Japonolirion osense, a close relative of the mycoheterotrophic genus Petrosavia, exhibits complete autotrophic capabilities
Language English Country England, Great Britain Media electronic
Document type Journal Article
Grant support
GN23-05310O
Grantová Agentura České Republiky
RVO 67985939
Akademie Věd České Republiky
(JPMJPR21D6, Kenji Suetsugu
Japan Science and Technology Agency
PubMed
39516734
PubMed Central
PMC11546523
DOI
10.1186/s12870-024-05721-1
PII: 10.1186/s12870-024-05721-1
Knihovny.cz E-resources
- Keywords
- Japonolirion osense, In vitro, Mixotrophy, Petrosaviales, Plastome, Stable isotopes,
- MeSH
- Autotrophic Processes * MeSH
- Heterotrophic Processes * MeSH
- Mycorrhizae physiology MeSH
- Carbon metabolism MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Carbon MeSH
The plant kingdom exhibits a diversity of nutritional strategies, extending beyond complete autotrophy. In addition to full mycoheterotrophs and holoparasites, it is now recognized that a greater number of green plants than previously assumed use partly of fungal carbon. These are termed partial mycoheterotrophs or mixotrophs. Notably, some species exhibit a dependency on fungi exclusively during early ontogenetic stages, referred to as initial mycoheterotrophy. Japonolirion osense, a rare plant thriving in serpentinite soils, emerges as a potential candidate for initial mycoheterotrophy or mixotrophy. Several factors support this hypothesis, including its diminutive sizes of shoot and and seeds, the establishment of Paris-type arbuscular mycorrhizal associations, its placement within the Petrosaviales-largely composed of fully mycoheterotrophic species-and its ability to face the challenging conditions of its environment. To explore these possibilities, our study adopts a multidisciplinary approach, encompassing stable isotope abundance analyses, in vitro experiments, anatomical analyses, and comparative plastome analyses. Our study aims to (1) determine whether J. osense relies on fungal carbon during germination, indicating initial mycoheterotrophy, (2) determine if it employs a dual carbon acquisition strategy as an adult, and (3) investigate potential genomic reductions in photosynthetic capabilities. Contrary to expectations, our comprehensive findings strongly indicate that J. osense maintains complete autotrophy throughout its life cycle. This underscores the contrasting nutritional strategies evolved by species within the Petrosaviales.
Department of Botany University of British Columbia Vancouver BC V6T 1Z4 Canada
Institut Universitaire de France Paris France
Naturalis Biodiversity Center Darwinweg 2 Leiden 2333 CR The Netherlands
Prague Botanical Garden Trojská 800 196 Prague 17100 Czech Republic
See more in PubMed
Merckx VSFT. Mycoheterotrophy: The biology of plants living on fungi. In: Mycoheterotrophy. 2013. pp. 1–356.
Wicaksono A, Mursidawati S, Molina J. A plant within a plant: insights on the development of the Rafflesia Endophyte within its host. Bot Rev. 2021;87:233–42.
Fahmy GM, Hassan AH. Haustorial structure of the holoparasitic angiosperm Cynomorium Coccineum L. invading host roots. Flora: Morphology Distribution Funct Ecol Plants. 2021;274(June 2020):151731.
Yoshida S, Cui S, Ichihashi Y, Shirasu K. The Haustorium, a Specialized Invasive Organ in parasitic plants. Annu Rev Plant Biol. 2016;67:643–67. PubMed
Selosse MA, Charpin M, Not F. Mixotrophy everywhere on land and in water: the grand écart hypothesis. Ecol Lett. 2017;20:246–63. PubMed
Selosse MA, Petrolli R, Mujica MI, Laurent L, Perez-Lamarque B, Figura T, et al. The Waiting Room Hypothesis revisited by orchids: were orchid mycorrhizal fungi recruited among root endophytes? Ann Bot. 2022;129:259–70. PubMed PMC
Selosse MA, Richard F, He X, Simard SW. Mycorrhizal networks: des liaisons dangereuses? Trends Ecol Evol. 2006;21:621–8. PubMed
Rasmussen HN, Rasmussen FN. Orchid mycorrhiza: implications of a mycophagous life style. Oikos. 2009;118:334–45.
Simard SW, Beiler KJ, Bingham MA, Deslippe JR, Philip LJ, Teste FP. Mycorrhizal networks: mechanisms, ecology and modelling. Fungal Biol Rev. 2012;26:39–60.
