Exome sequencing improves the molecular diagnostics of paediatric unexplained neurodevelopmental disorders

. 2024 Feb 06 ; 19 (1) : 41. [epub] 20240206

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38321498

Grantová podpora
NU20-07-00145 Ministerstvo Zdravotnictví Ceské Republiky

Odkazy

PubMed 38321498
PubMed Central PMC10845791
DOI 10.1186/s13023-024-03056-6
PII: 10.1186/s13023-024-03056-6
Knihovny.cz E-zdroje

BACKGROUND: Neurodevelopmental disorders (NDDs) and/or associated multiple congenital abnormalities (MCAs) represent a genetically heterogeneous group of conditions with an adverse prognosis for the quality of intellectual and social abilities and common daily functioning. The rapid development of exome sequencing (ES) techniques, together with trio-based analysis, nowadays leads to up to 50% diagnostic yield. Therefore, it is considered as the state-of-the-art approach in these diagnoses. RESULTS: In our study, we present the results of ES in a cohort of 85 families with 90 children with severe NDDs and MCAs. The interconnection of the in-house bioinformatic pipeline and a unique algorithm for variant prioritization resulted in a diagnostic yield of up to 48.9% (44/90), including rare and novel causative variants (41/90) and intragenic copy-number variations (CNVs) (3/90). Of the total number of 47 causative variants, 53.2% (25/47) were novel, highlighting the clinical benefit of ES for unexplained NDDs. Moreover, trio-based ES was verified as a reliable tool for the detection of rare CNVs, ranging from intragenic exon deletions (GRIN2A, ZC4H2 genes) to a 6-Mb duplication. The functional analysis using PANTHER Gene Ontology confirmed the involvement of genes with causative variants in a wide spectrum of developmental processes and molecular pathways, which form essential structural and functional components of the central nervous system. CONCLUSION: Taken together, we present one of the first ES studies of this scale from the central European region. Based on the high diagnostic yield for paediatric NDDs in this study, 48.9%, we confirm trio-based ES as an effective and reliable first-tier diagnostic test in the genetic evaluation of children with NDDs.

Zobrazit více v PubMed

Márquez-Caraveo M, Rodríguez-Valentín R, Pérez-Barrón V, Vázquez-Salas R, Sánchez-Ferrer J, De Castro F, et al. Children and adolescents with neurodevelopmental disorders show cognitive heterogeneity and require a person-centered approach. Sci Rep. 2021;11:18463. doi: 10.1038/s41598-021-97551-6. PubMed DOI PMC

Miller D, Adam M, Aradhya S, Biesecker L, Brothman A, Carter N, et al. Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet. 2010;86:749–764. doi: 10.1016/j.ajhg.2010.04.006. PubMed DOI PMC

Ravel J, Renaud M, Muller J, Becker A, Renard É, Remen T, et al. Clinical utility of periodic reinterpretation of CNVs of uncertain significance: an 8-year retrospective study. Genome Med. 2023;15:39. doi: 10.1186/s13073-023-01191-6. PubMed DOI PMC

Carter M, Srour M, Au P, Buhas D, Dyack S, Eaton A, et al. Genetic and metabolic investigations for neurodevelopmental disorders: position statement of the Canadian College of Medical Geneticists (CCMG) J Med Genet. 2023;60:523–532. doi: 10.1136/jmg-2022-108962. PubMed DOI PMC

Kochinke K, Zweier C, Nijhof B, Fenckova M, Cizek P, Honti F, et al. Systematic phenomics analysis deconvolutes genes mutated in intellectual disability into biologically coherent modules. Am J Hum Genet. 2016;98:149–164. doi: 10.1016/j.ajhg.2015.11.024. PubMed DOI PMC

Basu S, Kollu R, Banerjee-Basu S. AutDB: a gene reference resource for autism research. Nucleic Acids Res. 2009;37:D832–D836. doi: 10.1093/nar/gkn835. PubMed DOI PMC

