Low spatial mobility of associated microbes along the hyphae limits organic nitrogen utilization in the arbuscular mycorrhizal hyphosphere
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
41602533
PubMed Central
PMC12833381
DOI
10.3389/fpls.2025.1706684
Knihovny.cz E-zdroje
- Klíčová slova
- Rhizophagus irregularis, arbuscular mycorrhizal fungal hyphae, chitin, hyphosphere microbiome recruitment, microbial diversity gradient, microbial migration, mineral and organic nutrients, nitrogen mineralization,
- Publikační typ
- časopisecké články MeSH
BACGROUND: Arbuscular mycorrhizal (AM) fungi enhance plant nutrient acquisition from soil; however, their ability to exploit organic nutrient forms in the absence of associated microbes capable of mineralization remains unclear. METHODS: To test if the AM fungi carry their beneficial bacterial partners into nutrient-rich zones, we conducted three controlled experiments manipulating the microbial inputs, diversity and composition in plant-AM fungus-soil systems, ranging from open pots to semi-sterile mesocosms. We manipulated soil microbial diversity by imposing a microbial diversity gradient (complex communities fractionated by size, resulting in fractions passing through 1 µm to 1000 µm sieves) and cultivated Andropogon gerardii in previously sterilized substrate together with a bacterial-free Rhizophagus irregularis. In each experiment, 15N-labeled chitin or mineral nitrogen (N) compartments were installed in the root-free zone of each mesocosm. RESULTS: With decreasing microbial inputs into the root-free zone, the N uptake from chitin to plants, facilitated by the AM fungal hyphae, decreased. Upon complete absence of microbes in the root-free zone, AM hyphal foraging preferences assessed by quantitative PCR indicated that exploration of the mineral N compartments was more effective than that of the chitin compartments. The AM fungal hyphae were ineffective in priming mineralization of organic N even if provided with complex soil microbiomes at a distance from the compartment. CONCLUSIONS: In summary, chitin-enriched compartments become attractive for the AM fungi only when previously mineralized by competent microbes. Such microbes, however, were not effectively transported to spatially restricted organic resources in soil via AM hyphal highways in our experiments.
Zobrazit více v PubMed
Almeida A. V. M., Vaz M. G. M. V., de Castro N. V., Genuário D. B., Oder J. C., de Souza P. A. M., et al. (2023). How diverse a genus can be: an integrated multi-layered analysis into PubMed DOI
Anckaert A., Declerck S., Poussart L. A., Lambert S., Helmus C., Boubsi F., et al. (2024). The biology and chemistry of a mutualism between a soil bacterium and a mycorrhizal fungus. Curr. Biol. 34, 4934–4950. doi: 10.1016/j.cub.2024.09.019, PMID: PubMed DOI
Antunes P. M., Stürmer S. L., Bever J. D., Chagnon P. L., Chaudhary V. B., Deveautour C., et al. (2025). Enhancing consistency in arbuscular mycorrhizal trait-based research to improve predictions of function. Mycorrhiza 35, 1–25. doi: 10.1007/s00572-025-01187-7, PMID: PubMed DOI PMC
Ata-Ul-Karim S. T., Zhu Y., Liu X., Cao Q., Tian Y., Cao W. (2017). Comparison of different critical nitrogen dilution curves for nitrogen diagnosis in rice. Sci. Rep. 7, 42679. doi: 10.1038/srep42679, PMID: PubMed DOI PMC
