Extreme overall mushroom genome expansion in Mycena s.s. irrespective of plant hosts or substrate specializations
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
38942024
PubMed Central
PMC11293592
DOI
10.1016/j.xgen.2024.100586
PII: S2666-979X(24)00170-8
Knihovny.cz E-zdroje
- Klíčová slova
- Arctic biology, TE proliferation, biotrophy–saprotrophy evolution, carbon degradation, fungal genomics, fungal guild, genome size diversity, plant-fungus interactions, root-associations, saprotrophs,
- MeSH
- Agaricales * genetika MeSH
- fylogeneze MeSH
- genom fungální * genetika MeSH
- molekulární evoluce MeSH
- přenos genů horizontální MeSH
- rostliny mikrobiologie genetika MeSH
- transpozibilní elementy DNA genetika MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- transpozibilní elementy DNA MeSH
Mycena s.s. is a ubiquitous mushroom genus whose members degrade multiple dead plant substrates and opportunistically invade living plant roots. Having sequenced the nuclear genomes of 24 Mycena species, we find them to defy the expected patterns for fungi based on both their traditionally perceived saprotrophic ecology and substrate specializations. Mycena displayed massive genome expansions overall affecting all gene families, driven by novel gene family emergence, gene duplications, enlarged secretomes encoding polysaccharide degradation enzymes, transposable element (TE) proliferation, and horizontal gene transfers. Mainly due to TE proliferation, Arctic Mycena species display genomes of up to 502 Mbp (2-8× the temperate Mycena), the largest among mushroom-forming Agaricomycetes, indicating a possible evolutionary convergence to genomic expansions sometimes seen in Arctic plants. Overall, Mycena show highly unusual, varied mosaic-like genomic structures adaptable to multiple lifestyles, providing genomic illustration for the growing realization that fungal niche adaptations can be far more fluid than traditionally believed.
Department of Biosciences University of Oslo Box 1066 Blindern 0316 Oslo Norway
School of Biological Sciences University of Aberdeen Aberdeen UK
Zobrazit více v PubMed
Grigoriev I.V., Nikitin R., Haridas S., Kuo A., Ohm R., Otillar R., Riley R., Salamov A., Zhao X., Korzeniewski F., et al. MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic Acids Res. 2014;42:D699–D704. doi: 10.1093/nar/gkt1183. PubMed DOI PMC
Eastwood D.C., Floudas D., Binder M., Majcherczyk A., Schneider P., Aerts A., Asiegbu F.O., Baker S.E., Barry K., Bendiksby M., et al. The Plant Cell Wall-Decomposing Machinery Underlies the Functional Diversity of Forest Fungi. Science. 2011;333:762–765. doi: 10.1126/science.1205411. PubMed DOI
Floudas D., Binder M., Riley R., Barry K., Blanchette R.A., Henrissat B., Martínez A.T., Otillar R., Spatafora J.W., Yadav J.S., et al. The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science. 2012;336:1715–1719. doi: 10.1126/science.1221748. PubMed DOI
Nagy L.G., Riley R., Bergmann P.J., Krizsán K., Martin F.M., Grigoriev I.V., Cullen D., Hibbett D.S. Genetic Bases of Fungal White Rot Wood Decay Predicted by Phylogenomic Analysis of Correlated Gene-Phenotype Evolution. Mol. Biol. Evol. 2017;34:35–44. doi: 10.1093/molbev/msw238. PubMed DOI
Lebreton A., Zeng Q., Miyauchi S., Kohler A., Dai Y.C., Martin F.M. Evolution of the mode of nutrition in symbiotic and saprotrophic fungi in forest ecosystems. Annu. Rev. Ecol. Evol. Syst. 2021;52:385–404. doi: 10.1146/annurev-ecolsys-012021-. DOI
Murat C., Payen T., Noel B., Kuo A., Morin E., Chen J., Kohler A., Krizsán K., Balestrini R., Da Silva C., et al. Pezizomycetes genomes reveal the molecular basis of ectomycorrhizal truffle lifestyle. Nat. Ecol. Evol. 2018;2:1956–1965. doi: 10.1038/s41559-018-0710-4. PubMed DOI
Hess J., Skrede I., Chaib De Mares M., Hainaut M., Henrissat B., Pringle A., Gojobori J. Rapid Divergence of Genome Architectures Following the Origin of an Ectomycorrhizal Symbiosis in the Genus Amanita. Mol. Biol. Evol. 2018;35:2786–2804. doi: 10.1093/molbev/msy179. PubMed DOI PMC
Kohler A., Kuo A., Nagy L.G., Morin E., Barry K.W., Buscot F., Canbäck B., Choi C., Cichocki N., Clum A., et al. Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nat. Genet. 2015;47:410–415. doi: 10.1038/ng.3223. PubMed DOI
Martin F., Aerts A., Ahrén D., Brun A., Danchin E.G.J., Duchaussoy F., Gibon J., Kohler A., Lindquist E., Pereda V., et al. The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature. 2008;452:88–92. doi: 10.1038/nature06556. PubMed DOI
Miyauchi S., Kiss E., Kuo A., Drula E., Kohler A., Sánchez-García M., Morin E., Andreopoulos B., Barry K.W., Bonito G., et al. Large-scale genome sequencing of mycorrhizal fungi provides insights into the early evolution of symbiotic traits. Nat. Commun. 2020;11:5125. doi: 10.1038/s41467-020-18795-w. PubMed DOI PMC
Osono T. Ecology of ligninolytic fungi associated with leaf litter decomposition. Ecol. Res. 2007;22:955–974. doi: 10.1007/s11284-007-0390-z. DOI
Cooke R.C., Rayner A.D. Longman; 1984. Ecology of Saprotrophic Fungi.
