In vitro axenic germination and cultivation of mixotrophic Pyroloideae (Ericaceae) and their post-germination ontogenetic development
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30403767
PubMed Central
PMC6417480
DOI
10.1093/aob/mcy195
PII: 5164044
Knihovny.cz E-zdroje
- Klíčová slova
- Chimaphila, Moneses, Monotropa, Pyrola, in vitro culture, Ericaceae, convergent evolution, mixotrophy, orchid, protocorm, seed dormancy, seed germination,
- MeSH
- botanika metody MeSH
- Ericaceae anatomie a histologie růst a vývoj metabolismus MeSH
- klíčení * MeSH
- Pyrolaceae anatomie a histologie růst a vývoj metabolismus MeSH
- semena rostlinná růst a vývoj MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND AND AIMS: Pyroloids, forest sub-shrubs of the Ericaceae family, are an important model for their mixotrophic nutrition, which mixes carbon from photosynthesis and from their mycorrhizal fungi. They have medical uses but are difficult to cultivate ex situ; in particular, their dust seeds contain undifferentiated, few-celled embryos, whose germination is normally fully supported by fungal partners. Their germination and early ontogenesis thus remain elusive. METHODS: An optimized in vitro cultivation system of five representatives from the subfamily Pyroloideae was developed to study the strength of seed dormancy and the effect of different media and conditions (including light, gibberellins and soluble saccharides) on germination. The obtained plants were analysed for morphological, anatomical and histochemical development. KEY RESULTS: Thanks to this novel cultivation method, which breaks dormancy and achieved up to 100 % germination, leafy shoots were obtained in vitro for representatives of all pyroloid genera (Moneses, Orthilia, Pyrola and Chimaphila). In all cases, the first post-germination stage is an undifferentiated structure, from which a root meristem later emerges, well before formation of an adventive shoot. CONCLUSIONS: This cultivation method can be used for further research or for ex situ conservation of pyroloid species. After strong seed dormancy is broken, the tiny globular embryo of pyroloids germinates into an intermediary zone, which is functionally convergent with the protocorm of other plants with dust seeds such as orchids. Like the orchid protocorm, this intermediary zone produces a single meristem: however, unlike orchids, which produce a shoot meristem, pyroloids first generate a root meristem.
Department of Plant Taxonomy and Nature Conservation University of Gdańsk Wita Stwosza Gdańsk Poland
Zobrazit více v PubMed
Arditti J. 1967. Factors affecting the germination of orchid seeds. Botanical Review 33: 1–97.
Arditti J. 2008. Micropropagation of orchids, Vol. 1, 2nd edn. Chichester, UK: John Wiley and Sons.
Arditti J, Ghani A. 2000. Numerical and physical properties of orchid seeds and their biological implications. New Phytologist 145: 367–421. PubMed
Bartlett M. 1937. Properties of sufficiency and statistical tests. Proceedings of the Royal Society A: Mathematical and Physical Sciences 160: 268–282.
Bernard N. 1909. L’évolution dans la symbiose. Les Orchideés et leurs champignons commensaux. Annales des Sciences Naturelles Serie (Botanique) 9: 1–196.
Barsberg S, Rasmussen HN, Kodahl N. 2013. Composition of Cypripedium calceolus (Orchidaceae) seeds analyzed by attenuated total reflectance IR spectroscopy: in search of understanding longevity in the ground. American Journal of Botany 100: 2066–2073. PubMed
Barsberg ST, Lee YI, Rasmussen HN. 2018. Development of C-lignin with G/S-lignin and lipids in orchid seed coats – an unexpected diversity exposed by ATR-FT-IR spectroscopy. Seed Science Research 28: 41–51.
Bobrov J. 2004. On the early stages of ontogenesis of Europaean Pyrolaceae species [in Russian]. Botaniceskij Zhurnal 89: 1342–1351.
Bobrov J. 2009. Grushankovye Rossii. Thesis, Vyatka State University of Humanities, Kirov, Russia.
Bobrov J. 2014. Zhiznennaya forma Moneses uniflora (Pyroloideae, Ericaceae). Vektor nauki Toľyattinskogo gosudarstvennogo universiteta 29: 21–29.