Averill C., Rousk J., Hawkes C. (2015). Microbial-mediated redistribution of ecosystem nitrogen cycling can delay progressive nitrogen limitation. Biogeochemistry 126, 11–23. doi: 10.1007/s10533-015-0160-x DOI
Basiru S., Mhand K. A. S., Hijri M. (2025). Deciphering the mechanisms through which arbuscular mycorrhizal symbiosis reduces nitrogen losses in agroecosystems. Appl. Soil Ecol. 206, 105799. doi: 10.1016/j.apsoil.2024.105799 DOI
Boorboori M. R., Lackóová L. (2025). Arbuscular mycorrhizal fungi and salinity stress mitigation in plants. Front. Plant Sci. 15. doi: 10.3389/fpls.2024.1504970, PMID: PubMed DOI PMC
Bradford M. A., Jones T. H., Bardgett R. D., Black H. I. J., Boag B., Bonkowski M., et al. (2002). Impacts of soil faunal community composition on model grassland ecosystems. Science. 298, 615–618. doi: 10.1126/science.1075805, PMID: PubMed DOI
Brandt L., Abrahão A., Marhan S., Ballauff J., Haslwimmer H., Polle A., et al. (2025). Organic substrate quality influences microbial community assembly and nitrogen transport to plants in the hyphosphere of a temperate grassland soil. Soil Biol. Biochem. 208, 109867. doi: 10.1016/j.soilbio.2025.109867 DOI
Brundrett M. C., Tedersoo L. (2018). Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytol. 220, 1108–1115. doi: 10.1111/nph.14976, PMID: PubMed DOI
Bukovská P., Bonkowski M., Konvalinková T., Beskid O., Hujslová M., Püschel D., et al. (2018). Utilization of organic nitrogen by arbuscular mycorrhizal fungi—is there a specific role for protists and ammonia oxidizers? Mycorrhiza. 28, 269–283. doi: 10.1007/s00572-018-0825-0, PMID: PubMed DOI
Bukovská P., Gryndler M., Gryndlerová H., Püschel D., Jansa J. (2016). Organic nitrogen-driven stimulation of arbuscular mycorrhizal fungal hyphae correlates with abundance of ammonia oxidizers. Front. Microbiol. 7. doi: 10.3389/fmicb.2016.00711, PMID: PubMed DOI PMC
Bukovská P., Rozmoš M., Kotianová M., Gančarčíková K., Dudáš M., Hršelová H., et al. (2021). Arbuscular mycorrhiza mediates efficient recycling from soil to plants of nitrogen bound in chitin. Front. Microbiol. 12. doi: 10.3389/fmicb.2021.574060, PMID: PubMed DOI PMC
Caporaso J. G., Lauber C. L., Walters W. A., Berg-Lyons D., Lozupone C. A., Turnbaugh P. J., et al. (2011). Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. U.S.A. 108, 4516–4522. doi: 10.1073/pnas.1000080107, PMID: PubMed DOI PMC
Chen H., Xia Q., Yang T., Shi W. (2018). Eighteen-year farming management moderately shapes the soil microbial community structure but promotes habitat-specific taxa. Front. Microbiol. 9. doi: 10.3389/fmicb.2018.01776, PMID: PubMed DOI PMC
Ciampitti I., Van Versendaal E., Rybecky J. F., Lacasa J., Fernandez J., Makowski D., et al. (2022). A global dataset to parametrize critical nitrogen dilution curves for major crop species. Sci. Data. 9, 277. doi: 10.1038/s41597-022-01395-2, PMID: PubMed DOI PMC
Cranenbrouck S., Voets L., Bivort C., Renard L., Strullu D. G., Declerck S. (2005). “ Methodologies for
Duan S., Feng G., Limpens E., Bonfante P., Xie X., Zhang L. (2024). Cross-kingdom nutrient exchange in the plant–arbuscular mycorrhizal fungus–bacterium continuum. Nat. Rev. Microbiol. 22, 773–790. doi: 10.1038/s41579-024-01073-7, PMID: PubMed DOI
Duan S., Jin Z., Zhang L., Declerck S. (2025). Mechanisms of cooperation in the plants-arbuscular mycorrhizal fungi-bacteria continuum. ISME J. 19, wraf023. doi: 10.1093/ismejo/wraf023, PMID: PubMed DOI PMC
