirulina platensis subcellular proteome in response to low-and high-temperature stresses: Uncovering cross-talk of signaling components. Proteome Sci. 2011;9:39. doi: 10.1186/1477-5956-9-39. PubMed DOI PMC
Pandhal J., Ow S.Y., Wright P.C., Biggs C.A. Comparative proteomics study of salt tolerance between a nonsequenced extremely halotolerant cyanobacterium and its mildly halotolerant relative using in vivo metabolic labeling and in vitro isobaric labeling. J. Proteome Res. 2009;8:818–828. doi: 10.1021/pr800283q. PubMed DOI
Yadav R.K., Thagela P., Tripathi K., Abraham G. Physiological and proteomic analysis of salinity tolerance of the halotolerant cyanobacterium Anabaena sp. World J. Microbiol. Biotechnol. 2016;32:147. doi: 10.1007/s11274-016-2098-0. PubMed DOI
Kurian D., Phadwal K., Mäenpää P. Proteomic characterization of acid stress response in Synechocystis sp. PCC 6803. Proteomics. 2006;6:3614–3624. doi: 10.1002/pmic.200600033. PubMed DOI
Zhang L.F., Yang H.M., Cui S.X., Hu J., Wang J., Kuang T.Y., Norling B., Huang F. Proteomic analysis of plasma membranes of cyanobacterium Synechocystis sp. strain PCC 6803 in response to high pH stress. J. Proteome Res. 2009;8:2892–2902. doi: 10.1021/pr900024w. PubMed DOI
Mehta A., López-Maury L., Florencio F.J. Proteomic pattern alterations of the cyanobacterium Synechocystis sp. PCC 6803 in response to cadmium, nickel and cobalt. J. Proteom. 2014;102:98–112. doi: 10.1016/j.jprot.2014.03.002. PubMed DOI
Babele P.K., Kumar J., Chaturvedi V. Proteomic de-regulation in cyanobacteria in response to abiotic stresses. Front. Microbiol. 2019;10:1315. doi: 10.3389/fmicb.2019.01315. PubMed DOI PMC
Singh J.S., Kumar A., Rai A.N., Singh D.P. Cyanobacteria: A precious bio-resource in agriculture, ecosystem, and environmental sustainability. Front. Microbiol. 2016;7:529. doi: 10.3389/fmicb.2016.00529. PubMed DOI PMC
Groendahl S., Fink P. High dietary quality of non-toxic cyanobacteria for a benthic grazer and its implications for the control of cyanobacterial biofilms. BMC Ecol. 2017;17:20. doi: 10.1186/s12898-017-0130-3. PubMed DOI PMC
Quiblier C., Wood S., Echenique-Subiabre I., Heath M., Villeneuve A., Humbert J.F. A review of current knowledge on toxic benthic freshwater cyanobacteria—Ecology, toxin production and risk management. Water Res. 2013;47:5464–5479. doi: 10.1016/j.watres.2013.06.042. PubMed DOI
Asukabe H., Akahori S., Ueno E., Nakayama T., Yamashita R., Arii S., Harada K., Imanishi S.Y. Cyanobacterial classification with the toxicity using MALDI Biotyper. J. Am. Soc. Mass Spectrom. 2020;31:1572–1578. doi: 10.1021/jasms.0c00148. PubMed DOI
Cardaci S., Desideri E., Ciriolo M.R. Targeting aerobic glycolysis: 3-bromopyruvate as a promising anticancer drug. J. Bioenerg. Biomembr. 2012;44:17–29. doi: 10.1007/s10863-012-9422-7. PubMed DOI
Chen Z., Zhang H., Lu W., Huang P. Role of mitochondria-associated hexokinase II in cancer cell death induced by 3-bromopyruvate. Biochim. Biophys. Acta Bioenerg. 2009;1787:553–560. doi: 10.1016/j.bbabio.2009.03.003. PubMed DOI PMC
Ganapathy-Kanniappan S., Geschwind J.F.H., Kunjithapatham R., Buijs M., Vossen J.A., Tchernyshyov I., Cole R.N., Syed L.H., Rao P.R., Ota S., et al. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is pyruvylated during 3-bromopyruvate mediated cancer cell death. Anticancer Res. 2009;29:4909–4918. PubMed PMC
Wick A.N., Drury D.R., Nakada H.I., Wolfe J.B. Localization of the primary metabolic block produced by 2-deoxyglucose. J. Biol. Chem. 1957;224:963–969. doi: 10.1016/S0021-9258(18)64988-9. PubMed DOI