Floudas D., Bentzer J., Ahrén D., Johansson T., Persson P., Tunlid A. Uncovering the hidden diversity of litter-decomposition mechanisms in mushroom-forming fungi. ISME J. 2020;14:2046–2059. doi: 10.1038/s41396-020-0667-6. PubMed DOI PMC
Bödeker I.T.M., Clemmensen K.E., de Boer W., Martin F., Olson Å., Lindahl B.D. Ectomycorrhizal Cortinarius species participate in enzymatic oxidation of humus in northern forest ecosystems. New Phytol. 2014;203:245–256. doi: 10.1111/nph.12791. PubMed DOI
Clemmensen K.E., Lindahl B.D., Bahr A., Ovaskainen O., Dahlberg A., Ekblad A., Wallander H., Stenlid J., Finlay R.D., Wardle D.A. Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science. 2013;339:1615–1618. PubMed
Thoen E., Harder C.B., Kauserud H., Botnen S.S., Vik U., Taylor A.F.S., Menkis A., Skrede I. In vitro evidence of root colonization suggests ecological versatility in the genus Mycena. New Phytol. 2020;227:601–612. doi: 10.1111/nph.16545. PubMed DOI
Rineau F., Shah F., Smits M.M., Persson P., Johansson T., Carleer R., Troein C., Tunlid A. Carbon availability triggers the decomposition of plant litter and assimilation of nitrogen by an ectomycorrhizal fungus. ISME J. 2013;7:2010–2022. doi: 10.1038/ismej.2013.91. PubMed DOI PMC
Selosse M.A., Schneider-Maunoury L., Martos F. Time to re-think fungal ecology? Fungal ecological niches are often prejudged. New Phytol. 2018;217:968–972. PubMed
Moncalvo J.-M., Vilgalys R., Redhead S.A., Johnson J.E., James T.Y., Catherine Aime M., Hofstetter V., Verduin S.J.W., Larsson E., Baroni T.J., et al. One hundred and seventeen clades of euagarics. Mol. Phylogenet. Evol. 2002;23:357–400. PubMed
Boberg J., Finlay R., Stenlid J., Nasholm T., Lindahl B. Glucose and ammonium additions affect needle decomposition and carbon allocation by the litter degrading fungus Mycena epipterygia. Soil Biol. Biochem. 2008;40:995–999. doi: 10.1016/j.soilbio.2007.11.005. DOI
Baldrian P., Kolařík M., Stursová M., Kopecký J., Valášková V., Větrovský T., Zifčáková L., Snajdr J., Rídl J., Vlček C., Voříšková J. Active and total microbial communities in forest soil are largely different and highly stratified during decomposition. ISME J. 2012;6:248–258. doi: 10.1038/ismej.2011.95. PubMed DOI PMC
Kyaschenko J., Clemmensen K.E., Hagenbo A., Karltun E., Lindahl B.D. Shift in fungal communities and associated enzyme activities along an age gradient of managed Pinus sylvestris stands. ISME J. 2017;11:863–874. doi: 10.1038/ismej.2016.184. PubMed DOI PMC
Harder C.B., Læssøe T., Kjøller R., Frøslev T.G. A comparison between ITS phylogenetic relationships and morphological species recognition within Mycena sect. Calodontes in Northern Europe. Mycol. Prog. 2010;9:395–405. doi: 10.1007/s11557-009-0648-7. DOI
Kühner R. Le genre Mycena: étude cytologique et systèmatique des espèces d’Europe et d’Amérique du nord. Encycl. Mycol. 1938;10:1–710.
Rexer, K.H. (1994). Die Gattung Mycena s. l. - Studien zu ihrer Anatomie, Morphologie und Systematik. Dissertation (Universität Tübingen).
Maas Geesteranus R.A. North-Holland; 1992. Mycenas of the Northern Hemisphere. 2 Vvols.
Robich, G. (2003). Mycena D’Europa. A.M.B., Fondazione Centro Studi Micologici. Trento, Vicenza.