Dudáš M., Pjevac P., Kotianová M., Gančarčíková K., Rozmoš M., Hršelová H., et al. (2022). Arbuscular mycorrhiza and nitrification: disentangling processes and players by using synthetic nitrification inhibitors. Appl. Environ. Microbiol. 88, e0136922. doi: 10.1128/aem.01369-22, PMID: PubMed DOI PMC
Emmett B. D., Tremblay V. L., Harrison M. J. (2021). Conserved and reproducible bacterial communities associate with extraradical hyphae of arbuscular mycorrhizal fungi. ISME J. 15, 2276–2288. doi: 10.1038/s41396-021-00920-2, PMID: PubMed DOI PMC
Flores E., Herrero A. (2010). Compartmentalized function through cell differentiation in filamentous cyanobacteria. Nat. Rev. Microbiol. 8, 39–50. doi: 10.1038/nrmicro2242, PMID: PubMed DOI
Gahan J., Schmalenberger A. (2015). Arbuscular mycorrhizal hyphae in grassland select for a diverse and abundant hyphospheric bacterial community involved in sulfonate desulfurization. Appl. Soil Ecol. 89, 113–121. doi: 10.1016/j.Apsoil.2014.12.008 DOI
Gao Y., Wu Y. H., Xu L., Cheng H., Wang C. S., Xu X. W. (2019). Complete genome sequence of PubMed DOI
Gatasheh M. K., Shah A. A., Kaleem M., Usman S., Shaffique S. (2024). Application of CuNPs and AMF alleviates arsenic stress by encompassing reduced arsenic uptake through metabolomics and ionomics alterations in PubMed DOI PMC
Gryndler M., Šmilauer P., Püschel D., Bukovská P., Hršelová H., Hujslová M., et al. (2018). Appropriate nonmycorrhizal controls in arbuscular mycorrhiza research: a microbiome perspective. Mycorrhiza 28, 435–450. doi: 10.1007/S00572-018-0844-x, PMID: PubMed DOI
Hart M. M., Reader R. J. (2005). The role of the external mycelium in early colonization for three arbuscular mycorrhizal fungal species with different colonization strategies. Pedobiologia 49, 269–279. doi: 10.1016/j.pedobi.2004.12.001 DOI
Hawxhurst C. J., Micciulla J. L., Bridges C. M., Shor M., Gage D. J., Shor L. M. (2023). ). Soil protists can actively redistribute beneficial bacteria along PubMed DOI PMC
He J., Zhang L., Van Dingenen J., Desmet S., Goormachtig S., Calonne-Salmon M., et al. (2024). Arbuscular mycorrhizal hyphae facilitate rhizobia dispersal and nodulation in legumes. ISME J. 18, wrae185. doi: 10.1093/ismejo/wrae185, PMID: PubMed DOI PMC
Hestrin R., Hammer E. C., Mueller C. W., Lehmann J. (2019). Synergies between mycorrhizal fungi and soil microbial communities increase plant nitrogen acquisition. Commun. Biol. 2, 233. doi: 10.1038/s42003-019-0481-8, PMID: PubMed DOI PMC
Hjort K., Bergström M., Adesina M. F., Jansson J. K., Smalla K., Sjöling S. (2009). Chitinase genes revealed and compared in bacterial isolates, DNA extracts and a metagenomic library from a phytopathogen-suppressive soil. FEMS Microbiol. Ecol. 71, 197–207. doi: 10.1111/j.1574-6941.2009.00801.x, PMID: PubMed DOI
Hopkins J. R., Bever J. D. (2024). Arbuscular mycorrhizal fungal spore communities and co-occurrence networks demonstrate host-specific variation throughout the growing season. Mycorrhiza. 34, 1–13. doi: 10.1007/s00572-024-01168-2, PMID: PubMed DOI PMC
Ilangumaran G., Subramanian S., Smith D. L. (2024). Complete genome sequences of DOI
Impastato C. J., Carrington M. E. (2020). Effects of plant species and soil history on root morphology, arbuscular mycorrhizal colonization of roots, and biomass in four tallgrass prairie species. Plant Ecol. 221, 117–124. doi: 10.1007/s11258-019-00997-y DOI
