The clinical benefit of array-based comparative genomic hybridization for detection of copy number variants in Czech children with intellectual disability and developmental delay

. 2019 Jul 23 ; 12 (1) : 111. [epub] 20190723

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31337399
Odkazy

PubMed 31337399
PubMed Central PMC6651926
DOI 10.1186/s12920-019-0559-7
PII: 10.1186/s12920-019-0559-7
Knihovny.cz E-zdroje

BACKGROUND: Chromosomal microarray analysis has been shown to be a valuable and cost effective assay for elucidating copy number variants (CNVs) in children with intellectual disability and developmental delay (ID/DD). METHODS: In our study, we performed array-based comparative genomic hybridization (array-CGH) analysis using oligonucleotide-based platforms in 542 Czech patients with ID/DD, autism spectrum disorders and multiple congenital abnormalities. Prior to the array-CGH analysis, all the patients were first examined karyotypically using G-banding. The presence of CNVs and their putative derivation was confirmed using fluorescence in situ hybridization (FISH), multiplex ligation-dependent probe amplification (MLPA) and predominantly relative quantitative polymerase chain reaction (qPCR). RESULTS: In total, 5.9% (32/542) patients were positive for karyotypic abnormalities. Pathogenic/likely pathogenic CNVs were identified in 17.7% of them (96/542), variants of uncertain significance (VOUS) were detected in 4.8% (26/542) and likely benign CNVs in 9.2% of cases (50/542). We identified 6.6% (36/542) patients with known recurrent microdeletion (24 cases) and microduplication (12 cases) syndromes, as well as 4.8% (26/542) patients with non-recurrent rare microdeletions (21 cases) and microduplications (5 cases). In the group of patients with submicroscopic pathogenic/likely pathogenic CNVs (13.3%; 68/510) we identified 91.2% (62/68) patients with one CNV, 5.9% (4/68) patients with two likely independent CNVs and 2.9% (2/68) patients with two CNVs resulting from cryptic unbalanced translocations. Of all detected CNVs, 21% (31/147) had a de novo origin, 51% (75/147) were inherited and 28% (41/147) of unknown origin. In our cohort pathogenic/likely pathogenic microdeletions were more frequent than microduplications (69%; 51/74 vs. 31%; 23/74) ranging in size from 0.395 Mb to 10.676 Mb (microdeletions) and 0.544 Mb to 8.156 Mb (microduplications), but their sizes were not significantly different (P = 0.83). The pathogenic/likely pathogenic CNVs (median 2.663 Mb) were significantly larger than benign CNVs (median 0.394 Mb) (P < 0.00001) and likewise the pathogenic/likely pathogenic CNVs (median 2.663 Mb) were significantly larger in size than VOUS (median 0.469 Mb) (P < 0.00001). CONCLUSIONS: Our results confirm the benefit of array-CGH in the current clinical genetic diagnostics leading to identification of the genetic cause of ID/DD in affected children.

Zobrazit více v PubMed

Tassé MJ, Luckasson R, Nygren M. AAIDD proposed recommendations for ICD–11 and the condition previously known as mental retardation. Intellect Dev Disabil. 2013;51(2):127–131. doi: 10.1352/1934-9556-51.2.127. PubMed DOI

Michelson DJ, Shevell MI, Sherr EH, Moeschler JB, Gropman AL, Ashwal S. Evidence report: genetic and metabolic testing on children with global developmental delay: report of the quality standards Subcommittee of the American Academy of neurology and the practice Committee of the Child Neurology Society. Neurology. 2011;77(17):1629–1635. doi: 10.1212/WNL.0b013e3182345896. PubMed DOI

Kaufmann L, Ayub M, Vincent JB. The genetic basis of non-syndromic intellectual disability: a review. J Neurodev Disord. 2010;2(4):182–209. doi: 10.1007/s11689-010-9055-2. PubMed DOI PMC

Karam SM, Riegel M, Segal SL, Félix TM, Barros AJ, Santos IS, et al. Genetic causes of intellectual disability in a birth cohort: a population-based study. Am J Med Genet. 2015;167(6):1204–1244. doi: 10.1002/ajmg.a.37011. PubMed DOI PMC

