Case Report: Contiguous Xq22.3 Deletion Associated with ATS-ID Syndrome: From Genotype to Further Delineation of the Phenotype

. 2021 ; 12 () : 750110. [epub] 20211029

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu kazuistiky, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34777475

Alport syndrome with intellectual disability (ATS-ID, AMME complex; OMIM #300194) is an X-linked contiguous gene deletion syndrome associated with an Xq22.3 locus mainly characterized by hematuria, renal failure, hearing loss/deafness, neurodevelopmental disorder (NDD), midface retrusion, and elliptocytosis. It is thought that ATS-ID is caused by the loss of function of COL4A5 (ATS) and FACL4 (ACSL4) genes through the interstitial (micro)deletion of chromosomal band Xq22.3. We report detailed phenotypic description and results from genome-wide screening of a Czech family with diagnosis ATS-ID (proband, maternal uncle, and two female carriers). Female carriers showed mild clinical features of microscopic hematuria only, while affected males displayed several novel clinical features associated with ATS-ID. Utilization of whole-exome sequencing discovered the presence of approximately 3 Mb of deletion in the Xq23 area, which affected 19 genes from TSC22D3 to CHRDL1. We compared the clinical phenotype with previously reported three ATS-ID families worldwide and correlated their clinical manifestations with the incidence of genes in both telomeric and centromeric regions of the deleted chromosomal area. In addition to previously described phenotypes associated with aberrations in AMMECR1 and FACL4, we identified two genes, members of tripartite motif family MID2 and subunit of the proteasome PA700/19S complex (PSMD10), respectively, as prime candidate genes responsible for additional clinical features observed in our patients with ATS-ID. Overall, our findings further improve the knowledge about the clinical impact of Xq23 deletions and bring novel information about phenotype/genotype association of this chromosomal aberration.

Zobrazit více v PubMed

Andreoletti G., Seaby E. G., Dewing J. M., O'Kelly I., Lachlan K., Gilbert R. D., et al. (2017). AMMECR1: a Single point Mutation Causes Developmental Delay, Midface Hypoplasia and Elliptocytosis. J. Med. Genet. 54 (4), 269–277. 10.1136/jmedgenet-2016-104100 PubMed DOI PMC

Basel-Vanagaite L., Pillar N., Isakov O., Smirin-Yosef P., Lagovsky I., Orenstein N., et al. (2017). X-linked Elliptocytosis with Impaired Growth Is Related to Mutated AMMECR1. Gene 606, 47–52. 10.1016/j.gene.2017.01.001 PubMed DOI

Bhat S. S., Schmidt K. R., Ladd S., Kim K. C., Schwartz C. E., Simensen R. J., et al. (2006). Disruption of DMD and Deletion of ACSL4 Causing Developmental Delay, Hypotonia, and Multiple Congenital Anomalies. Cytogenet. Genome Res. 112 (1-2), 170–175. 10.1159/000087531 PubMed DOI

Buchner G., Montini E., Andolfi G., Quaderi N., Cainarca S., Messali S., et al. (1999). MID2, a Homologue of the Opitz Syndrome Gene MID1: Similarities in Subcellular Localization and Differences in Expression during Development. Hum. Mol. Genet. 8 (8), 1397–1407. 10.1093/hmg/8.8.1397 PubMed DOI

Chattopadhyay A., O’Connor C. J., Zhang F., Galvagnion C., Galloway W. R. J. D., Tan Y. S., et al. (2016). Discovery of a Small-Molecule Binder of the Oncoprotein Gankyrin that Modulates Gankyrin Activity in the Cell. Sci. Rep. 6, 23732. 10.1038/srep23732 PubMed DOI PMC

Checler F., Alves da Costa C., Ancolio K., Chevallier N., Lopez-Perez E., Marambaud P. (2000). Role of the Proteasome in Alzheimer's Disease. Biochim. Biophys. Acta (Bba) - Mol. Basis Dis. 1502 (1), 133–138. 10.1016/s0925-4439(00)00039-9 PubMed DOI