Iwasaki Y., Ichino T., Saito A. (2020). Transition of the bacterial community and culturable chitinolytic bacteria in chitin-treated upland soil: from PubMed DOI PMC
Jansa J., Šmilauer P., Borovička J., Hršelová H., Forczek S. T., Slámová K., et al. (2020). Dead PubMed DOI
Jiang F., Zhang L., Zhou J., George T. S., Feng G. (2021). Arbuscular mycorrhizal fungi enhance mineralisation of organic phosphorus by carrying bacteria along their extraradical hyphae. New Phytol. 230, 304–315. doi: 10.1111/nph.17081, PMID: PubMed DOI
Jin Z., Wang G., George T. S., Zhang L. (2024). Potential role of sugars in the hyphosphere of arbuscular mycorrhizal fungi to enhance organic phosphorus mobilization. J.Fungi. 10, 226. doi: 10.3390/jof10030226, PMID: PubMed DOI PMC
Kearns D. B. (2010). A field guide to bacterial swarming motility. Nat. Rev. Microbiol. 8, 634–644. doi: 10.1038/nrmicro2405, PMID: PubMed DOI PMC
Kuzyakov Y., Razavi B. S. (2019). Rhizosphere size and shape: temporal dynamics and spatial stationarity. Soil Biol. Biochem. 135, 343–360. doi: 10.1016/j.soilbio.2019.05.011 DOI
Lane D. J. (1991). “ 16S/23S rRNA sequencing,” in Nucleic acids techniques in bacterial systematics. Eds. Stackebrandt E., Goodfellow M. (Chichester, United Kingdom: Wiley: ), 115–147.
Lee H. J., Jeong S. E., Cho M. S., Kim S., Lee S. S., Lee B. H., et al. (2014). PubMed DOI
Li X., Zhao R., Li D., Wang G., Bei S., Ju X., et al. (2023). Mycorrhiza-mediated recruitment of complete denitrifying PubMed DOI PMC
Ling N., Wang T., Kuzyakov Y. (2022). Rhizosphere bacteriome structure and functions. Nat. Commun. 13, 836. doi: 10.1038/s41467-022-28448-9, PMID: PubMed DOI PMC
Liu Q., Qiao N., Xu X., Xin X., Han J. Y., Tian Y., et al. (2016). Nitrogen acquisition by plants and microorganisms in a temperate grassland. Sci. Rep. 6, 22642. doi: 10.1038/srep22642, PMID: PubMed DOI PMC
Luthfiana N., Inamura N., Tantriani, Sato T., Saito K., Oikawa A., et al. (2021). Metabolite profiling of the hyphal exudates of PubMed DOI
Malar C. ,. M., Wang Y., Stajich J. E., Kokkoris V., Villeneuve-Laroche M., Yildirir G., et al. (2022). Early branching arbuscular mycorrhizal fungus PubMed DOI PMC
Mason-Jones K., Robinson S. L., Veen G. F., Manzoni S., van der Putten W. H. (2022). Microbial storage and its implications for soil ecology. ISME J. 16, 617–629. doi: 10.1038/s41396-021-01110-w, PMID: PubMed DOI PMC
Miyata M., Hamaguchi T. (2016). Prospects for the gliding mechanism of PubMed DOI
Miyauchi S., Kiss E., Kuo A., Drula E., Kohler A., Sánchez-García M., et al. (2020). Large-scale genome sequencing of mycorrhizal fungi provides insights into the early evolution of symbiotic traits. Nat. Commun. 11, 5125. doi: 10.1038/s41467-020-18795-w, PMID: PubMed DOI PMC
Mohammadipanah F., Montero-Calasanz M. D. C., Schumann P., Spröer C., Rohde M., Klenk H. P. (2017). PubMed DOI
Muok A. R., Claessen D., Briegel A. (2021). Microbial hitchhiking: how PubMed DOI PMC
Ozdemir-Kocak F., Saygin H., Saricaoglu S., Cetin D., Guven K., Spröer C., et al. (2017). PubMed DOI
Qiang R., Wang M., Li Q., Li Y., Sun H., Liang W., et al. (2024). Response of Soil Nitrogen Components and nirK-and nirS-Type Denitrifying Bacterial Community Structures to Drip Irrigation Systems in the Semi-Arid Area of Northeast China. Agron. 14, 577. doi: 10.3390/agronomy14030577 DOI
R Core Team (2021). R: A Language and Environment for Statistical Computing. Available online at: https://www.R-project.org/ (Accessed August 01, 2024).
