Arbuscular mycorrhiza suppresses microbial abundance, and particularly that of ammonia oxidizing bacteria, in agricultural soils
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
41341498
PubMed Central
PMC12669096
DOI
10.3389/fmicb.2025.1671859
Knihovny.cz E-zdroje
- Klíčová slova
- Rhizophagus irregularis, agricultural soils, ammonia oxidizers, arbuscular mycorrhiza, bioassay, compartmented microcosm, environmental gradient, indigenous soil microbiomes,
- Publikační typ
- časopisecké články MeSH
Interactions between arbuscular mycorrhizal (AM) fungi and ammonia-oxidizing (AO) microorganisms, two important microbial guilds contributing to soil-plant mineral nutrient cycling, are complex, given the high variability of soil biological, physical, and chemical properties. In addition, AO microorganisms are generally slow growing and require ample time to establish. Their communities are thus difficult to reconstruct under laboratory conditions, for example after soil sterilization. Therefore, in this study, we investigated quantitative and compositional responses of indigenous microorganisms occurring in 50 different field soils (collected from grasslands and arable fields) to actively growing mycelium of the AM fungus Rhizophagus irregularis. To this end, we quantified the abundance of various microbial guilds including AO bacteria (AOB), AO archaea (AOA), and comammox Nitrospira in pot-incubated soils exposed or not to actively growing AM fungus. Across the variety of soils, we observed systematic suppression by the AM fungus of different microbial groups including bacteria, protists, and fungi. The strongest suppression was noted for AOB and comammox Nitrospira, whereas the abundance and community structure of AOA remained unaffected by the AM fungal activity. Mycorrhizal suppression of AOB abundance was accompanied by changes in AOB community structure and correlated with soil pH. Contrary to the expected competition between AM fungus and AO microorganisms for available ammonium (NH4 +) in the soil solution, the presence of the actively growing AM fungus significantly increased soil NH4 + levels as compared to the non-mycorrhizal control, at least upon the final destructive harvest. Thus, the interaction between the AM fungi and AO microorganisms likely goes beyond the simple competition for the free ammonium ions and might involve microorganisms active in other pathways of soil nitrogen cycle (e.g., mineralization) or temporarily different trajectories of nutrient use in mycorrhizal vs. non-mycorrhizal systems. Alternatively, elusive biological nitrification inhibitors may have contributed to the observed effect, produced by the AM fungus or its host plant, and subsequently transported to the root-free soil via the AM fungal hyphae.
Faculty of Science University of South Bohemia in České Budějovice České Budějovice Czechia
Laboratory of Fungal Biology Institute of Microbiology Czech Academy of Sciences Praha Czechia
Zobrazit více v PubMed
Bell C. A., Magkourilou E., Urwin P. E., Field K. J. (2022). Disruption of carbon for nutrient exchange between potato and arbuscular mycorrhizal fungi enhanced cyst nematode fitness and host pest tolerance. PubMed DOI PMC
Blom P., Smith G. J., van Kessel M. A. H. J., Koch H., Lücker S. (2024). Comprehensive evaluation of primer pairs targeting the ammonia monooxygenase subunit A gene of complete ammonia-oxidizing PubMed DOI PMC
Bonfante P., Venice F. (2020). Mucoromycota: going to the roots of plant-interacting fungi. DOI
Bru D., Sarr A., Philippot L. (2007). Relative abundances of proteobacterial membrane-bound and periplasmic nitrate reductases in selected environments. PubMed DOI PMC
Bukovská P., Bonkowski M., Konvalinková T., Beskid O., Hujslová M., Püschel D., et al. (2018). Utilization of organic nitrogen by arbuscular mycorrhizal fungi—is there a specific role for protists and ammonia oxidizers? PubMed DOI
Bukovská P., Rozmoš M., Kotianová M., Gančarčíková K., Dudáš M., Hršelová H., et al. (2021). Arbuscular mycorrhiza mediates efficient recycling from soil to plants of nitrogen bound in chitin. PubMed DOI PMC
Cameron K. C., Di H. J., Moir J. L. (2013). Nitrogen losses from the soil/plant system: a review. DOI
Cannon J., Sanford R. A., Connor L., Yang W. H., Chee-Sanford J. (2019). Optimization of PCR primers to detect phylogenetically diverse nrfA genes associated with nitrite ammonification. PubMed DOI
Che J., Zhao X. Q., Zhou X., Jia Z. J., Shen R. F. (2015). High pH-enhanced soil nitrification was associated with ammonia-oxidizing bacteria rather than archaea in acidic soils. DOI