McCarthy S, Gillis J, Kramer M, Lihm J, Yoon S, Berstein Y, et al. De novo mutations in schizophrenia implicate chromatin remodeling and support a genetic overlap with autism and intellectual disability. Mol Psychiatry. 2014;19:652–658. doi: 10.1038/mp.2014.29. PubMed DOI PMC

Du X, Gao X, Liu X, Shen L, Wang K, Fan Y, et al. Genetic diagnostic evaluation of trio-based whole exome sequencing among children with diagnosed or suspected autism spectrum disorder. Front Genet. 2018;9:594. doi: 10.3389/fgene.2018.00594. PubMed DOI PMC

Hu X, Guo R, Guo J, Qi Z, Li W, Hao C. Parallel tests of whole exome sequencing and copy number variant sequencing increase the diagnosis yields of rare pediatric disorders. Front Genet. 2020;11:473. doi: 10.3389/fgene.2020.00473. PubMed DOI PMC

Testard Q, Vanhoye X, Yauy K, Naud M, Vieville G, Rousseau F, et al. Exome sequencing as a first-tier test for copy number variant detection: retrospective evaluation and prospective screening in 2418 cases. J Med Genet. 2022;59:1234–1240. doi: 10.1136/jmg-2022-108439. PubMed DOI

Manickam K, McClain M, Demmer L, Biswas S, Kearney H, Malinowski J, et al. Exome and genome sequencing for pediatric patients with congenital anomalies or intellectual disability: an evidence-based clinical guideline of the American College of Medical Genetics and Genomics (ACMG) Genet Med. 2021;23:2029–2037. doi: 10.1038/s41436-021-01242-6. PubMed DOI

Monies D, Goljan E, Binmanee A, Alashwal A, Alsonbul A, Alhussaini A, et al. The clinical utility of rapid exome sequencing in a consanguineous population. Genome Med. 2023;15:44. doi: 10.1186/s13073-023-01192-5. PubMed DOI PMC

Molina-Ramírez L, Kyle C, Ellingford J, Wright R, Taylor A, Bhaskar S, et al. Personalised virtual gene panels reduce interpretation workload and maintain diagnostic rates of proband-only clinical exome sequencing for rare disorders. J Med Genet. 2022;59:393–398. doi: 10.1136/jmedgenet-2020-107303. PubMed DOI PMC

Kopanos C, Tsiolkas V, Kouris A, Chapple C, Albarca Aguilera M, Meyer R, et al. VarSome: the human genomic variant search engine. Bioinformatics. 2019;35:1978–1980. doi: 10.1093/bioinformatics/bty897. PubMed DOI PMC

Miller D, Lee K, Abul-Husn N, Amendola L, Brothers K, Chung W, et al. ACMG SF v3.2 list for reporting of secondary findings in clinical exome and genome sequencing: A policy statement of the American College of Medical Genetics and Genomics (ACMG) Genet Med. 2023;25:100866. doi: 10.1016/j.gim.2023.100866. PubMed DOI PMC

Wayhelova M, Vallova V, Broz P, Mikulasova A, Machackova D, Filkova H, et al. A unique case of Bloom syndrome with a combination of genetic hits: A lesson from trio-based exome sequencing. Mol Med Rep. 2023;27:110. doi: 10.3892/mmr.2023.12997. PubMed DOI PMC

Srivastava S, Love-Nichols J, Dies K, Ledbetter D, Martin C, Chung W, et al. Meta-analysis and multidisciplinary consensus statement: exome sequencing is a first-tier clinical diagnostic test for individuals with neurodevelopmental disorders. Genet Med. 2019;21:2413–2421. doi: 10.1038/s41436-019-0554-6. PubMed DOI PMC

Marchuk D, Crooks K, Strande N, Kaiser-Rogers K, Milko L, Brandt A, et al. Increasing the diagnostic yield of exome sequencing by copy number variant analysis. PLoS ONE. 2018;13:e0209185. doi: 10.1371/journal.pone.0209185. PubMed DOI PMC