Řezanka T., Hršelová H., Kyselová L., Jansa J. (2023). Can cardiolipins be used as a biomarker for arbuscular mycorrhizal fungi? Mycorrhiza 33, 399–408. doi: 10.1007/s00572-023-01129-1, PMID: PubMed DOI
Řezanka T., Lukavský J., Rozmoš M., Nedbalová L., Jansa J. (2022). Separation of triacylglycerols containing positional isomers of hexadecenoic acids by enantiomeric liquid chromatography-mass spectrometry. J. Chromatogr. B 1208, 123401. doi: 10.1016/j.jchromb.2022.123401, PMID: PubMed DOI
Romero F., Hilfiker S., Edlinger A., Held A., Hartman K., Labouyrie M., et al. (2023). Soil microbial biodiversity promotes crop productivity and agro-ecosystem functioning in experimental microcosms. Sci. Total Environ. 885, 163683. doi: 10.1016/j.scitotenv.2023.163683, PMID: PubMed DOI
Romero F., Jiao S., van der Heijden M. G. (2025). Impact of microbial diversity and pesticide application on plant growth, litter decomposition and carbon substrate use. Soil Biol. Biochem. 208, 109866. doi: 10.1016/j.soilbio.2025.109866 DOI
Rozmoš M., Bukovská P., Hršelová H., Kotianová M., Dudáš M., Gančarčíková K., et al. (2022). Organic nitrogen utilisation by an arbuscular mycorrhizal fungus is mediated by specific soil bacteria and a protist. ISME J. 16, 676–685. doi: 10.1038/s41396-021-01112-8, PMID: PubMed DOI PMC
Sharma S., Compant S., Ballhausen M. B., Ruppel S., Franken P. (2020). The interaction between PubMed DOI
Sheldrake M., Rosenstock N. P., Mangan S., Revillini D., Sayer E. J., Olsson P. A., et al. (2018). Responses of arbuscular mycorrhizal fungi to long-term inorganic and organic nutrient addition in a lowland tropical forest. ISME J. 12, 2433–2445. doi: 10.1038/s41396-018-0189-7, PMID: PubMed DOI PMC
Shi J., Wang X., Wang E. (2023). Mycorrhizal symbiosis in plant growth and stress adaptation: from genes to ecosystems. Annu. Rev. Plant Biol. 74, 569–607. doi: 10.1146/annurev-arplant-061722-090342, PMID: PubMed DOI
Smith S. E., Read D. J. (2008). Mycorrhizal Symbiosis (New York: Academic Press; ).
Taerum S. J., Patel R. R., Alamo J. E., Gage D., Steven B., Triplett L. R. (2025). Rhizosphere-colonizing bacteria persist in the protist microbiome. mSphere. 10, e00037–e00025. doi: 10.1128/msphere.00037-25, PMID: PubMed DOI PMC
Ter Braak C. J., Šmilauer P. (2018). Canoco reference manual and user’s guide: Software for ordination (version 5.10) ( Wageningen, the Netherlands: Wageningen University & Research; ).