Dai Y., Liang S., Dong X., Zhao Y., Ren H., Guan Y., et al. (2019). Whole Exome Sequencing Identified a Novel DAG1 Mutation in a Patient with Rare, Mild and Late Age of Onset Muscular Dystrophy-Dystroglycanopathy. J. Cel Mol Med 23 (2), 811–818. 10.1111/jcmm.13979 PubMed DOI PMC

Ermolaeva M. A., Dakhovnik A., Schumacher B. (2015). Quality Control Mechanisms in Cellular and Systemic DNA Damage Responses. Ageing Res. Rev. 23 (Pt A), 3–11. 10.1016/j.arr.2014.12.009 PubMed DOI PMC

Gazou A., Riess A., Grasshoff U., Schäferhoff K., Bonin M., Jauch A., et al. (2013). Xq22.3-q23 Deletion includingACSL4in a Patient with Intellectual Disability. Am. J. Med. Genet. 161 (4), 860–864. 10.1002/ajmg.a.35778 PubMed DOI

Graham J. M., Jr., Schwartz C. E. (2013). MED12related Disorders. Am. J. Med. Genet. 161 (11), 2734–2740. 10.1002/ajmg.a.36183 PubMed DOI PMC

Han P., Wei G., Cai K., Xiang X., Deng W. P., Li Y. B., et al. (2020). Identification and Functional Characterization of Mutations in LPL Gene Causing Severe Hypertriglyceridaemia and Acute Pancreatitis. J. Cel Mol Med 24 (2), 1286–1299. 10.1111/jcmm.14768 PubMed DOI PMC

Hori T., Kato S., Saeki M., DeMartino G. N., Slaughter C. A., Takeuchi J., et al. (1998). cDNA Cloning and Functional Analysis of P28 (Nas6p) and p40.5 (Nas7p), Two Novel Regulatory Subunits of the 26S Proteasome. Gene 216 (1), 113–122. 10.1016/s0378-1119(98)00309-6 PubMed DOI

Inoue Y., Matsuura S., Yoshimura K., Iwashita Y., Kahyo T., Kawase A., et al. (2017). Characterization of V‐set and Immunoglobulin Domain Containing 1 Exerting a Tumor Suppressor Function in Gastric, Lung, and Esophageal Cancer Cells. Cancer Sci. 108 (8), 1701–1714. 10.1111/cas.13295 PubMed DOI PMC

Jehee F. S., Rosenberg C., Krepischi-Santos A. C., Kok F., Knijnenburg J., Froyen G., et al. (2005). An Xq22.3 Duplication Detected by Comparative Genomic Hybridization Microarray (Array-CGH) Defines a New Locus (FGS5) for FG Syndrome. Am. J. Med. Genet. 139A (3), 221–226. 10.1002/ajmg.a.30991 PubMed DOI

Jonsson J. J., Renieri A., Gallagher P. G., Kashtan C. E., Cherniske E. M., Bruttini M., et al. (1998). Alport Syndrome, Mental Retardation, Midface Hypoplasia, and Elliptocytosis: a New X Linked Contiguous Gene Deletion Syndrome? J. Med. Genet. 35 (4), 273–278. 10.1136/jmg.35.4.273 PubMed DOI PMC

Kashtan C. E., Ding J., Gregory M., Gross O., Heidet L., Knebelmann B., et al. (2013). Clinical Practice Recommendations for the Treatment of Alport Syndrome: a Statement of the Alport Syndrome Research Collaborative. Pediatr. Nephrol. 28 (1), 5–11. 10.1007/s00467-012-2138-4 PubMed DOI PMC

Lane W., Robson M., Lowry R. B., Leung A. K. (1994). X-linked Recessive Nephritis with Mental Retardation, Sensorineural Hearing Loss, and Macrocephaly. Clin. Genet. 45 (6), 314–317. 10.1111/j.1399-0004.1994.tb04039.x PubMed DOI