Ralser M., Wamelink M.M., Struys E.A., Joppich C., Krobitsch S., Jakobs C., Lehrach H. A catabolic block does not sufficiently explain how 2-deoxy-D-glucose inhibits cell growth. Proc. Natl. Acad. Sci. USA. 2008;105:17807–17811. doi: 10.1073/pnas.0803090105. PubMed DOI PMC
Pajak B., Siwiak E., Sołtyka M., Priebe A., Zieliński R., Fokt I., Ziemniak M., Jaśkiewicz A., Borowski R., Domoradzki T., et al. 2-Deoxy-D-glucose and its analogs: From diagnostic to therapeutic agents. Int. J. Mol. Sci. 2020;21:234. doi: 10.3390/ijms21010234. PubMed DOI PMC
Goncharov N.V., Jenkins R.O., Radilov A.S. Toxicology of fluoroacetate: A review, with possible directions for therapy research. J. App. Toxicol. 2006;26:148–161. doi: 10.1002/jat.1118. PubMed DOI
Lauble H., Kennedy M.C., Emptage M.H., Beinert H., Stout C.D. The reaction of fluorocitrate with aconitase and the crystal structure of the enzyme inhibitor complex. Proc. Natl Acad. Sci. USA. 1996;93:13699–13703. doi: 10.1073/pnas.93.24.13699. PubMed DOI PMC
Potter V.R., Elvehjem C.A. The effect of inhibitors on succinoxidase. J. Biol. Chem. 1937;117:341–349. doi: 10.1016/S0021-9258(18)74609-7. DOI
Kim H., Esser L., Hossain M.B., Xia D., Yu C.A., Rizo-Rey J., van der Helm D., Deisenhofer J. Structure of antimycin A1, a specific electron transfer inhibitor of ubiquinol−cytochrome c oxidoreductase. J. Am. Chem. Soc. 1999;121:4902–4903. doi: 10.1021/ja990190h. DOI
Joët T., Cournac L., Horvath E.M., Medgyesy P., Peltier G. Increased sensitivity of photosynthesis to antimycin A induced by inactivation of the chloroplast ndhB gene. Evidence for a participation of the NADH-dehydrogenase complex to cyclic electron flow around photosystem I. Plant Physiol. 2001;125:1919–1929. doi: 10.1104/pp.125.4.1919. PubMed DOI PMC
Ortiz de Montellano P.R., David S.K., Ator M.A., Tew D. Mechanism-based inactivation of horseradish peroxidase by sodium azide. Formation of meso-azidoprotoporphyrin IX. Biochemistry. 1988;27:5470–5476. doi: 10.1021/bi00415a013. PubMed DOI
Yoshikawa S., Shinzawa-Itoh K., Nakashima R., Yaono R., Yamashita E., Inoue N., Yao M., Fei M.J., Libeu C.P., Mizushima T., et al. Redox-coupled crystal structural changes in bovine heart cytochrome c oxidase. Science. 1998;280:1723–1729. doi: 10.1126/science.280.5370.1723. PubMed DOI
Forti G., Gerola P. Inhibition of photosynthesis by azide and cyanide and the role of oxygen in photosynthesis. Plant Physiol. 1977;59:859–862. doi: 10.1104/pp.59.5.859. PubMed DOI PMC
Balbi H.J. Chloramphenicol: A review. Pediatr. Rev. 2004;25:284–288. doi: 10.1542/pir.25-8-284. PubMed DOI
Luzzatto L., Apirion D., Schlessinger D. Mechanism of action of streptomycin in E. coli: Interruption of the ribosome cycle at the initiation of protein synthesis. Proc. Natl. Acad. Sci. USA. 1968;60:873–880. doi: 10.1073/pnas.60.3.873. PubMed DOI PMC
Demirci H., Murphy F., IV, Murphy E., Gregory S.T., Dahlberg A.E., Jogl G. A structural basis for streptomycin-induced misreading of the genetic code. Nat. Commun. 2013;4:1355. doi: 10.1038/ncomms2346. PubMed DOI PMC
Hoson T., Kamisaka S., Masuda Y., Yamashita M. Changes in plant growth processes under microgravity conditions simulated by a three-dimensional clinostat. Bot. Mag. Tokyo. 1992;105:53–70. doi: 10.1007/BF02489403. DOI
Pietsch J., Bauer J., Egli M., Infanger M., Wise P., Ulbrich C., Grimm D. The effects of weightlessness on the human organism and mammalian cells. Curr. Mol. Med. 2011;11:350–364. doi: 10.2174/156652411795976600. PubMed DOI
Isidori M., Lavorgna M., Nardelli A., Pascarella A., Parrella A. Toxic and genotoxic evaluation of six antibiotics on non-target organisms. Sci. Total Envion. 2005;346:87–98. doi: 10.1016/j.scitotenv.2004.11.017. PubMed DOI