Gao C, Wang X, Mei S, Li D, Duan J, Zhang P, et al. Diagnostic yields of Trio-WES accompanied by CNVseq for rare neurodevelopmental disorders. Front Genet. 2019;10:485. doi: 10.3389/fgene.2019.00485. PubMed DOI PMC

Mi H, Muruganujan A, Casagrande J, Thomas P. Large-scale gene function analysis with the PANTHER classification system. Nat Protoc. 2013;8:1551–1566. doi: 10.1038/nprot.2013.092. PubMed DOI PMC

Brea-Fernández A, Álvarez-Barona M, Amigo J, Tubío-Fungueiriño M, Caamaño P, Fernández-Prieto M, et al. Trio-based exome sequencing reveals a high rate of the de novo variants in intellectual disability. Eur J Hum Genet. 2022;30:938–945. doi: 10.1038/s41431-022-01087-w. PubMed DOI PMC

Pagel K, Pejaver V, Lin G, Nam H, Mort M, Cooper D, et al. When loss-of-function is loss of function: assessing mutational signatures and impact of loss-of-function genetic variants. Bioinformatics. 2017;33:i389–i398. doi: 10.1093/bioinformatics/btx272. PubMed DOI PMC

Parenti I, Rabaneda L, Schoen H, Novarino G. Neurodevelopmental disorders: from genetics to functional pathways. Trends Neurosci. 2020;43:608–621. doi: 10.1016/j.tins.2020.05.004. PubMed DOI

Veraksa A, Del Campo M, McGinnis W. Developmental patterning genes and their conserved functions: from model organisms to humans. Mol Genet Metab. 2000;69:85–100. doi: 10.1006/mgme.2000.2963. PubMed DOI

Coban-Akdemir Z, White J, Song X, Jhangiani S, Fatih J, Gambin T, et al. Identifying genes whose mutant transcripts cause dominant disease traits by potential gain-of-function alleles. Am J Hum Genet. 2018;103:171–187. doi: 10.1016/j.ajhg.2018.06.009. PubMed DOI PMC

Lindeboom R, Vermeulen M, Lehner B, Supek F. The impact of nonsense-mediated mRNA decay on genetic disease, gene editing and cancer immunotherapy. Nat Genet. 2019;51:1645–1651. doi: 10.1038/s41588-019-0517-5. PubMed DOI PMC

Lindeboom R, Supek F, Lehner B. The rules and impact of nonsense-mediated mRNA decay in human cancers. Nat Genet. 2016;48:1112–1118. doi: 10.1038/ng.3664. PubMed DOI PMC

Zug R. Developmental disorders caused by haploinsufficiency of transcriptional regulators: a perspective based on cell fate determination. Biol Open. 2022;11:bio058896. doi: 10.1242/bio.058896. PubMed DOI PMC

Desmet F, Hamroun D, Lalande M, Collod-Béroud G, Claustres M, Béroud C. Human splicing finder: an online bioinformatics tool to predict splicing signals. Nucleic Acids Res. 2009;37:e67. doi: 10.1093/nar/gkp215. PubMed DOI PMC

Jaganathan K, Kyriazopoulou Panagiotopoulou S, McRae J, Darbandi S, Knowles D, Li Y, et al. Predicting splicing from primary sequence with deep learning. Cell. 2019;176:535–548. doi: 10.1016/j.cell.2018.12.015. PubMed DOI

Steinhaus R, Proft S, Schuelke M, Cooper D, Schwarz J, Seelow D. MutationTaster2021. Nucleic Acids Res. 2021;49:W446–W451. doi: 10.1093/nar/gkab266. PubMed DOI PMC

Deignan J, Chung W, Kearney H, Monaghan K, Rehder C, Chao E. Points to consider in the reevaluation and reanalysis of genomic test results: a statement of the American College of Medical Genetics and Genomics (ACMG) Genet Med. 2019;21:1267–1270. doi: 10.1038/s41436-019-0478-1. PubMed DOI PMC

Lynch M, Maloney K, Pollin T, Streeten E, Xu H, Shuldiner A, et al. The burden of pathogenic variants in clinically actionable genes in a founder population. Am J Med Genet. 2021;185:3476–3484. doi: 10.1002/ajmg.a.62472. PubMed DOI

