Parental origin of deletions and duplications - about the necessity to check for cryptic inversions

. 2018 ; 11 () : 20. [epub] 20180309

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29541160

BACKGROUND: Copy number variants (CNVs) are the genetic bases for microdeletion/ microduplication syndromes (MMSs). Couples with an affected child and desire to have further children are routinely tested for a potential parental origin of a specific CNV either by molecular karyotyping or by two color fluorescence in situ hybridization (FISH), yet. In the latter case a critical region probe (CRP) is combined with a control probe for identification of the chromosome in question. However, CNVs can arise also due to other reasons, like a recombination-event based on a submicroscopic, cryptic inversion in one of the parents. RESULTS: Seventy-four patients with different MMSs and overall 81 CNVs were studied here by a novel three color FISH approach. The way how three locus-specific probes are selected (one is the CRP and two are flanking it in a distance of 5-10 Mb) enables to detect or exclude two possible parental conditions as origins of the CNV seen in the index: (i) direct parental origin of the CNV (deletion or duplication) or (ii) a parental cryptic inversion. Thus, for overall 51/81 CNVs (63%) a parental origin could be determined. 36/51 (70.5%) inherited the CNV directly from one of the parents, but 15/51 (29.5%) were due to an exclusively by three color FISH detectable parental inversion. A 2:1 ratio of maternal versus paternal inheritance was found. Also almost two times more male than female were among the index patients. CONCLUSION: The new, here suggested three color FISH approach is suited for more comprehensive parental studies of patients with MMS. The detection rate for parental origin was increased by 140% in this study. Still, for 30/81 cases (37%) no reason for the 'de novo' MMS in the affected index patient could be found by the here suggested FISH-probe set.

Zobrazit více v PubMed

Liehr T. Benign & pathological chromosomal imbalances, 1st edition microscopic and submicroscopic copy number variations (CNVs) in genetics and counseling. New York: Academic Press; 2014.

Weise A, Mrasek K, Klein E, Mulatinho M, Llerena JC, Jr, Hardekopf D, et al. Microdeletion and microduplication syndromes. J Histochem Cytochem. 2012;60:346–358. doi: 10.1369/0022155412440001. PubMed DOI PMC

Priest JR, Girirajan S, Vu TH, Olson A, Eichler EE, Portman MA. Rare copy number variants in isolated sporadic and syndromic atrioventricular septal defects. Am J Med Genet A. 2012;158A:1279–1284. doi: 10.1002/ajmg.a.35315. PubMed DOI PMC

Database of genomic variants. http://dgv.tcag.ca/dgv/app/home. Assessed 18 Dec 2017.

Girirajan S, Dennis MY, Baker C, Malig M, Coe BP, Campbell CD, et al. Refinement and discovery of new hotspots of copy-number variation associated with autism spectrum disorder. Am J Hum Genet. 2013;92:221–237. doi: 10.1016/j.ajhg.2012.12.016. PubMed DOI PMC

Levinson G, Gutman GA. Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Mol Biol Evol. 1987;4:203–221. PubMed

Liu P, Carvalho CM, Hastings PJ, Lupski JR. Mechanisms for recurrent and complex human genomic rearrangements. Curr Opin Genet Dev. 2012;22:211–220. doi: 10.1016/j.gde.2012.02.012. PubMed DOI PMC

Arlt MF, Wilson TE, Glover TW. Replication stress and mechanisms of CNV formation. Curr Opin Genet Dev. 2012;22:204–210. doi: 10.1016/j.gde.2012.01.009. PubMed DOI PMC

Murakami T, Garcia CA, Reiter LT, Lupski JR. Charcot-Marie-Tooth disease and related inherited neuropathies. Medicine (Baltimore) 1996;75:233–250. doi: 10.1097/00005792-199609000-00001. PubMed DOI

Liehr T, Rautenstrauss B, Grehl H, Bathke KD, Ekici A, Rauch A, et al. Mosaicism for the Charcot-Marie-Tooth disease type 1A duplication suggests somatic reversion. Hum Genet. 1996;98:22–28. doi: 10.1007/s004390050154. PubMed DOI

Mkrtchyan H, Gross M, Hinreiner S, Polytiko A, Manvelyan M, Mrasek K, Kosyakova N, Ewers E, Nelle H, Liehr T, Bhatt S, Thoma K, Gebhart E, Wilhelm S, Fahsold R, Volleth M, Weise A. The human genome puzzle - the role of copy number variation in somatic mosaicism. Curr Genomics. 2010;11(6):426–431. doi: 10.2174/138920210793176047. PubMed DOI PMC