Ogura-Tsujita Y., Gebauer G., Hashimoto T., Umata H., Yukawa T. Evidence for novel and specialized mycorrhizal parasitism: the orchid Gastrodia confusa gains carbon from saprotrophic Mycena. Proc. Biol. Sci. 2009;276:761–767. PubMed PMC
Zhang L., Chen J., Lv Y., Gao C., Guo S. Mycena sp., a mycorrhizal fungus of the orchid Dendrobium officinale. Mycol. Prog. 2012;11:395–401. doi: 10.1007/s11557-011-0754-1. DOI
Davey M.L., Heimdal R., Ohlson M., Kauserud H. Host- and tissue-specificity of moss-associated Galerina and Mycena determined from amplicon pyrosequencing data. Fungal Ecology. 2013;6:179–186. doi: 10.1016/j.funeco.2013.02.003. DOI
Glynou K., Nam B., Thines M., Maciá-Vicente J.G. Facultative root-colonizing fungi dominate endophytic assemblages in roots of nonmycorrhizal Microthlaspi species. New Phytol. 2018;217:1190–1202. doi: 10.1111/nph.14873. PubMed DOI
Roy B.A., Thomas D.C., Soukup H.C., Peterson I.A.B. Mycena citrinomarginata is associated with roots of the perennial grass Festuca roemeri in Pacific Northwest prairies. Mycologia. 2021;113:693–702. doi: 10.1080/00275514.2021.1884814. PubMed DOI
Grelet G.A., Ba R., Goeke D.F., Houliston G.J., Taylor A.F.S., Durall D.M. A plant growth-promoting symbiosis between Mycena galopus and Vaccinium corymbosum seedlings. Mycorrhiza. 2017;27:831–839. doi: 10.1007/s00572-017-0797-5. PubMed DOI
Botnen S., Vik U., Carlsen T., Eidesen P.B., Davey M.L., Kauserud H. Low host specificity of root-associated fungi at an Arctic site. Mol. Ecol. 2014;23:975–985. doi: 10.1111/mec.12646. PubMed DOI
Lorberau K.E., Botnen S.S., Mundra S., Aas A.B., Rozema J., Eidesen P.B., Kauserud H. Does warming by open-top chambers induce change in the root-associated fungal community of the arctic dwarf shrub Cassiope tetragona (Ericaceae)? Mycorrhiza. 2017;27:513–524. doi: 10.1007/s00572-017-0767-y. PubMed DOI
Kohout P., Charvátová M., Štursová M., Mašínová T., Tomšovský M., Baldrian P. Clearcutting alters decomposition processes and initiates complex restructuring of fungal communities in soil and tree roots. ISME J. 2018;12:692–703. doi: 10.1038/s41396-017-0027-3. PubMed DOI PMC
Harder C.B., Hesling E., Botnen S.S., Lorberau K.E., Dima B., von Bonsdorff-Salminen T., Niskanen T., Jarvis S.G., Ouimette A., Hester A., et al. Mycena species can be opportunist-generalist plant root invaders. Environ. Microbiol. 2023;25:1875–1893. doi: 10.1111/1462-2920.16398. PubMed DOI
Ke H.-M., Lee H.-H., Lin C.-Y.I., Liu Y.-C., Lu M.R., Hsieh J.-W.A., Chang C.-C., Wu P.-H., Lu M.J., Li J.-Y., et al. Mycena genomes resolve the evolution of fungal bioluminescence. Proc. Natl. Acad. Sci. USA. 2020;117:31267–31277. doi: 10.1073/pnas.2010761117. PubMed DOI PMC
Chang Y., Wang Y., Mondo S.J., Ahrendt S., Andreopoulos W., Barry K., et al. Fungi Are What They Secrete: Evolution of Zygomycete Secretomes and the Origins of Terrestrial Fungal Ecologies. 2022. https://ssrn.com/abstract=4047252or10.2139/ssrn.4047252 SSRN: PubMed PMC
Morin E., Kohler A., Baker A.R., Foulongne-Oriol M., Lombard V., Nagy L.G., Ohm R.A., Patyshakuliyeva A., Brun A., Aerts A.L., et al. Genome sequence of the button mushroom Agaricus bisporus reveals mechanisms governing adaptation to a humic-rich ecological niche. Proc. Natl. Acad. Sci. USA. 2012;109:17501–17506. PubMed PMC
Hess J., Skrede I., Wolfe B.E., LaButti K., Ohm R.A., Grigoriev I.V., Pringle A. Transposable Element Dynamics among Asymbiotic and Ectomycorrhizal Amanita Fungi. Genome Biol. Evol. 2014;6:1564–1578. doi: 10.1093/gbe/evu121. PubMed DOI PMC
Sipos G., Prasanna A.N., Walter M.C., O’Connor E., Bálint B., Krizsán K., Kiss B., Hess J., Varga T., Slot J., et al. Genome expansion and lineage-specific genetic innovations in the forest pathogenic fungi Armillaria. Nat. Ecol. Evol. 2017;1:1931–1941. doi: 10.1038/s41559-017-0347-8. PubMed DOI