Brundrett MC, Kendrick B, Peterson CA. 1991. Efficient lipid staining in plant material with Sudan Red 7B or Fluoral Yellow 088 in polyethylene glycol–glycerol. Biotechnic & Histochemistry 66: 111–116. PubMed
Burgeff H. 1936. Samenkeimung der Orchideen und Entwicklung ihrer Keimpflanzen. Jena, Germany: Verlag von Gustav Fisher.
Byng JW, Chase MW, CHristenhusz MJM, et al. . 2016. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society 181: 1–20.
Christoph H. 1921. Untersuchungen über mykotrophen Verhältnisse der ‘Ericales’ und die Keimung von Pirolaceen. Beihefte Botanisches Centralblatt 38: 115–157.
Copeland HF. 1947. Observations on the structure and classification of the Pyroleae. Madroño 9: 65–102.
Dearnley JDW, Perotto D, Selosse M-A. 2016. Structure and development of orchid mycorrhizas, In: Martin, F, ed. Molecular mycorrhizal symbiosis. Berlin Heidelberg: Springer, 63–86.
Eriksson O, Kainulainen K. 2011. The evolutionary ecology of dust seeds. Perspectives in Plant Ecology, Evolution and Systematics 13: 73–87.
Francke H-L. 1934. Beiträge zur Kenntnis der Mykorrhiza von Monotropa hypopitys. Flora 129: 1–52.
Freudenstein JV, Broe MB, Feldenkris ER. 2016. Phylogenetic relationships at the base of ericaceae: implications for vegetative and mycorrhizal evolution. Taxon 65: 794–804.
Fürth P. 1920. Zur Biologie und Mikrochemie einiger Pirola-Arten. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften in Wien, Mathematish-Naturwissenschaftlige Klasse, Abteilung I 129: 559–587.
Goebel K. 1887. Outlines of classification and special morphology of plants. Oxford: Clarendon Press.
Goebel K. 1900. Organographie der Pflanzen Insbesondere der Archegoniaten und Samenpflanzen. Zweiter Teil. II Heft:Pteridophyten und Samenpflanzen. Jena, Germany: Verlag von Gustav Fischer.
Groot SPC, Karssen CMC. 1987. Gibberellins regulate seed germination in tomato by endosperm weakening: a study with gibberellin-deficient mutants. Planta 171: 525–531. PubMed
Groot S, Kieliszewska-Rokicka B, Vermeer E, Karssen CM. 1988. Gibberellin-induced hydrolysis of endosperm cell walls in gibberellin-deficient tomato seeds prior to radicle protrusion. Planta 174: 500–504. PubMed
Guo S, Xu J. 1990. Studies on the changes of cell ultrastructure in the course of seed germination of Bletilla striata under fungus infection conditions. Acta Botanica Sinica 32: 594–598.
Gutmann M, von Aderkas P, Label P, Lelu MA. 1996. Effects of abscisic acid on somatic embryo maturation of hybrid larch. Journal of Experimental Botany 47: 1905–1979.
Harley JL. 1959. The biology of mycorrhiza. London: Leonard Hill.
Harrison CR. 1977. Ultrastructural and histochemical changes during the germination of Cattleya aurantiaca (Orchidaceae). Botanical Gazette 138: 41–45.
Hashimoto Y, Fukukawa S, Kunishi A, et al. . 2012. Mycoheterotrophic germination of Pyrola asarifolia dust seeds reveals convergences with germination in orchids. New Phytologist 195: 620–630. PubMed
van der Heijden MGA, Martin FM, Selosse M-A, Sanders IR. 2015. Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytologist 205: 1406–1423. PubMed
Hofmeister W. 1858. Neuere Beobachtungen über Embryobildung der Phanerogamen. Jahrbücher für Wissenschaftliche Botanik 1: 82–188.
Holm T. 1898. Pyrola aphylla: a morphological study. Botanical Gazette 25: 246–254.