Xiang J, Ding Y, Yang F, Gao A, Zhang W, Tang H, et al. Genetic analysis of children with unexplained developmental delay and/or intellectual disability by whole-exome sequencing. Front Genet. 2021;12:738561. doi: 10.3389/fgene.2021.738561. PubMed DOI PMC

Retterer K, Scuffins J, Schmidt D, Lewis R, Pineda-Alvarez D, Stafford A, et al. Assessing copy number from exome sequencing and exome array CGH based on CNV spectrum in a large clinical cohort. Genet Med. 2015;17:623–629. doi: 10.1038/gim.2014.160. PubMed DOI

Prasad A, Sdano M, Vanzo R, Mowery-Rushton P, Serrano M, Hensel C, et al. Clinical utility of exome sequencing in individuals with large homozygous regions detected by chromosomal microarray analysis. BMC Med Genet. 2018;19:46. doi: 10.1186/s12881-018-0555-3. PubMed DOI PMC

Matalonga L, Laurie S, Papakonstantinou A, Piscia D, Mereu E, Bullich G, et al. Improved diagnosis of rare disease patients through systematic detection of runs of homozygosity. J Mol Diagn. 2020;22:1205–1215. doi: 10.1016/j.jmoldx.2020.06.008. PubMed DOI PMC

Domogala D, Gambin T, Zemet R, Wu C, Schulze K, Yang Y, et al. Detection of low-level parental somatic mosaicism for clinically relevant SNVs and indels identified in a large exome sequencing dataset. Hum Genom. 2021;15:72. doi: 10.1186/s40246-021-00369-6. PubMed DOI PMC

Gambin T, Liu Q, Karolak J, Grochowski C, Xie N, Wu L, et al. Low-level parental somatic mosaic SNVs in exomes from a large cohort of trios with diverse suspected Mendelian conditions. Genet Med. 2020;22:1768–1776. doi: 10.1038/s41436-020-0897-z. PubMed DOI PMC

Tran Mau-Them F, Duffourd Y, Vitobello A, Bruel A, Denommé-Pichon A, Nambot S, et al. Interest of exome sequencing trio-like strategy based on pooled parental DNA for diagnosis and translational research in rare diseases. Mol Genet Genom Med. 2021;9:e1836. doi: 10.1002/mgg3.1836. PubMed DOI PMC

Silva M, de Leeuw N, Mann K, Schuring-Blom H, Morgan S, Giardino D, et al. European guidelines for constitutional cytogenomic analysis. Eur J Hum Genet. 2019;27:1–16. doi: 10.1038/s41431-018-0244-x. PubMed DOI PMC

Wayhelova M, Smetana J, Vallova V, Hladilkova E, Filkova H, Hanakova M, et al. The clinical benefit of array-based comparative genomic hybridization for detection of copy number variants in Czech children with intellectual disability and developmental delay. BMC Med Genom. 2019;12:111. doi: 10.1186/s12920-019-0559-7. PubMed DOI PMC

Wayhelova M, Vallova V, Broz P, Mikulasova A, Loubalova D, Filkova H, et al. Novel de novo pathogenic variant in the GNAI1 gene as a cause of severe disorders of intellectual development. J Hum Genet. 2022;67:209–214. doi: 10.1038/s10038-021-00988-w. PubMed DOI

Smetana J, Vallova V, Wayhelova M, Hladilkova E, Filkova H, Horinova V, et al. Case report: contiguous Xq22.3 deletion associated with ATS-ID syndrome. Front Genet. 2021;12:750110. doi: 10.3389/fgene.2021.750110. PubMed DOI PMC

Szklarczyk D, Gable A, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47:D607–D613. doi: 10.1093/nar/gky1131. PubMed DOI PMC

Ma L, Chung W. Quantitative analysis of copy number variants based on real-time lightcycler PCR. Curr Protoc Hum Genet. 2014;80:7–21. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...