Almási É., Sahu N., Krizsán K., Bálint B., Kovács G.M., Kiss B., Cseklye J., Drula E., Henrissat B., Nagy I., et al. Comparative genomics reveals unique wood-decay strategies and fruiting body development in the Schizophyllaceae. New Phytol. 2019;224:902–915. doi: 10.1111/nph.16032. PubMed DOI
Varga T., Krizsán K., Földi C., Dima B., Sánchez-García M., Sánchez-Ramírez S., Szöllősi G.J., Szarkándi J.G., Papp V., Albert L., et al. Megaphylogeny resolves global patterns of mushroom evolution. Nat. Ecol. Evol. 2019;3:668–678. doi: 10.1038/s41559-019-0834-1. PubMed DOI PMC
Stajich J.E., Wilke S.K., Ahrén D., Au C.H., Birren B.W., Borodovsky M., Burns C., Canbäck B., Casselton L.A., Cheng C.K., et al. Insights into evolution of multicellular fungi from the assembled chromosomes of the mushroom Coprinopsis cinerea (Coprinus cinereus) Proc. Natl. Acad. Sci. USA. 2010;107:11889–11894. PubMed PMC
Floudas D., Held B.W., Riley R., Nagy L.G., Koehler G., Ransdell A.S., Younus H., Chow J., Chiniquy J., Lipzen A., et al. Evolution of novel wood decay mechanisms in Agaricales revealed by the genome sequences of Fistulina hepatica and Cylindrobasidium torrendii. Fungal Genet. Biol. 2015;76:78–92. doi: 10.1016/j.fgb.2015.02.002. PubMed DOI PMC
Riley R., Salamov A.A., Brown D.W., Nagy L.G., Floudas D., Held B.W., Levasseur A., Lombard V., Morin E., Otillar R., et al. Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot paradigm for wood decay fungi. Proc. Natl. Acad. Sci. USA. 2014;111:9923–9928. doi: 10.1073/pnas.1400592111. PubMed DOI PMC
Barbi F., Kohler A., Barry K., Baskaran P., Daum C., Fauchery L., Ihrmark K., Kuo A., LaButti K., Lipzen A., et al. Fungal ecological strategies reflected in gene transcription - a case study of two litter decomposers. Environ. Microbiol. 2020;22:1089–1103. doi: 10.1111/1462-2920.14873. PubMed DOI
Fricke J., Blei F., Hoffmeister D. Enzymatic Synthesis of Psilocybin. Angew. Chem. Int. Ed. Engl. 2017;56:12352–12355. doi: 10.1002/anie.201705489. PubMed DOI
Ruiz-Dueñas F.J., Barrasa J.M., Sánchez-García M., Camarero S., Miyauchi S., Serrano A., Linde D., Babiker R., Drula E., Ayuso-Fernández I., et al. Genomic Analysis Enlightens Agaricales Lifestyle Evolution and Increasing Peroxidase Diversity. Mol. Biol. Evol. 2021;38:1428–1446. doi: 10.1093/molbev/msaa301. PubMed DOI PMC
Ohm R.A., de Jong J.F., Lugones L.G., Aerts A., Kothe E., Stajich J.E., de Vries R.P., Record E., Levasseur A., Baker S.E., et al. Genome sequence of the model mushroom Schizophyllum commune. Nat. Biotechnol. 2010;28:957–963. doi: 10.1038/nbt.1643. PubMed DOI
Bao D., Gong M., Zheng H., Chen M., Zhang L., Wang H., Jiang J., Wu L., Zhu Y., Zhu G., et al. Sequencing and Comparative Analysis of the Straw Mushroom (Volvariella volvacea) Genome. PLoS One. 2013;8 doi: 10.1371/journal.pone.0058294. PubMed DOI PMC
Sakamoto Y., Nakade K., Sato S., Yoshida K., Miyazaki K., Natsume S., Konno N., Cullen D. Lentinula edodes Genome Survey and Postharvest Transcriptome Analysis. Appl. Environ. Microbiol. 2017;83 doi: 10.1128/aem.02990-16. PubMed DOI PMC
Marian I.M., Vonk P.J., Valdes I.D., Barry K., Bostock B., Carver A., Daum C., Lerner H., Lipzen A., Park H., et al. The transcription factor Roc1 is a key regulator of cellulose degradation in the wood-decaying mushroom Schizophyllum commune. mBio. 2022;13 PubMed PMC
Casacuberta E., González J. The impact of transposable elements in environmental adaptation. Mol. Ecol. 2013;22:1503–1517. doi: 10.1111/mec.12170. PubMed DOI
Zhang H.Y., Bissett A., Aguilar-Trigueros C.A., Liu H.W., Powell J.R. Fungal genome size and composition reflect ecological strategies along soil fertility gradients. Ecol. Lett. 2023;26:1108–1118. doi: 10.1111/ele.14224. PubMed DOI
Matheny P.B., Hughes K.W., Kalichman J., Lebeuf R. Pulverulina, a New Genus of Agaricales for Clitocybe ulmicola. SE. Nat. 2020;19:447. doi: 10.1656/058.019.0301. DOI