Hynson NA, Bruns TD. 2009. Evidence of a myco-heterotroph in the plant family Ericaceae that lacks mycorrhizal specificity. Proceedings of the Royal Society B: Biological Sciences 276: 4053–4059. PubMed PMC
Hynson NA, Madsen TP, Selosse M-A, et al. . 2013. a The physiological ecology of mycoheterotrophy In: Merckx, VSFT, ed. Mycoheterotrophy: the biology of plants living on fungi. New York: Springer New York, 297–342.
Hynson NA, Weiß M, Preiss K, Gebauer G, Treseder KK. 2013b Fungal host specificity is not a bottleneck for the germination of Pyroleae species (Ericaceae) in a Bavarian forest. Molecular Ecology 22: 1473–1481. PubMed
Imhof S. 2010. Are monocots particularly suited to develop mycoheterotrophy? In: Seberg O, Petersen G, Barfod A, Davis JI, eds. Diversity, phylogeny, and evolution in the monocotyledons. Aarhus, Denmark: Aarhus University Press, 11–23.
Imhof S, Sainge MN. 2008. Ontogeny of the mycoheterotrophic species Afrothismia hydra (Burmanniaceae). Botanical Journal of the Linnean Society 157: 31–36.
Imhof S, Massicotte H, Melville LH, Peterson R. 2013. Subterranean morphology and mycorrhizal structures In: Merckx, VSFT, ed. Mycoheterotrophy: the biology of plants living on fungi. New York: Springer, 157–214.
Irmish T. 1855. Bemerkungen über einige Pflanzen der deutschen Flora. Flora 13: 625–638.
Johansson VA, Bahram M, Tedersoo L, Kõljalg U, Eriksson O. 2017. Specificity of fungal associations of Pyroleae and Monotropa hypopitys during germination and seedling development. Molecular Ecology 26: 2591–2604. PubMed
Johansson VA, Eriksson O. 2013. Recruitment limitation, germination of dust seeds, and early development of underground seedlings in six Pyroleae species. Botany 91: 17–24.
Klimešová J. 2007. Root-sprouting in myco-heterotrophic plants: prepackaged symbioses or overcoming meristem limitation?New Phytologist 173: 8–10. PubMed
Knudson L. 1922. Nonsymbiotic germination of orchid seeds. Botanical Gazette 73: 1–25.
Kramer C. 1956. Extension of multiple range tests to group means with unequal numbers of replications. Biometrics 12: 307–310.
Kruskal WH, Wallis WA. 1952. Use of ranks in one-criterion variance analysis. Journal of the American Statistical Association 47: 583–621.
Kubeš M, Drážná N, Konrádová H, Lipavská H. 2014. Robust carbohydrate dynamics based on sucrose resynthesis in developing Norway spruce somatic embryos at variable sugar supply. In Vitro Cellular and Developmental Biology 50: 45–57.
Lallemand F, Gaudeul M, Lambourdière J, Matsuda Y, Hashimoto Y, Selosse MA. 2016. The elusive predisposition to mycoheterotrophy in Ericaceae. New Phytologist 212: 314–319. PubMed
Leake J. 1994. Tansley Review No. 69. The biology of myco‐heterotrophic (‘saprophytic’) plants. New Phytologist 127: 171–216. PubMed
Leroux G, Barabé D, Vieth J. 1997. Morphogenesis of the protocorm of Cypripedium acaule (Orchidaceae). Plant Systematics and Evolution 205: 53–72.
Leubner-Metzger G, Fründt C, Meins F. 1996. Effects of gibberellins, darkness and osmotica on endosperm rupture and class I β-1,3-glucanase induction in tobacco seed germination. Planta 199: 282–288.
Li Y-Y, Chen X-M, Guo S-X, Lee Y-I. 2016. Embryology of two mycoheterotrophic orchid species, Gastrodia elata and Gastrodia nantoensis: ovule and embryo development. Botanical Studies 57: 1–10. PubMed PMC
Lihnell D. 1942. Keimungsversuche mit Pyrolasamen. Symbolae Botanicae Upsalienses 6: 1–37.
Liu Z-W, Zhou J, Liu E-D, Peng H. 2010. A molecular phylogeny and a new classification of Pyrola (Pyroleae, Ericaceae). Taxon 59: 1690–1700.