Iwase S, Bérubé NG, Zhou Z, Kasri NN, Battaglioli E, Scandaglia M, et al. Epigenetic etiology of intellectual disability. J Neurosci. 2017;37(45):10773–10782. doi: 10.1523/JNEUROSCI.1840-17.2017. PubMed DOI PMC

Weise A, Mrasek K, Klein E, Mulatinho M, Llerena JC, Jr, Hardenkopf D, et al. Microdeletion and microduplication syndromes. J Histochem Cytochem. 2012;60(5):346–358. doi: 10.1369/0022155412440001. PubMed DOI PMC

Watson CT, Marques-Bonet T, Sharp AJ, Mefford HC. The genetics of microdeletion and microduplication syndromes: an update. Annu Rev Genomics Hum Genet. 2014;15:215–244. doi: 10.1146/annurev-genom-091212-153408. PubMed DOI PMC

Hastings PJ, Lupski JR, Rosenberg SM, Ira G. Mechanisms of change in gene copy number. Nat Rev Genet. 2009;10(8):551–564. doi: 10.1038/nrg2593. PubMed DOI PMC

Lee JA, Carvalho CM, Lupski JR. A DNA replication mechanism for generating nonrecurrent rearrangements associated with genomic disorders. Cell. 2007;131(7):1235–1247. doi: 10.1016/j.cell.2007.11.037. PubMed DOI

Zhang F, Khajavi M, Connolly AM, Towne CF, Batish SD, Lupski JR. The DNA replication FoSTeS/MMBIR mechanism can generate genomic, genic and exonic complex rearrangements in humans. Nat Genet. 2009;41(7):849–853. doi: 10.1038/ng.399. PubMed DOI PMC

Di Gregorio E, Savin E, Biamino E, Belligni EF, Naretto VG, D'Alessandro G, et al. Large cryptic genomic rearrangements with apparently normal karyotypes detected by array-CGH. Mol Cytogenet. 2014;7(1):82. doi: 10.1186/s13039-014-0082-7. PubMed DOI PMC

Miller DT, Adam MP, Aradhya S, Biesecker LG, Brothman AR, Carter NP, et al. Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital abnormalities. Am J Hum Genet. 2010;86(5):749–764. doi: 10.1016/j.ajhg.2010.04.006. PubMed DOI PMC

Battaglia A, Doccini V, Bernardini L, Novelli A, Loddo S, Capalbo A, et al. Confirmation of chromosomal microarray as a first-tier clinical diagnostic test for individuals with developmental delay, intellectual disability, autism spectrum disorders and dysmorphic features. Eur J Paediatr Neurol. 2013;17(6):589–599. doi: 10.1016/j.ejpn.2013.04.010. PubMed DOI

de Leeuw N, Dijkhuizen T, Hehir-Kwa JY, Carter NP, Feuk L, Firth HV, et al. Diagnostic interpretation of array data using public databases and internet sources. Hum Mutat. 2012;33(6):930–940. doi: 10.1002/humu.22049. PubMed DOI PMC

Nowakowska B. Clinical interpretation of copy number variants in the human genome. J Appl Genet. 2017;58(4):449–457. doi: 10.1007/s13353-017-0407-4. PubMed DOI PMC

Buysse K, Delle Chiaie B, Van Coster R, Loeys B, De Paepe A, Mortier G, et al. Challenges for CNV interpretation in clinical molecular karyotyping: lessons learned from a 1001 sample experience. Eur J Med Genet. 2009;52(5):398–403. doi: 10.1016/j.ejmg.2009.09.002. PubMed DOI

Hills A, Ahn JW, Donaghue C, Thomas H, Mann K, Ogilvie CM. MLPA for confirmation of array CGH results and determination of inheritance. Mol Cytogenet. 2010;3:19. doi: 10.1186/1755-8166-3-19. PubMed DOI PMC

Kang SH, Shaw C, Ou Z, Eng PA, Cooper ML, Pursley AN, et al. Insertional translocation detected using FISH confirmation of array-comparative genomic hybridization (aCGH) results. Am J Med Genet A. 2010;152A(5):1111–1126. doi: 10.1002/ajmg.a.33278. PubMed DOI PMC

Wester U, Bondeson ML, Edeby C, Anneren G. Clinical and molecular characterization of individuals with 18p deletion: a genotype-phenotype correlation. Am J Med Genet A. 2006;140(11):1164–1171. doi: 10.1002/ajmg.a.31260. PubMed DOI