Vizzini A., Consiglio G., Marchetti M., Borovička J., Campo E., Cooper J., Lebeuf R., Ševčíková H. New data in Porotheleaceae and Cyphellaceae: epitypification of Prunulus scabripes Murrill, the status of Mycopan Redhead, Moncalvo & Vilgalys and a new combination in Pleurella Horak emend. Mycol. Prog. 2022;21 doi: 10.1007/s11557-022-01795-z. DOI
Sahu N., Indic B., Wong-Bajracharya J., Merényi Z., Ke H.-M., Ahrendt S., Monk T.-L., Kocsubé S., Drula E., Lipzen A., et al. Vertical and horizontal gene transfer shaped plant colonization and biomass degradation in the fungal genus Armillaria. Nat. Microbiol. 2023;8:1668–1681. doi: 10.1038/s41564-023-01448-1. PubMed DOI PMC
Gladyshev E.A., Meselson M., Arkhipova I.R. Massive Horizontal Gene Transfer in Bdelloid Rotifers. Science. 2008;320:1210–1213. doi: 10.1126/science.1156407. PubMed DOI
Oome S., Raaymakers T.M., Cabral A., Samwel S., Böhm H., Albert I., Nürnberger T., Van den Ackerveken G. Nep1-like proteins from three kingdoms of life act as a microbe-associated molecular pattern in Arabidopsis. Proc. Natl. Acad. Sci. USA. 2014;111:16955–16960. doi: 10.1073/pnas.1410031111. PubMed DOI PMC
Nagy L.G., Ohm R.A., Kovács G.M., Floudas D., Riley R., Gácser A., Sipiczki M., Davis J.M., Doty S.L., de Hoog G.S., et al. Latent homology and convergent regulatory evolution underlies the repeated emergence of yeasts. Nat. Commun. 2014;5:4471. doi: 10.1038/ncomms5471. PubMed DOI
Matheny P.B., Curtis J.M., Hofstetter V., Aime M.C., Moncalvo J.M., Ge Z.W., Slot J.C., Ammirati J.F., Baroni T.J., Bougher N.L., et al. Major clades of Agaricales: a multilocus phylogenetic overview. Mycologia. 2006;98:982–995. PubMed
Kellis M., Birren B.W., Lander E.S. Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae. Nature. 2004;428:617–624. PubMed
Corrochano L.M., Kuo A., Marcet-Houben M., Polaino S., Salamov A., Villalobos-Escobedo J.M., Grimwood J., Álvarez M.I., Avalos J., Bauer D., et al. Expansion of Signal Transduction Pathways in Fungi by Extensive Genome Duplication. Curr. Biol. 2016;26:1577–1584. doi: 10.1016/j.cub.2016.04.038. PubMed DOI PMC
Roelofs D., Zwaenepoel A., Sistermans T., Nap J., Kampfraath A.A., Van de Peer Y., Ellers J., Kraaijeveld K. Multi-faceted analysis provides little evidence for recurrent whole-genome duplications during hexapod evolution. BMC Biol. 2020;18 doi: 10.1186/s12915-020-00789-1. PubMed DOI PMC
Kameshwar A.K.S., Qin W. Systematic review of publicly available non-Dikarya fungal proteomes for understanding their plant biomass-degrading and bioremediation potentials. Bioresources and Bioprocessing. 2019;6:1–19. doi: 10.1186/s40643-019-0264-6. DOI
Sützl L., Laurent C.V.F.P., Abrera A.T., Schütz G., Ludwig R., Haltrich D. Multiplicity of enzymatic functions in the CAZy AA3 family. Appl. Microbiol. Biotechnol. 2018;102:2477–2492. doi: 10.1007/s00253-018-8784-0. PubMed DOI PMC
Blackman L.M., Cullerne D.P., Hardham A.R. Bioinformatic characterisation of genes encoding cell wall degrading enzymes in the Phytophthora parasitica genome. BMC Genom. 2014;15:785. doi: 10.1186/1471-2164-15-785. PubMed DOI PMC
Eichlerová I., Homolka L., Žifčáková L., Lisá L., Dobiášová P., Baldrian P. Enzymatic systems involved in decomposition reflects the ecology and taxonomy of saprotrophic fungi. Fungal Ecology. 2015;13:10–22. doi: 10.1016/j.funeco.2014.08.002. DOI
Park S.-G., Yoo S.i., Ryu D.S., Lee H., Ahn Y.J., Ryu H., Ko J., Hong C.P. Long-read transcriptome data for improved gene prediction in Lentinula edodes. Data Brief. 2017;15:454–458. doi: 10.1016/j.dib.2017.09.052. PubMed DOI PMC
Drula E., Garron M.-L., Dogan S., Lombard V., Henrissat B., Terrapon N. The carbohydrate-active enzyme database: functions and literature. Nucleic Acids Res. 2022;50:D571–D577. doi: 10.1093/nar/gkab1045. PubMed DOI PMC