Lück R. 1940. Zur Biologie der heimischen Pirola-arten. Schriften der Physikalisch-Ökonomischen Gesellschaft zu Königsberg 71: 300–334.
Lück R. 1941. Zur keimung der heimischen Pirola-Arten. Flora 135: 1–5.
Ma W-D, Zou Y-P, Wang P, et al. . 2014. Chimaphilin induces apoptosis in human breast cancer MCF-7 cells through a ROS-mediated mitochondrial pathway. Food and Chemical Toxicology 70: 1–8. PubMed
Malmgren S. 1993. Asymbiotisk fröförökning i stor skala av Anacamptis, Ophrys, Orchis och andra orkidéer med runda rotknölar, Svensk Botanisk Tidskrift 87: 221–234.
Malmgren S, Nyström H. 2018. Orchid propagation. http://www.lidaforsgarden.com/orchids/engelsk.htm
Manning J, Van Staden J. 1987. The development and mobilisation of seed reserves in some African orchids. Australian Journal of Botany 35: 343–353.
Matsuda Y, Shimizu S, Mori M, Ito S-I, Selosse M-A. 2012. Seasonal and environmental changes of mycorrhizal associations and heterotrophy levels in mixotrophic Pyrola japonica (Ericaceae) growing under different light environments. American Journal of Botany 99: 1177–1188. PubMed
Merckx VSFT. 2013. Mycoheterotrophy: the biology of plants living on fungi. New York: Springer.
Murashige T, Skoog F. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum 15: 473–497.
Nikolov LA, Davis CC. 2017. The big, the bad, and the beautiful: biology of the world’s largest flowers. Journal of Systematics and Evolution 55: 516–524.
Nikolov LA, Staedler YM, Manickam S, et al. . 2014. Floral structure and development in Rafflesiaceae with emphasis on their exceptional gynoecia. American Journal of Botany 101: 225–243. PubMed
Olson AR. 1993. Patterns of embryo and endosperm formation in Monotropa hypopitys (Monotropaceae) from North America and Western Sweden. American Journal of Botany 80: 839–846.
Pedroza-Manrique J, Fernandez-Lizarazo C, Suarez-Silva A. 2005. Evaluation of the effect of three growth regulators in the germination of Comparettia falcata seeds under in vitro conditions. In Vitro Cellular & Developmental Biology - Plant 41: 838–843.
Pierce S, Cerabolini BE. 2011. Asymbiotic germination of the White Mountain Orchid (Pseudorchis albida) from immature seed on media enriched with complex organics or phytohormones. Seed Science and Technology 39: 199–203.
Ponert J, Vosolsobě S, Kmecová K, Lipavská H. 2011. European orchid cultivation – from seed to mature plant. European Journal of Environmental Sciences 1: 95–107.
Ponert J, Figura T, Vosolsobě S, Lipavská H, Vohník M, Jersáková J. 2013. Asymbiotic germination of mature seeds and protocorm development of Pseudorchis albida (Orchidaceae) are inhibited by nitrates even at extremely low concentrations. Canadian Journal of Botany 91: 662–670.
Pyykkö M. 1968. Embryological and anatomical studies on Finnish species of the Pyrolaceae. Annales Botanici Fennici 5: 153–165.
R Core Team 2015. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
Rasmussen HN. 1990. Cell differentiation and mycorrhizal infection in Dactylorhiza majalis (Rchb. f.) Hunt & Summerh. (Orchidaceae) during germination in vitro. New Phytologist 116: 137–147.
Rasmussen HN. 1992. Seed dormancy patterns in Epipactis palustris (Orchidaceae): requirements for germination and establishment of mycorrhiza. Physiologia Plantarum 86: 161–167.
Rasmussen HN. 1995. Terrestrial orchids: from seed to mycotrophic plant. Cambridge: Cambridge University Press.
Richardson KA, Peterson RL, Currah RS. 1992. Seed reserves and early symbiotic protocorm development of Platanthera hyperborea (Orchidaceae). Canadian Journal of Botany 70: 291–300.