Chen Y.-L., Chen B.-D., Hu Y.-J., Li T., Zhang X., Hao Z.-P., et al. (2013). Direct and indirect influence of arbuscular mycorrhizal fungi on abundance and community structure of ammonia oxidizing bacteria and archaea in soil microcosms. DOI
Cleveland W. S. (1979). Robust locally weighted regression and smoothing scatterplots. DOI
Daims H., Lebedeva E. V., Pjevac P., Han P., Herbold C., Albertsen M., et al. (2015). Complete nitrification by PubMed DOI PMC
de Boer W., Tietema A., Gunnewiek P. J. A. K., Laanbroek H. J. (1992). The chemolithotrophic ammonium-oxidizing community in a nitrogen-saturated acid forest soil in relation to ph-dependent nitrifying activity. DOI
Delroy B., Zhang H.-Y., Bissett A., Powell J. R. (2024). Divergent responses between lineages of arbuscular mycorrhizal fungi to soil phosphorus and nitrogen availability. DOI
Domeignoz-Horta L. A., Philippot L., Peyrard C., Bru D., Breuil M., Bizouard F., et al. (2018). Peaks of in situ N PubMed DOI
Dudáš M., Pjevac P., Kotianová M., Ganèarèíková K., Rozmoš M., Hršelová H., et al. (2022). Arbuscular mycorrhiza and nitrification: disentangling processes and players by using synthetic nitrification inhibitors. PubMed DOI PMC
Emmett B. D., Lévesque-Tremblay V., Harrison M. J. (2021). Conserved and reproducible bacterial communities associate with extraradical hyphae of arbuscular mycorrhizal fungi. PubMed DOI PMC
Faghihinia M., Halverson L. J., Hršelová H., Bukovská P., Rozmoš M., Kotianová M., et al. (2024). Nutrient-dependent cross-kingdom interactions in the hyphosphere of an arbuscular mycorrhizal fungus. PubMed DOI PMC
Faghihinia M., Jansa J., Halverson L. J., Staddon P. L. (2023). Hyphosphere microbiome of arbuscular mycorrhizal fungi: a realm of unknowns. DOI
Frey S. D. (2019). Mycorrhizal fungi as mediators of soil organic matter dynamics. DOI
Genre A., Lanfranco L., Perotto S., Bonfante P. (2020). Unique and common traits in mycorrhizal symbioses. PubMed DOI
Hawkins H.-J., Johansen A., George E. (2000). Uptake and transport of organic and inorganic nitrogen by arbuscular mycorrhizal fungi. DOI
Hewitt E. J. (1952).
Hood-Nowotny R., Umana N. H.-N., Inselbacher E., Oswald- Lachouani P., Wanek W. (2010). Alternative methods for measuring inorganic, organic, and total dissolved nitrogen in Soil. DOI
Jansa J., Forczek S. T., Rozmoš M., Püschel D., Bukovská P., Hršelová H. (2019). Arbuscular mycorrhiza and soil organic nitrogen: network of players and interactions. DOI
Jiang F., Zhang L., Zhou J., George T. S., Feng G. (2021). Arbuscular mycorrhizal fungi enhance mineralisation of organic phosphorus by carrying bacteria along their extraradical hyphae. PubMed DOI
Keiluweit M., Wanzek T., Kleber M., Nico P., Fendorf S. (2017). Anaerobic microsites have an unaccounted role in soil carbon stabilization. PubMed DOI PMC
Koske R. E., Gemma J. N. (1989). A modified procedure for staining roots to detect VA mycorrhizas. DOI
Lanfranco L., Fiorilli V., Gutjahr C. (2018). Partner communication and role of nutrients in the arbuscular mycorrhizal symbiosis. PubMed DOI
Legendre P., Legendre L. (2012). Ecological resemblance. DOI
Leininger S., Urich T., Schloter M., Schwark L., Qi J., Nicol G. W., et al. (2006). Archaea predominate among ammonia-oxidizing prokaryotes in soils. PubMed DOI
Lin Y., Hu H.-W., Ye G., Fan J., Ding W., He Z.-Y., et al. (2021). Ammonia-oxidizing bacteria play an important role in nitrification of acidic soils: a meta-analysis. DOI
Martikainen P. J. (2022). Heterotrophic nitrification – An eternal mystery in the nitrogen cycle. DOI
McGonigle T. P., Miller M. H., Evans D. G., Fairchild G. L., Swam J. A. (1990). A new method which gives an objective measure of colonization of roots by vesicular—arbuscular mycorrhizal fungi. PubMed DOI
Nardi P., Laanbroek H. J., Nicol G. W., Renella G., Cardinale M., Pietramellara G., et al. (2020). Biological nitrification inhibition in the rhizosphere: determining interactions and impact on microbially mediated processes and potential applications. PubMed DOI
Ohno T., Zibilske L. M. (1991). Determination of low concentrations of phosphorus in soil extracts using Malachite green. DOI
Prosser J. I., Nicol G. W. (2012). Archaeal and bacterial ammonia-oxidisers in soil: the quest for niche specialisation and differentiation. PubMed DOI
Püschel D., Janoušková M., Voříšková A., Gryndlerová H., Vosátka M., Jansa J. (2017). Arbuscular mycorrhiza stimulates biological nitrogen fixation in two PubMed DOI PMC
R Core Team (2022).