Baldrian P., Valásková V. Degradation of cellulose by basidiomycetous fungi. FEMS Microbiol. Rev. 2008;32:501–521. doi: 10.1111/j.1574-6976.2008.00106.x. PubMed DOI
Huberman L.B., Liu J., Qin L., Glass N.L. Regulation of the lignocellulolytic response in filamentous fungi. Fungal Biology Reviews. 2016;30:101–111. doi: 10.1016/j.fbr.2016.06.001. DOI
Duplessis S., Cuomo C.A., Lin Y.C., Aerts A., Tisserant E., Veneault-Fourrey C., Joly D.L., Hacquard S., Amselem J., Cantarel B.L., et al. Obligate biotrophy features unraveled by the genomic analysis of rust fungi. Proc. Natl. Acad. Sci. USA. 2011;108:9166–9171. PubMed PMC
Gupta Y.K., Marcelino-Guimarães F.C., Lorrain C., Farmer A., Haridas S., Ferreira E.G.C., Lopes-Caitar V.S., Oliveira L.S., Morin E., Widdison S., et al. The soybean rust pathogen Phakopsora pachyrhizi displays transposable element proliferation that correlates with broad host-range adaptation on legumes. bioRxiv. 2022 doi: 10.1101/2022.06.13.495685. https://www.biorxiv.org/content/10.1101/2022.06.13.495685v1.full DOI
Chuong E.B., Elde N.C., Feschotte C. Regulatory activities of transposable elements: from conflicts to benefits. Nat. Rev. Genet. 2017;18:71–86. doi: 10.1038/nrg.2016.139. PubMed DOI PMC
Hawkins J.S., Kim H., Nason J.D., Wing R.A., Wendel J.F. Differential lineage-specific amplification of transposable elements is responsible for genome size variation in Gossypium. Genome Res. 2006;16:1252–1261. doi: 10.1101/gr.5282906. PubMed DOI PMC
Rouxel T., Balesdent M.H. Life, death and rebirth of avirulence effectors in a fungal pathogen of Brassica crops, Leptosphaeria maculans. New Phytol. 2017;214:526–532. doi: 10.1111/nph.14411. PubMed DOI
Pao S.S., Paulsen I.T., Saier M.H., Jr. Major facilitator superfamily. Microbiol. Mol. Biol. Rev. 1998;62:1–34. PubMed PMC
Blatch G.L., Lässle M. The tetratricopeptide repeat: a structural motif mediating protein-protein interactions. Bioessays. 1999;21:932–939. PubMed
MacPherson S., Larochelle M., Turcotte B. A Fungal Family of Transcriptional Regulators: the Zinc Cluster Proteins. Microbiol. Mol. Biol. Rev. 2006;70:583–604. doi: 10.1128/mmbr.00015-06. PubMed DOI PMC
Mustafin R.N. The Relationship between Transposons and Transcription Factors in the Evolution of Eukaryotes. J. Evol. Biochem. Physiol. 2019;55:14–23. doi: 10.1134/s0022093019010022. DOI
Kocsis B., Lee M.-K., Yu J.-H., Nagy T., Daróczi L., Batta G., Pócsi I., Leiter É. Functional analysis of the bZIP-type transcription factors AtfA and AtfB in Aspergillus nidulans. Front. Microbiol. 2022;13 doi: 10.3389/fmicb.2022.1003709. PubMed DOI PMC
Merényi Z., Krizsán K., Sahu N., Liu X.-B., Bálint B., Stajich J.E., Spatafora J.W., Nagy L.G. Genomes of fungi and relatives reveal delayed loss of ancestral gene families and evolution of key fungal traits. Nat. Ecol. Evol. 2023;7:1221–1231. doi: 10.1038/s41559-023-02095-9. PubMed DOI PMC
Arkhipova I.R. Neutral Theory, Transposable Elements, and Eukaryotic Genome Evolution. Mol. Biol. Evol. 2018;35:1332–1337. doi: 10.1093/molbev/msy083. PubMed DOI PMC
Muszewska A., Steczkiewicz K., Stepniewska-Dziubinska M., Ginalski K. Transposable elements contribute to fungal genes and impact fungal lifestyle. Sci. Rep. 2019;9 doi: 10.1038/s41598-019-40965-0. PubMed DOI PMC
Baduel P., Quadrana L., Hunter B., Bomblies K., Colot V. Relaxed purifying selection in autopolyploids drives transposable element over-accumulation which provides variants for local adaptation. Nat. Commun. 2019;10 doi: 10.1038/s41467-019-13730-0. PubMed DOI PMC
Niu S., Li J., Bo W., Yang W., Zuccolo A., Giacomello S., Chen X., Han F., Yang J., Song Y., et al. The Chinese pine genome and methylome unveil key features of conifer evolution. Cell. 2022;185:204–217.e14. doi: 10.1016/j.cell.2021.12.006. PubMed DOI