Selosse MA, Roy M. 2009. Green plants that feed on fungi: facts and questions about mixotrophy. Trends in Plant Science 14: 64–70. PubMed
Selosse M-A, Bocayuva MF, Kasuya MCM, Courty PE. 2016. Mixotrophy in mycorrhizal plants: extracting carbon from mycorrhizal networks. In: Martin, F, ed. Molecular mycorrhizal symbiosis. Chichester, UK: John Wiley and Sons, 451–471.
Shapiro SS, Wilk MB. 1965. An analysis of variance test for normality (complete samples). Biometrika 52: 591–611.
Shu K, Liu X, Xie Q, He Z. 2016. Two faces of one seed: hormonal regulation of dormancy and germination. Molecular Plant 9: 34–45. PubMed
Schuurink R, Sedee N, Wang M. 1992. Dormancy of the barley grain is correlated with gibberellic acid responsiveness of the isolated aleurone layer. Plant Physiology 100: 1834–1839. PubMed PMC
Smith SE, Read D. 2008. Mycorrhizal symbiosis. London: Academic Press.
Soukup A, Tylová E. 2014. Essential methods of plant sample preparation for light microscopy. Methods im Molecular Biology 1080: 1–23. PubMed
Steinbachová-Vojtíšková L, Tylová E, Soukup A, et al. . 2006. Influence of nutrient supply on growth, carbohydrate, and nitrogen metabolic relations in Typha angustifolia. Environmental and Experimental Botany 57: 246–257.
Takahashi H. 1993. Seed morphology and its systematic implications in Pyroloideae (Ericaceae). International Journal of Plant Sciences 154: 175–186.
Tedersoo L, Pellet P, Kõljalg U, Selosse MA. 2007. Parallel evolutionary paths to mycoheterotrophy in understorey Ericaceae and Orchidaceae: ecological evidence for mixotrophy in Pyroleae. Oecologia 151: 206–217. PubMed
Těšitel J, Těšitelová T, Minasiewicz J, Selosse M-A. 2018. Mixotrophy in land plants: why to stay green?Trends in Plant Science 23: 656–659. PubMed
Thomas TD. 2008. The role of activated charcoal in plant tissue culture. Biotechnology Advances 26: 618–631. PubMed
Tian M, Wang F. 1985. In vitro seed germination and developmental morphology of seedling in Cymbidium ensifolium. Acta Botanica Sinica 27: 455–459.
Treub M. 1890. Études sur les Lycopodiaceès. Annales du Jardin Botanique de Buitenzorg 1: 23–27.
Velenovský J. 1892. O biologii a morfologii rodu ‘Monesis’. Rozpravy Královskéčeské společnosti nauk, řada, matematicko-přírodovědná 11: 147–159.
Velenovský J. 1905. Über die Keimpflanzen der Pirolaceen. Bulletin International de l’Académie des Science de Bohéme 14: 6–12.
van Waes JM. 1985. Effect of activated charcoal on in vitro propagation of Western European orchids. Acta Horticulturae 212: 131–138.
van Waes JM, Debergh PC. 1986. In vitro germination of some Western European orchids. Physiologia Plantarum 67: 253–261.
Wang D, He F, Lv Z, Li D. 2014. Phytochemical composition, antioxidant activity and HPLC fingerprinting profiles of three Pyrola species from different regions. PLoS One 9: e96329. doi: 10.1371/journal.pone. 0096329. PubMed PMC
Yam TW, Yeung EC, Ye X-L, Zee S-Y, Arditti J. 2002. Orchid embryos. In: Kull T, Arditti J, eds. Orchid biology: reviews and perspectives, VIII. Dordrecht: Kluwer Academic Publisher, 287–385.
Yeung EC. 2017. A perspective on orchid seed and protocorm development. Botanical Studies 58: 1–14. PubMed PMC
Yeung EC, Law SK. 1992. Embryology of Calypso bulbosa. II. Embryo development. Canadian Journal of Botany 70: 461–468.
Zeng S, Zhang Y, Teixeira da Silva JA, Wu K, Zhang J, Duan J. 2014. Seed biology and in vitro seed germination of Cypripedium. Critical Reviews in Biotechnology 34: 358–371. PubMed