D’Arrigo S, Gavazzi F, Alfei E, Zuffardi O, Montomoli C, Corso B, et al. The diagnostic yield of array comparative genomic hybridization is high regardless of severity of intellectual disability/developmental delay in children. J Child Neurol. 2016;31(6):691–699. doi: 10.1177/0883073815613562. PubMed DOI

Carreira IM, Ferreira SI, Matoso E, Pires LM, Ferrão J, Jardim A, et al. Copy number variants prioritization after array-CGH analysis - a cohort of 1000 patients. Mol Cytogenet. 2015;8:103. doi: 10.1186/s13039-015-0202-z. PubMed DOI PMC

Hochstenbach R, van Binsbergen E, Engelen J, Nieuwint A, Polstra A, Poddighe P, et al. Array analysis and karyotyping: workflow consequences based on a retrospective study of 36,325 patients with idiopathic developmental delay in the Netherlands. Eur J Med Genet. 2009;52(4):161–169. doi: 10.1016/j.ejmg.2009.03.015. PubMed DOI

Sansović I, Ivankov AM, Bobinec A, Kero M, Barišić I. Chromosomal microarrays in clinical diagnosis: a study of 337 patients with congenital anomalies and developmental delays or intellectual disability. Croat Med J. 2017;58(3):231–238. doi: 10.3325/cmj.2017.58.231. PubMed DOI PMC

De Vries BB, Pfundt R, Leisink M, Koolen DA, Vissers LE, Janssen IM, et al. Diagnostic genome profiling in mental retardation. Am J Hum Genet. 2005;77(4):606–616. doi: 10.1086/491719. PubMed DOI PMC

Veltman JA, Brunner HG. Understanding variable expressivity in microdeletion syndromes. Nat Genet. 2010;42(3):192–193. doi: 10.1038/ng0310-192. PubMed DOI

Rosenfeld JA, Coe BP, Eichler EE, Cuckle H, Shaffer LG. Estimates of penetrance for recurrent pathogenic copy-number variations. Genet Med. 2013;15(6):478–481. doi: 10.1038/gim.2012.164. PubMed DOI PMC

Chen CP, Lin SP, Lee CL, Chern SR, Wu PS, Chen YN, et al. Familial transmission of recurrent 15q11.2 (BP1-BP2) microdeletion encompassing NIPA1, NIPA2, CYFIP1, and TUBGCP5 associated with phenotypic variability in developmental, speech, and motor delay. Taiwan J Obstet Gynecol. 2017;56(1):93–97. doi: 10.1016/j.tjog.2016.12.002. PubMed DOI

Girirajan S, Rosenfeld JA, Cooper GM, Antonacci F, Siswara P, Itsara A, et al. A recurrent 16p12.1 microdeletion supports a two-hit model for severe developmental delay. Nat Genet. 2010;42(3):203–209. doi: 10.1038/ng.534. PubMed DOI PMC

Wilfert AB, Sulovaru A, Turner TN, Coe BP, Eichler EE. Recurrent de novo mutations in neurodevelopmental disorders: properties and clinical implications. Genome Med. 2017;9(1):101. doi: 10.1186/s13073-017-0498-x. PubMed DOI PMC

Depaepe V, Suarez-Gonzales N, Dufour A, Passante L, Gorski JA, Jones KR, et al. Ephrin signalling controls brain size by regulation apoptosis of neural progenitors. Nature. 2005;435(7046):1244–1250. doi: 10.1038/nature03651. PubMed DOI

Traylor RN, Fan Z, Hudson B, Rosenfeld JA, Shaffer LG, Torchia BS, et al. Microdeletion of 6q16.1 encompassing EPHA7 in a child with mild neurological abnormalities and dysmorphic features: case report. Mol Cytogenet. 2009;2:17. doi: 10.1186/1755-8166-2-17. PubMed DOI PMC

Rice AM, McLysaght A. Dosage sensitivity is a major determinant of human copy number variant pathogenicity. Nat Commun. 2017;8:14366. doi: 10.1038/ncomms14366. PubMed DOI PMC

Conrad B, Antonarakis SE. Gene duplication: a drive for phenotypic diversity and cause of human disease. Annu Rev Genomics Hum Genet. 2007;8:17–35. doi: 10.1146/annurev.genom.8.021307.110233. PubMed DOI