Lynch M., Conery J.S. The Origins of Genome Complexity. Science. 2003;302:1401–1404. doi: 10.1126/science.1089370. PubMed DOI
Stajich J.E. Fungal Genomes and Insights into the Evolution of the Kingdom. Microbiol. Spectr. 2017;5:619–633. doi: 10.1128/microbiolspec.FUNK-0055-2016. PubMed DOI PMC
Hiltunen M., Ament-Velásquez S.L., Ryberg M., Johannesson H. Stage-specific transposon activity in the life cycle of the fairy-ring mushroom Marasmius oreades. Proc. Natl. Acad. Sci. USA. 2022;119 doi: 10.1073/pnas. PubMed DOI PMC
Hess J., Balasundaram S.V., Bakkemo R.I., Drula E., Henrissat B., Högberg N., Eastwood D., Skrede I. Niche differentiation and evolution of the wood decay machinery in the invasive fungus Serpula lacrymans. ISME J. 2021;15:592–604. doi: 10.1038/s41396-020-00799-5. PubMed DOI PMC
Krah F.-S., Bässler C., Heibl C., Soghigian J., Schaefer H., Hibbett D.S. Evolutionary dynamics of host specialization in wood-decay fungi. BMC Evol. Biol. 2018;18:119. doi: 10.1186/s12862-018-1229-7. PubMed DOI PMC
Skrede I., Murat C., Hess J., Maurice S., Sønstebø J.H., Kohler A., Barry-Etienne D., Eastwood D., Högberg N., Martin F., Kauserud H. Contrasting demographic histories revealed in two invasive populations of the dry rot fungus Serpula lacrymans. Mol. Ecol. 2021;30:2772–2789. doi: 10.1111/mec.15934. PubMed DOI
Baldrian P. Microbial enzyme-catalyzed processes in soils and their analysis. Plant Soil Environ. 2009;55:370–378.
Chin C.-S., Peluso P., Sedlazeck F.J., Nattestad M., Concepcion G.T., Clum A., Dunn C., O'Malley R., Figueroa-Balderas R., Morales-Cruz A., et al. Phased diploid genome assembly with single-molecule real-time sequencing. Nat. Methods. 2016;13:1050–1054. doi: 10.1038/nmeth.4035. PubMed DOI PMC
Kuo A., Bushnell B., Grigoriev I.V. In: Advances In Botanical Research. Martin F., editor. Elsevier Academic Press; 2014. Ecological Genomics of Fungi; pp. 1–52.
Grabherr M.G., Haas B.J., Yassour M., Levin J.Z., Thompson D.A., Amit I., Adiconis X., Fan L., Raychowdhury R., Zeng Q., et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011;29:644–652. doi: 10.1038/nbt.1883. PubMed DOI PMC
Yang Y., Li Y., Chen Q., Sun Y., Lu Z. WGDdetector: a pipeline for detecting whole genome duplication events using the genome or transcriptome annotations. BMC Bioinf. 2019;20:75. doi: 10.1186/s12859-019-2670-3. PubMed DOI PMC
Wattam A.R., Abraham D., Dalay O., Disz T.L., Driscoll T., Gabbard J.L., Gillespie J.J., Gough R., Hix D., Kenyon R., et al. PATRIC, the bacterial bioinformatics database and analysis resource. Nucleic Acids Res. 2014;42:D581–D591. doi: 10.1093/nar/gkt1099. PubMed DOI PMC
Katoh K., Standley D.M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 2013;30:772–780. PubMed PMC
Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 2000;17:540–552. PubMed
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–1313. doi: 10.1093/bioinformatics/btu033. PubMed DOI PMC
Emms D.M., Kelly S. STRIDE: Species Tree Root Inference from Gene Duplication Events. Mol. Biol. Evol. 2017;34:3267–3278. doi: 10.1093/molbev/msx259. PubMed DOI PMC
Emms D.M., Kelly S. STAG: Species Tree Inference from All Genes. bioRxiv. 2018 doi: 10.1101/267914. DOI
Kozlov A.M., Darriba D., Flouri T., Morel B., Stamatakis A., Wren J. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics. 2019;35:4453–4455. doi: 10.1093/bioinformatics/btz305. PubMed DOI PMC
Morel B., Kozlov A.M., Stamatakis A., Schwartz R. ParGenes: a tool for massively parallel model selection and phylogenetic tree inference on thousands of genes. Bioinformatics. 2019;35:1771–1773. doi: 10.1093/bioinformatics/bty839. PubMed DOI PMC
Zhang C., Rabiee M., Sayyari E., Mirarab S. ASTRAL-III: polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinf. 2018;19:153. doi: 10.1186/s12859-018-2129-y. PubMed DOI PMC