van der Grinten E., Pikkemaat M.G., van den Brandhof E.J., Stroomberg G.J., Kraak M.H.S. Comparing the sensitivity of algal, cyanobacterial and bacterial bioassays to different groups of antibiotics. Chemosphere. 2010;80:1–6. doi: 10.1016/j.chemosphere.2010.04.011. PubMed DOI
González-Pleiter M., Gonzalo S., Rodea-Palomares I., Leganés F., Rosal R., Boltes K., Marco E., Fernández-Piñas F. Toxicity of five antibiotics and their mixtures towards photosynthetic aquatic organisms: Implications for environmental risk assessment. Water Res. 2013;47:2050–2064. doi: 10.1016/j.watres.2013.01.020. PubMed DOI
Qian H., Li J., Pan X., Sun Z., Ye C., Jin G., Fu Z. Effects of streptomycin on growth of algae Chlorella vulgaris and Microcystis aeruginosa. Environ. Toxicol. 2012;27:229–237. doi: 10.1002/tox.20636. PubMed DOI
Brilisauer K., Rapp J., Rath P., Schöllhorn A., Bleul L., Weiss E., Stahl M., Grond S., Forchhammer K. Cyanobacterial antimetabolite 7-deoxy-sedoheptulose blocks the shikimate pathway to inhibit the growth of prototrophic organisms. Nat. Commun. 2019;10:545. doi: 10.1038/s41467-019-08476-8. PubMed DOI PMC
Gallon J.R., Ul-Haque M.I., Chaplin A.E. Fluoroacetate metabolism in Gloeocapsa sp. LB795 and its relationship to acetylene reduction (nitrogen fixation) J. Gen. Microbiol. 1978;106:329–336. doi: 10.1099/00221287-106-2-329. DOI
Visca P., Pisa F., Imperi F. The antimetabolite 3-bromopyruvate selectively inhibits Staphylococcus aureus. Int. J. Antimicrob. Agents. 2019;53:449–455. doi: 10.1016/j.ijantimicag.2018.11.008. PubMed DOI
Lichstein H.C., Soule M.H. Studies of the effect of sodium azide on microbic growth and respiration I. The action of sodium azide on microbic growth. J. Bacteriol. 1944;47:221–230. doi: 10.1128/JB.47.3.221-230.1944. PubMed DOI PMC
Oliver D.B., Cabelli R.J., Dolan K.M., Jarosik G.P. Azide-resistant mutants of Escherichia coli alter the SecA protein, an azide-sensitive component of the protein export machinery. Proc. Natl. Acad. Sci. USA. 1990;87:8227–8231. doi: 10.1073/pnas.87.21.8227. PubMed DOI PMC
Hickey C.W., Blaise C., Costan G. Microtesting appraisal of ATP and cell recovery toxicity end points after acute exposure of Selenastrum capricornutum to selected chemicals. Environ. Toxicol. Water Qual. 1991;6:383–403. doi: 10.1002/tox.2530060404. DOI
Hoiczyk E., Hansel A. Cyanobacterial cell walls: News from an unusual prokaryotic envelope. J. Bacteriol. 2000;182:1191–1199. doi: 10.1128/JB.182.5.1191-1199.2000. PubMed DOI PMC
Amiri-Eliasi B., Fenselau C. Characterization of protein biomarkers desorbed by MALDI from whole fungal cells. Anal. Chem. 2001;73:5228–5231. doi: 10.1021/ac010651t. PubMed DOI
Komenda J., Sobotka R. Cyanobacterial high-light-inducible proteins—Protectors of chlorophyll–protein synthesis and assembly. Biochim. Biophys. Acta Bioenerg. 2016;1875:288–295. doi: 10.1016/j.bbabio.2015.08.011. PubMed DOI
Fei Q., Gao E.B., Liu B., Wei Y., Ning D. A toxin-antitoxin system VapBC15 from Synechocystis sp. PCC 6803 shows distinct regulatory features. Genes. 2018;9:173. doi: 10.3390/genes9040173. PubMed DOI PMC
Staub R. Ernährungphysiologish-autökologische Untersuchung an den planktonischen Blaualge Oscillatoria rubescens DC. Schweiz. Z. Hydrol. 1961;23:82–198.
Raus M., Šebela M. BIOSPEAN: A freeware tool for processing spectra from MALDI intact cell/spore mass spectrometry. J. Proteom. Bioinform. 2013;6:283–287. doi: 10.4172/jpb.1000292. DOI
Strohalm M., Hassman M., Košata B., Kodíček M. mMass data miner: An open source alternative for mass spectrometric data analysis. Rapid Commun. Mass Spec. 2008;22:905–908. doi: 10.1002/rcm.3444. PubMed DOI