Girirajan S, Rosenfeld JA, Cooper GM, Antonacci F, Siswara P, Itsara A, et al. A recurrent 16p12.1 microdeletion supports a two-hit model for severe developmental delay. Nat Genet. 2010;42:203–209. doi: 10.1038/ng.534. PubMed DOI PMC

Gimelli G, Pujana MA, Patricelli MG, Russo S, Giardino D, Larizza L, et al. Genomic inversions of human chromosome 15q11-q13 in mothers of Angelman syndrome patients with class II (BP2/3) deletions. Hum Mol Genet. 2003;12:849–858. doi: 10.1093/hmg/ddg101. PubMed DOI

Morris CA, Mervis CB, Osborne LR. Frequency of the 7q11.23 inversion polymorphism in transmitting parents of children with Williams syndrome and in the general population does not differ between North America and Europe. Mol Cytogenet. 2011;4:7. doi: 10.1186/1755-8166-4-7. PubMed DOI PMC

Bhatt SS, Manvelyan M, Moradkhani K, Hunstig F, Mrasek K, Puechberty J, et al. Inverted segment size and the presence of recombination hot spot clusters matter in sperm segregation analysis. Cytogenet Genome Res. 2014;142:145–149. doi: 10.1159/000356142. PubMed DOI

Jensen M, Kooy RF, Simon TJ, Reyniers E, Girirajan S, Tassone F. A higher rare CNV burden in the genetic background potentially contributes to intellectual disability phenotypes in 22q11.2 deletion syndrome. Eur J Med Genet. 10.1016/j.ejmg.2017.11.016. PubMed PMC

Tan L, Bi B, Zhao P, Cai X, Wan C, Shao J, et al. Severe congenital microcephaly with 16p13.11 microdeletion combined with NDE1 mutation, a case report and literature review. BMC Med Genet. 2017;18:141. doi: 10.1186/s12881-017-0501-9. PubMed DOI PMC

Aguado C, Gayà-Vidal M, Villatoro S, Oliva M, Izquierdo D, Giner-Delgado C, Montalvo V, García-González J, Martínez-Fundichely A, Capilla L, Ruiz-Herrera A, Estivill X, Puig M, Cáceres M. Validation and genotyping of multiple human polymorphic inversions mediated by inverted repeats reveals a high degree of recurrence. PLoS Genet. 2014;10(3):e1004208. doi: 10.1371/journal.pgen.1004208. PubMed DOI PMC

Vicente-Salvador D, Puig M, Gayà-Vidal M, Pacheco S, Giner-Delgado C, Noguera I, Izquierdo D, Martínez-Fundichely A, Ruiz-Herrera A, Estivill X, Aguado C, Lucas-Lledó JI, Cáceres M. Detailed analysis of inversions predicted between two human genomes: errors, real polymorphisms, and their origin and population distribution. Hum Mol Genet. 2017;26(3):567–581. PubMed

Claussen U, Michel S, Mühlig P, Westermann M, Grummt UW, Kromeyer-Hauschild K, et al. Demystifying chromosome preparation and the implications for the concept of chromosome condensation during mitosis. Cytogenet Genome Res. 2002;98:136–146. doi: 10.1159/000069817. PubMed DOI

Weise A, Liehr T. Pre- and postnatal diagnostics and research on peripheral blood, bone marrow chorion, amniocytes, and fibroblasts. In: Liehr T, editor. Fluorescence in situ hybridization (FISH) – application guide. 2. Berlin: Springer; 2017. pp. 171–180.

Liehr T. Two- to three-color FISH. In: Liehr T, editor. Fluorescence in situ hybridization (FISH) – application guide. 2. Berlin: Springer; 2017. pp. 227–232.

Weise A, Gross M, Hinreiner S, Witthuhn V, Mkrtchyan H, Liehr T. POD-FISH: a new technique for parental origin determination based on copy number variation polymorphism. Methods Mol Biol. 2010;659:291–298. doi: 10.1007/978-1-60761-789-1_22. PubMed DOI

Liehr T. Homemade locus-specific FISH probes: bacterial artificial chromosomes. In: Liehr T, editor. Fluorescence in situ hybridization (FISH) – application guide. 2. Berlin: Springer; 2017. pp. 101–106.