Emms D.M., Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 2019;20:1–14. doi: 10.1186/s13059-019-1832-y. PubMed DOI PMC
Capella-Gutierrez S., Silla-Martinez J.M., Gabaldon T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25:1972–1973. doi: 10.1093/bioinformatics/btp348. PubMed DOI PMC
Darby C.A., Stolzer M., Ropp P.J., Barker D., Durand D. Xenolog classification. Bioinformatics. 2017;33:640–649. doi: 10.1093/bioinformatics/btw686. PubMed DOI PMC
Shen X.-X., Opulente D.A., Kominek J., Zhou X., Steenwyk J.L., Buh K.V., Haase M.A.B., Wisecaver J.H., Wang M., Doering D.T., et al. Tempo and Mode of Genome Evolution in the Budding Yeast Subphylum. Cell. 2018;175:1533–1545.e20. doi: 10.1016/j.cell.2018.10.023. PubMed DOI PMC
Nguyen L.-T., Schmidt H.A., von Haeseler A., Minh B.Q. IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Mol. Biol. Evol. 2015;32:268–274. doi: 10.1093/molbev/msu300. PubMed DOI PMC
Gel B., Díez-Villanueva A., Serra E., Buschbeck M., Peinado M.A., Malinverni R. regioneR: an R/Bioconductor package for the association analysis of genomic regions based on permutation tests. Bioinformatics. 2016;32:289–291. PubMed PMC
Looney B., Miyauchi S., Morin E., Drula E., Courty P.E., Kohler A., Martin F.M. Evolutionary priming and transition to the ectomycorrhizal habit in an iconic lineage of mushroom-forming fungi: is preadaptation a requirement? bioRxiv. 2021 doi: 10.1101/2021.02.23.432530. DOI
Smit A.F.A., Hubley R., Green P. RepeatMasker Open-4.0. 2013–2015. 2015. http://www.repeatmasker.org
Smit A., Hubley R. RepeatModeler Open-1.0. 2008-2015. 2015. http://www.repeatmasker.org
Price M.N., Dehal P.S., Arkin A.P. FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS One. 2010;5 doi: 10.1371/journal.pone.0009490. PubMed DOI PMC
Nguyen N.H., Song Z., Bates S.T., Branco S., Tedersoo L., Menke J., Schilling J.S., Kennedy P.G. FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecology. 2016;20:241–248. doi: 10.1016/j.funeco.2015.06.006. DOI
Aronsen A., Læssøe T. Fungi of Northern Europe. Danish Mycological Society. 2016;5
Simão F.A., Waterhouse R.M., Ioannidis P., Kriventseva E.V., Zdobnov E.M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31:3210–3212. doi: 10.1093/bioinformatics/btv351. PubMed DOI
Morin E., Miyauchi S., San Clemente H., Chen E.C.H., Pelin A., de la Providencia I., Ndikumana S., Beaudet D., Hainaut M., Drula E., et al. Comparative genomics of Rhizophagus irregularis, R. cerebriforme, R. diaphanus and Gigaspora rosea highlights specific genetic features in Glomeromycotina. New Phytol. 2019;222:1584–1598. doi: 10.1111/nph.15687. PubMed DOI
Pellegrin C., Morin E., Martin F.M., Veneault-Fourrey C. Comparative Analysis of Secretomes from Ectomycorrhizal Fungi with an Emphasis on Small-Secreted Proteins. Front. Microbiol. 2015;6 doi: 10.3389/fmicb.2015.01278. PubMed DOI PMC
Oksanen J., Kindt R., Legendre P. Vegan: community ecology package. R package version. 2019;2 http://cran.r-project.org/ 2.5-4.
Blighe K., Al P. PCAtools: Everything Principal Components Analysis. R package version 2.0. 0 2020. https://github.com/kevinblighe/PCAtools
Signorell A., Aho K., Alfons A., Anderegg N., Aragon T., Arachchige C., et al. Bolker B. R Foundation for Statistical Computing; 2016. DescTools: Tools for Descriptive Statistics. R Package Version 0.99. 18.
Paradis E., Schliep K., Schwartz R. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics. 2019;35:526–528. doi: 10.1093/bioinformatics/bty633. PubMed DOI
Hackathon R. 2020. R Package phylobase.https://github.com/fmichonneau/phylobase
Jombart T., Dray S. Adephylo: exploratory analyses for the phylogenetic comparative method. Bioinformatics. 2010;26:1–21. PubMed
Wickham H., Chang W., Wickham M.H. R package ‘ggplot2’. Create elegant data visualisations using the grammar of graphics. Version. 2016;2:1–189.