Stankiewicz P, Pursley AN, Cheung SW. Challenges in clinical interpretation of microduplications detected by array CGH analysis. Am J Med Genet. 2010;152A(5):1089–1100. doi: 10.1002/ajmg.a.33216. PubMed DOI

Fan YS, Quyang X, Peng J, Sacharow S, Tekin M, Barbouth D, et al. Frequent detection of parental consanguinity in children with developmental disorders by a combined CGH and SNP microarray. Mol Cytogenet. 2013;6(1):38. doi: 10.1186/1755-8166-6-38. PubMed DOI PMC

Wiszniewska J, Bi W, Shaw C, Stankiewicz P, Kang SH, Pursley AN, et al. Combined array CGH plus SNP genome analysis in a single assay for optimized clinical testing. Eur J Hum Genet. 2014;22(1):79–87. doi: 10.1038/ejhg.2013.77. PubMed DOI PMC

Woodley MA, Bell E. Consanguinity as a major predictor of levels of democracy: a study of 70 nations. J Cross Cult Psychol. 2012;44(2):263–80.

Giorgio E, Ciolfi A, Biamino E, Caputo V, Di Gregorio E, Belligni EF, et al. Whole exome sequencing is necessary to clarify ID/DD cases with de novo copy number variants of uncertain significance: two proof-of-concept examples. Am J Hum Genet A. 2016;170(7):1772–1779. PubMed

Erzurumluoglu AM, Shihab HA, Rodriguez S, Gaunt TR, Day IN. Importance of genetic studies in consanguineous populations for the characterization of novel human gene functions. Ann Hum Genet. 2016;80(3):187–196. doi: 10.1111/ahg.12150. PubMed DOI PMC

Silva M, de Leeuw N, Mann K, Schuring-Blom H, Morgan S, Giardino D, et al. European guidelines for constitutional cytogenomic analysis. Eur J Hum Genet. 2019;27(1):1–16. doi: 10.1038/s41431-018-0244-x. PubMed DOI PMC

Vermeesch JR, Brady PD, Sanlaville D, Kok K, Hastings RJ. Genome-wide arrays: quality criteria and platforms to be used in routine diagnostics. Hum Mutat. 2012;33(6):906–915. doi: 10.1002/humu.22076. PubMed DOI

Manning M. Hudgins L; professional practice and guidelines committee. Array-based technology and recommendation for utilization in medical genetics practice for detection of chromosomal abnormalities. Genet Med. 2010;12(11):742–745. doi: 10.1097/GIM.0b013e3181f8baad. PubMed DOI PMC

Liehr T, Schreyer I, Kuechler A, Manolakos E, Singer S, Dufke A, et al. Parental origin of deletions and duplications – about the necessity to check for cryptic inversions. Mol Cytogenet. 2018;11:20. doi: 10.1186/s13039-018-0369-1. PubMed DOI PMC

Kirchhoff M, Bisgaard AM, Bryndorf T, Gerdes T. MLPA analysis for a panel of syndromes with mental retardation reveals imbalances in 5.8% of patients with mental retardation and dysmorphic features, including duplications of the Sotos syndrome and Williams-Beuren syndrome regions. Eur J Med Genet. 2007;50(1):33–42. doi: 10.1016/j.ejmg.2006.10.002. PubMed DOI

Hehir-Kwa JY, Pfundt R, Veltman JA. Exome sequencing and whole genome sequencing for the detection of copy number variation. Expert Rev Mol Diagn. 2015;15(8):1023–1032. doi: 10.1586/14737159.2015.1053467. PubMed DOI

Wayhelova M, Oppelt J, Smetana J, Hladilkova E, Filkova H, Makaturova E, et al. Novel de novo frameshift variant in the ASXL3 gene in a child with microcephaly and global developmental delay. Mol Med Rep. 2019;20(1):505–512. PubMed PMC

Kolesnikov N, Hastings E, Keays M, Melnichuk O, Tang YA, Williams E, et al. ArrayExpress update--simplifying data submissions. Nucleic Acids Res. 2015;43(D1):D1113–D1116. doi: 10.1093/nar/gku1057. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Exome sequencing improves the molecular diagnostics of paediatric unexplained neurodevelopmental disorders

. 2024 Feb 06 ; 19 (1) : 41. [epub] 20240206

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...