Giesemann P, Rasmussen HN, Gebauer G. Partial mycoheterotrophy is common among chlorophyllous plants with Paris-type arbuscular mycorrhiza. Ann Bot. 2021;127:645–53. PubMed PMC
Giesemann P, Rasmussen HN, Liebel HT, Gebauer G. Discreet heterotrophs: green plants that receive fungal carbon through Paris-type arbuscular mycorrhiza. New Phytol. 2020;226:960–6. PubMed
Giesemann P, Eichenberg D, Stöckel M, Seifert LF, Gomes SIF, Merckx VSFT, et al. Dark septate endophytes and arbuscular mycorrhizal fungi (Paris-morphotype) affect the stable isotope composition of ‘classically’ non-mycorrhizal plants. Funct Ecol. 2020;34:2453–66.
Gomes SIF, Merckx VSFT, Kehl J, Gebauer G. Mycoheterotrophic plants living on arbuscular mycorrhizal fungi are generally enriched in 13 C, 15 N and 2H isotopes. J Ecol. 2020;108:1250–61.
Suetsugu K, Taketomi S, Tanabe AS, Haraguchi TF, Tayasu I, Toju H. Isotopic and molecular data support mixotrophy in Ophioglossum at the sporophytic stage. New Phytol. 2020;228:415–9. PubMed
Suetsugu K, Matsubayashi J, Ogawa NO, Murata S, Sato R, Tomimatsu H. Isotopic evidence of arbuscular mycorrhizal cheating in a grassland gentian species. Oecologia. 2020;192:929–37. PubMed
Selosse M-A, Roy M. Green plants that feed on fungi: facts and questions about mixotrophy. Trends Plant Sci. 2009;14:64–70. PubMed
Jacquemyn H, Merckx VSFT. Mycorrhizal symbioses and the evolution of trophic modes in plants. J Ecol. 2019;107:1567–81.
APG IV. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot J Linn Soc. 2016;181:1–20.
Funamoto D. Pollination biology of a rare serpentine plant, Japonolirion osense (Petrosaviaceae). Nord J Bot. 2023. 10.1111/njb.04121.
Yamato M, Ogura-Tsujita Y, Takahashi H, Yukawa T. Significant difference in mycorrhizal specificity between an autotrophic and its sister mycoheterotrophic plant species of Petrosaviaceae. J Plant Res. 2014;127:685–93. PubMed
Cameron KM, Chase MW, Rudall Cameron PJ. Recircumscription of the monocotyledonous family Petrosaviaceae to include Japonolirion. Brittonia. 2003;55:214–25.
Nuraliev MS, Sokoloff DD, Averyanov LV, Remizowa MV. How many species are there in the monocot order Petrosaviales? Synonymization of Petrosavia amamiensis with P. Sakuraii. Phytotaxa. 2022;548:277–87.
Tobe H. Embryology of Japonolirion (Petrosaviaceae, Petrosaviales): a comparison with other monocots. J Plant Res. 2008;121:407–16. PubMed
Lallemand F, Martin-Magniette ML, Gilard F, Gakière B, Launay-Avon A, Delannoy É, et al. In situ transcriptomic and metabolomic study of the loss of photosynthesis in the leaves of mixotrophic plants exploiting fungi. Plant J. 2019;98:826–41. PubMed
Lallemand F, Logacheva M, Le Clainche I, Bérard A, Zheleznaia E, May M, et al. Thirteen New Plastid genomes from Mixotrophic and Autotrophic species provide insights into Heterotrophy Evolution in Neottieae Orchids. Genome Biol Evol. 2019;11:2457–67. PubMed PMC
Van Waes JM, Debergh PC, Waes V. In vitro germination of some western European orchids. Physiol Plant. 1986;67:253–61.
Figura T, Tylová E, Šoch J, Selosse M-A, Ponert J. In vitro axenic germination and cultivation of mixotrophic Pyroloideae (Ericaceae) and their post-germination ontogenetic development. Ann Bot. 2019;123:625–39. PubMed PMC
Ponert J, Figura T, Vosolsobě S, Lipavská H, Vohník M, Jersáková J. Asymbiotic germination of mature seeds and protocorm development of Pseudorchis albida (Orchidaceae) are inhibited by nitrates even at extremely low concentrations. Can J Bot. 2013;91:662–70.
Shapiro SS, Wilk MB. An analysis of variance test for normality (complete samples). Biometrika. 1965;52(3/4):591–611.
Bartlett M. Properties of sufficiency and statistical tests. Proc R Soc Lond Math Phys Sci. 1937;160:268–82.
Soukup A, Tylová E. Essential Methods of Plant Sample Preparation for Light Microscopy. In: Clifton NJ, editor. Methods im molecular biology. Totowa, NJ: Humana; 2014. pp. 1–23. PubMed
Gutmann M, von Aderkas P, Label P, Lelu M-A. Effects of abscisic acid on somatic embryo maturation of hybrid larch. J Exp Bot. 1996;47:1905–17.