Thonar C., Erb A., Jansa J. (2012). Real-time PCR to quantify composition of arbuscular mycorrhizal fungal communities—marker design, verification, calibration and field validation. Mol. Ecol. Resour. 12, 219–232. doi: 10.1111/j.1755-0998.2011.03086.x, PMID: PubMed DOI
Tisserant E., Malbreil M., Kuo A., Kohler A., Symeonidi A., Balestrini R., et al. (2013). Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. Proc. Natl. Acad. Sci. U. S. A. 110, 20117–20122. doi: 10.1073/pnas.1313452110, PMID: PubMed DOI PMC
Turner T. R., Ramakrishnan K., Walshaw J., Heavens D., Alston M., Swarbreck D., et al. (2013). Comparative metatranscriptomics reveals kingdom level changes in the rhizosphere microbiome of plants. ISME J. 7, 2248–2258. doi: 10.1038/ismej.2013.119, PMID: PubMed DOI PMC
Usui T., Hayashi Y., Nanjo F., Sakai K., Ishido Y. (1987). Transglycosylation reaction of a chitinase purified from PubMed DOI
Vaishnav A., Rozmoš M., Kotianová M., Hršelová H., Bukovská P., Jansa J. (2025). Protists are key players in the utilization of protein nitrogen in the arbuscular mycorrhizal hyphosphere. New Phytol. 246, 2753–2764. doi: 10.1111/nph.70153, PMID: PubMed DOI PMC
Větrovský T., Baldrian P., Morais D. (2018). SEED 2: a user-friendly platform for amplicon high-throughput sequencing data analyses. Bioinformatics. 34, 2292–2294. doi: 10.1093/bioinformatics/bty071, PMID: PubMed DOI PMC
Vieira C. K., Marascalchi M. N., Rozmoš M., Benada O., Belova V., Jansa J. (2025). Arbuscular mycorrhizal fungal highways–What, how and why? Soil Biol. Biochem. 202, 109702. doi: 10.1016/j.soilbio.2024.109702 DOI
Wagg C., Bender S. F., Widmer F., van der Heijden M. G. (2014). Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc. Natl. Acad. Sci. U.S.A. 111, 5266–5270. doi: 10.1073/pnas.132005411, PMID: PubMed DOI PMC
Wagg C., Hautier Y., Pellkofer S., Banerjee S., Schmid B., van der Heijden M. G. (2021). Diversity and asynchrony in soil microbial communities stabilizes ecosystem functioning. Elife. 10, e62813. doi: 10.7554/eLife.62813, PMID: PubMed DOI PMC
Wang L., George T. S., Feng G. (2024). Concepts and consequences of the hyphosphere core microbiome for arbuscular mycorrhizal fungal fitness and function. New Phytol. 242, 1529–1533. doi: 10.1111/nph.19396, PMID: PubMed DOI
Wang L., Hao D. C., Fan S., Xie H., Bao X., Jia Z., et al. (2022). N DOI
Wang W., Shi J., Xie Q., Jiang Y., Yu N., Wang E. (2017). Nutrient exchange and regulation in arbuscular mycorrhizal symbiosis. Mol. Plant 10, 1147–1158. doi: 10.1016/j.molp.2017.07.012, PMID: PubMed DOI
Yabe S., Sakai Y., Yokota A. (2016). PubMed DOI
Yin Y. L., Li F. L., Wang L. (2022). PubMed DOI PMC
Yuan M. M., Kakouridis A., Starr E., Nguyen N., Shengjing S., Ridge J. P., et al. (2021). Fungal-bacterial cooccurrence patterns differ between arbuscular mycorrhizal fungi and nonmycorrhizal fungi across soil niches. mBio. 12, 10–1128. doi: 10.1128/mBio.03509-20, PMID: PubMed DOI PMC
Zhang L., Feng G., Declerck S. (2018). Signal beyond nutrient, fructose, exuded by an arbuscular mycorrhizal fungus triggers phytate mineralization by a phosphate solubilizing bacterium. ISME J. 12, 2339–2351. doi: 10.1038/s41396-018-0171-4, PMID: PubMed DOI PMC
Zhang J., Yang X., Huo C., Fan X., Liu Q., Liu Z., et al. (2025). PubMed DOI PMC
Zhao J., Guo L., Sun P., Han C., Bai L., Liu C., et al. (2015). PubMed DOI
Zhao G. Z., Li J., Huang H. Y., Zhu W. Y., Xu L. H., Li W. J. (2011). PubMed DOI
Zhou J., Chai X., Zhang L., George T. S., Wang F., Feng G. (2020). Different arbuscular mycorrhizal fungi cocolonizing on a single plant root system recruit distinct microbiomes. mSystems. 5, 10–1128. doi: 10.1128/msystems.00929-20, PMID: PubMed DOI PMC
Zhou J., Kuyper T. W., Feng G. (2023). A trade-off between space exploration and mobilization of organic phosphorus through associated microbiomes enables niche differentiation of arbuscular mycorrhizal fungi on the same root. Sci. China Life Sci. 66, 1426–1439. doi: 10.1007/s11427-022-2261-1, PMID: PubMed DOI