Manolakos E, Vetro A, Kefalas K, Rapti SM, Louizou E, Garas A, et al. The use of array-CGH in a cohort of Greek children with developmental delay. Mol Cytogenet. 2010;3:22. doi: 10.1186/1755-8166-3-22. PubMed DOI PMC

Demaerel W, Hestand MS, Vergaelen E, Swillen A, López-Sánchez M, Pérez-Jurado LA, et al. Nested inversion polymorphisms predispose chromosome 22q11.2 to meiotic rearrangements. Am J Hum Genet. 2017;101(4):616–622. doi: 10.1016/j.ajhg.2017.09.002. PubMed DOI PMC

Fickelscher I, Starke H, Schulze E, Ernst G, Kosyakova N, Mkrtchyan H, MacDermont K, Sebire N, Liehr T. A further case with a small supernumerary marker chromosome (sSMC) derived from chromosome 1--evidence for high variability in mosaicism in different tissues of sSMC carriers. Prenat Diagn. 2007;27:783–785. doi: 10.1002/pd.1776. PubMed DOI

Kuroda Y, Ohashi I, Saito T, Nagai J, Ida K, Naruto T, Wada T, Kurosawa K. Deletion of UBE3A in brothers with Angelman syndrome at the breakpoint with an inversion at 15q11.2. Am J Med Genet A. 2014;164A:2873–2878. doi: 10.1002/ajmg.a.36704. PubMed DOI

Reiss R, Ahern D, Sandstrom M, Wilkins-Haug L. Recurrent enlarged nuchal translucency: first trimester presentation of a familial 15q26→qter deletion. Am J Med Genet A. 2015;167A:612–616. doi: 10.1002/ajmg.a.36913. PubMed DOI

Ting JC, Roberson ED, Miller ND, Lysholm-Bernacchi A, Stephan DA, Capone GT, et al. Visualization of uniparental inheritance, Mendelian inconsistencies, deletions, and parent of origin effects in single nucleotide polymorphism trio data with SNPtrio. Hum Mutat. 2007;28:1225–1235. doi: 10.1002/humu.20583. PubMed DOI

Liehr T. Cytogenetic contribution to uniparental disomy (UPD) Mol Cytogenet. 2010;3:8. doi: 10.1186/1755-8166-3-8. PubMed DOI PMC

Liehr T. Familial small supernumerary marker chromosomes are predominantly inherited via the maternal line. Genet Med. 2006;8:459–462. doi: 10.1097/00125817-200607000-00011. PubMed DOI

De Braekeleer M, Dao TN. Cytogenetic studies in male infertility: a review. Hum Reprod. 1991;6:245–250. doi: 10.1093/oxfordjournals.humrep.a137315. PubMed DOI

Morel F, Douet-Guilbert N, Le Bris MJ, Herry A, Amice V, Amice J, De Braekeleer M. Meiotic segregation of translocations during male gametogenesis. Int J Androl. 2004;27:200–212. doi: 10.1111/j.1365-2605.2004.00490.x. PubMed DOI

Huether CA, Martin RL, Stoppelman SM, D'Souza S, Bishop JK, Torfs CP, Lorey F, May KM, Hanna JS, Baird PA, Kelly JC. Sex ratios in fetuses and liveborn infants with autosomal aneuploidy. Am J Med Genet. 1996;63:492–500. doi: 10.1002/(SICI)1096-8628(19960614)63:3<492::AID-AJMG15>3.0.CO;2-H. PubMed DOI

Rinčić M, Iourov IY, Liehr T. Thoughts about SLC16A2, TSIX and XIST gene like sites in the human genome and a potential role in cellular chromosome counting. Mol Cytogenet. 2016;9:56. doi: 10.1186/s13039-016-0271-7. PubMed DOI PMC

Alves JM, Lima AC, Pais IA, Amir N, Celestino R, Piras G, et al. Reassessing the evolutionary history of the 17q21 inversion polymorphism. Genome Biol Evol. 2015;7:3239–3248. doi: 10.1093/gbe/evv214. PubMed DOI PMC

Nowakowska BA, de Leeuw N, Ruivenkamp CA, Sikkema-Raddatz B, Crolla JA, Thoelen R, Koopmans M, den Hollander N, van Haeringen A, van der Kevie-Kersemaekers AM, Pfundt R, Mieloo H, van Essen T, de Vries BB, Green A, Reardon W, Fryns JP, Vermeesch JR. Parental insertional balanced translocations are an important cause of apparently de novo CNVs in patients with developmental anomalies. Eur J Hum Genet. 2012;20:166–170. doi: 10.1038/ejhg.2011.157. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...