Soukup A. Selected simple methods of plant cell wall histochemistry and staining for light microscopy. Plant Cell Morphogenesis: Methods Protocols. 2019:27–42. PubMed
Tillich M, Lehwark P, Pellizzer T, Ulbricht-Jones ES, Fischer A, Bock R, et al. GeSeq - Versatile and accurate annotation of organelle genomes. Nucleic Acids Res. 2017;45:W6–11. PubMed PMC
Graham SW, Lam VKY, Merckx VSFT. Plastomes on the edge: the evolutionary breakdown of mycoheterotroph plastid genomes. New Phytol. 2017;214:48–55. PubMed
Wicke S, Schneeweiss GM, dePamphilis CW, Müller KF, Quandt D. The evolution of the plastid chromosome in land plants: gene content, gene order, gene function. Plant Mol Biol. 2011;76:273–97. PubMed PMC
Bateman A, Martin MJ, Orchard S, Magrane M, Ahmad S, Alpi E, et al. UniProt: the Universal protein knowledgebase in 2023. Nucleic Acids Res. 2023;51:D523–31. PubMed PMC
Buell MF. Seed and Seedling of Acorus calamus. 1935.
Brundrett MC, Kendrick B, Peterson CA. Efficient lipid staining in Plant Material with Sudan Red 7B or Fluoral Yellow 088 in polyethylene glycol-glycerol. Biotech Histochem. 1991;66:111–6. PubMed
Tobe H, Takahashi H. Embryology of Petrosavia (Petrosaviaceae, Petrosaviales): evidence for the distinctness of the family from other monocots. J Plant Res. 2009;122:597–610. PubMed
Yeung EC. A perspective on orchid seed and protocorm development. Bot Stud. 2017;58:1–14. PubMed PMC
Eriksson O, Kainulainen K. The evolutionary ecology of dust seeds. Perspect Plant Ecol Evol Syst. 2011;13:73–87.
Martin JN. Botany for agricultural students. Wiley; 1919.
Leake J. The biology of myco-heterotrophic (‘saprophytic’) plants. New Phytol. 1994;127:171–216. PubMed
Penzig OAJ. Beiträge Zur Kenntniss Der Gattung Epirrhizanthes Bl. Ann Du Jardin Botanique De Buitenzorg. 1901;17:142–70.
Verkerke W. Ovules and seeds of the Polygalaceae. J Arnold Arboretum. 1985;66:353–94.
Gebauer G, Preiss K, Gebauer AC. Partial mycoheterotrophy is more widespread among orchids than previously assumed. New Phytol. 2016;211:11–5. PubMed
Gebauer G, Meyer M. 15 N and 13 C natural abundance of autotrophic and myco-heterotrophic orchids provides insight into nitrogen and carbon gain from fungal association. New Phytol. 2003;160:209–23. PubMed
Courty PE, Walder F, Boller T, Ineichen K, Wiemken A, Rousteau A, et al. Carbon and nitrogen metabolism in mycorrhizal networks and mycoheterotrophic plants of tropical forests: a stable isotope analysis. Plant Physiol. 2011;156:952–61. PubMed PMC
Murata-Kato S, Sato R, Abe S, Hashimoto Y, Yamagishi H, Yokoyama J, et al. Partial mycoheterotrophy in green plants forming Paris-type arbuscular mycorrhiza requires a thorough investigation. New Phytol. 2022;234:1112–8. PubMed
Merckx V, Stöckel M, Fleischmann A, Bruns TD, Gebauer G. 15 N and 13 C natural abundance of two mycoheterotrophic and a putative partially mycoheterotrophic species associated with arbuscular mycorrhizal fungi. New Phytol. 2010;188:590–6. PubMed
Matsuda Y, Yamaguchi Y, Matsuo N, Uesugi T, Ito J, Yagame T, et al. Communities of mycorrhizal fungi in different trophic types of Asiatic Pyrola Japonica Sensu lato (Ericaceae). J Plant Res. 2020;133:841–53. PubMed
May M, Jąkalski M, Novotná A, Dietel J, Ayasse M, Lallemand F, et al. Three-year pot culture of Epipactis helleborine reveals autotrophic survival, without mycorrhizal networks, in a mixotrophic species. Mycorrhiza. 2020;30:51–61. PubMed
Minasiewicz J, Zwolicki A, Figura T, Novotná A, Bocayuva MF, Jersáková J et al. Stoichiometry of carbon, nitrogen and phosphorus is closely linked to trophic modes in orchids. BMC Plant Biol. 2023;23. PubMed PMC
Mennes CB, Smets EF, Moses SN, Merckx VSFT. New insights in the long-debated evolutionary history of Triuridaceae (Pandanales). Mol Phylogenet Evol. 2013;69:994–1004. PubMed
Ramírez-Barahona S, Sauquet H, Magallón S. The delayed and geographically heterogeneous diversification of flowering plant families. Nat Ecol Evol. 2020;4:1232–8. PubMed