Řezáčová V., Gryndler M., Bukovská P., Šmilauer P., Jansa J. (2016). Molecular community analysis of arbuscular mycorrhizal fungi—Contributions of PCR primer and host plant selectivity to the detected community profiles. DOI
Řezáčová V., Slavíková R., Konvalinková T., Zemková L., Řezáč M., Gryndler M., et al. (2019). Geography and habitat predominate over climate influences on arbuscular mycorrhizal fungal communities of mid-European meadows. PubMed DOI
Rotthauwe J. H., Witzel K. P., Liesack W. (1997). The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. PubMed DOI PMC
Rozmoš M., Bukovská P., Hršelová H., Kotianová M., Dudáš M., Gančarčíková K., et al. (2022). Organic nitrogen utilisation by an arbuscular mycorrhizal fungus is mediated by specific soil bacteria and a protist. PubMed DOI PMC
Sarr P. S., Nakamura S., Ando Y., Iwasaki S., Subbarao G. V. (2021). Sorgoleone production enhances mycorrhizal association and reduces soil nitrification in sorghum. DOI
Spang A., Poehlein A., Offre P., Zumbrägel S., Haider S., Rychlik N., et al. (2012). The genome of the ammonia-oxidizing Candidatus PubMed DOI
Sun D., Kotianová M., Rozmoš M., Hršelová H., Bukovská P., Jansa J. (2023). Arbuscular mycorrhizal hyphae selectively suppress soil ammonia oxidizers – but probably not by production of biological nitrification inhibitors. DOI
Sun D., Rozmoš M., Kotianová M., Hršelová H., Jansa J. (2024). Arbuscular mycorrhizal fungi suppress ammonia-oxidizing bacteria but not archaea across agricultural soils. PubMed DOI PMC
ter Braak C. J. F., Šmilauer P. (2018).
Teutscherova N., Vazquez E., Arango J., Arevalo A., Benito M., Pulleman M. (2019). Native arbuscular mycorrhizal fungi increase the abundance of ammonia-oxidizing bacteria, but suppress nitrous oxide emissions shortly after urea application. DOI
Thonar C., Erb A., Jansa J. (2012). Real-time PCR to quantify composition of arbuscular mycorrhizal fungal communities—marker design, verification, calibration and field validation. PubMed DOI
Vaishnav A., Rozmoš M., Kotianová M., Hršelová H., Bukovská P., Jansa J. (2025). Protists are key players in the utilization of protein nitrogen in the arbuscular mycorrhizal hyphosphere. PubMed DOI PMC
van den Bergh S. G., Chardon I., Leite M. F. A., Korthals G. W., Mayer J., Cougnon M., et al. (2024). Soil aggregate stability governs field greenhouse gas fluxes in agricultural soils. DOI
Veresoglou S. D., Chen B., Rillig M. C. (2012). Arbuscular mycorrhiza and soil nitrogen cycling. DOI
Veresoglou S. D., Verbruggen E., Makarova O., Mansour I., Sen R., Rillig M. C. (2019). Arbuscular mycorrhizal fungi alter the community structure of ammonia oxidizers at high fertility via competition for soil NH PubMed DOI
Větrovskỳ T., Baldrian P., Morais D. (2018). SEED 2: a user-friendly platform for amplicon high-throughput sequencing data analyses. PubMed DOI PMC
Vieira C. K., Marascalchi M. N., Rozmoš M., Benada O., Belova V., Jansa J. (2025). Arbuscular mycorrhizal fungal highways – what, how and why? DOI
Wattenburger C. J., Gutknecht J., Zhang Q., Brutnell T., Hofmockel K., Halverson L. (2020). The rhizosphere and cropping system, but not arbuscular mycorrhizae, affect ammonia oxidizing archaea and bacteria abundances in two agricultural soils. DOI
Wright C. L., Lehtovirta-Morley L. E. (2023). Nitrification and beyond: metabolic versatility of ammonia oxidising archaea. PubMed DOI PMC
Xiang X., He D., He J.-S., Myrold D. D., Chu H. (2017). Ammonia-oxidizing bacteria rather than archaea respond to short-term urea amendment in an alpine grassland. DOI
Zhang X., Ward B. B., Sigman D. M. (2020). Global nitrogen cycle: critical enzymes, organisms, and processes for nitrogen budgets and dynamics. PubMed DOI
Zhao R., He G., Zhou D., Li X., Kuyper T. W., Zhang F., et al. (2025). Arbuscular mycorrhizal fungi enhance nitrate ammonification in hyphosphere soil. PubMed DOI