Lappalainen I., Almeida-King J., Kumanduri V., Senf A., Spalding J. D., ur-Rehman S., et al. (2015). The European Genome-Phenome Archive of Human Data Consented for Biomedical Research. Nat. Genet. 47 (7), 692–695. 10.1038/ng.3312 PubMed DOI PMC

Lee J., Nozu K., Choi D., Kang H., Ha I.-S., Cheong H. (2019). Features of Autosomal Recessive Alport Syndrome: A Systematic Review. J. Clin. Med. 8 (2), 178. 10.3390/jcm8020178 PubMed DOI PMC

Mathews K. D., Moore S. A. (2003). Limb-girdle Muscular Dystrophy. Curr. Neurol. Neurosci. Rep. 3 (1), 78–85. 10.1007/s11910-003-0042-9 PubMed DOI

Mayer R. J. (2003). From Neurodegeneration to Neurohomeostasis: the Role of Ubiquitin. Drug News Perspect. 16 (2), 103–108. 10.1358/dnp.2003.16.2.829327 PubMed DOI

Meloni I., Muscettola M., Raynaud M., Longo I., Bruttini M., Moizard M.-P., et al. (2002a). FACL4, Encoding Fatty Acid-CoA Ligase 4, Is Mutated in Nonspecific X-Linked Mental Retardation. Nat. Genet. 30 (4), 436–440. 10.1038/ng857 PubMed DOI

Meloni I., Vitelli F., Pucci L., Lowry R. B., Tonlorenzi R., Rossi E., et al. (2002b). Alport Syndrome and Mental Retardation: Clinical and Genetic Dissection of the Contiguous Gene Deletion Syndrome in Xq22.3 (ATS-MR). J. Med. Genet. 39 (5), 359–365. 10.1136/jmg.39.5.359 PubMed DOI PMC

Moysés-Oliveira M., Giannuzzi G., Fish R. J., Rosenfeld J. A., Petit F., Soares M. d. F., et al. (2018). Inactivation of AMMECR1 Is Associated with Growth, Bone, and Heart Alterations. Hum. Mutat. 39 (2), 281–291. 10.1002/humu.23373 PubMed DOI

Nozu K., Minamikawa S., Yamada S., Oka M., Yanagita M., Morisada N., et al. (2017). Characterization of Contiguous Gene Deletions in COL4A6 and COL4A5 in Alport Syndrome-Diffuse Leiomyomatosis. J. Hum. Genet. 62 (7), 733–735. 10.1038/jhg.2017.28 PubMed DOI

Oidovsambuu O., Nyamsuren G., Liu S., Göring W., Engel W., Adham I. M. (2011). Adhesion Protein VSIG1 Is Required for the Proper Differentiation of Glandular Gastric Epithelia. PLoS One 6 (10), e25908. 10.1371/journal.pone.0025908 PubMed DOI PMC

Piton A., Gauthier J., Hamdan F. F., Lafrenière R. G., Yang Y., Henrion E., et al. (2011). Systematic Resequencing of X-Chromosome Synaptic Genes in Autism Spectrum Disorder and Schizophrenia. Mol. Psychiatry 16 (8), 867–880. 10.1038/mp.2010.54 PubMed DOI PMC

Poreau B., Ramond F., Harbuz R., Satre V., Barro C., Vettier C., et al. (2019). Xq22.3q23 Microdeletion Harboring TMEM164 and AMMECR1 Genes: Two Case Reports Confirming a Recognizable Phenotype with Short Stature, Midface Hypoplasia, Intellectual Delay, and Elliptocytosis. Am. J. Med. Genet. 179 (4), 650–654. 10.1002/ajmg.a.61057 PubMed DOI

Quaderi N. A., Schweiger S., Gaudenz K., Franco B., Rugarli E. I., Berger W., et al. (1997). Opitz G/BBB Syndrome, a Defect of Midline Development, Is Due to Mutations in a New RING finger Gene on Xp22. Nat. Genet. 17 (3), 285–291. 10.1038/ng1197-285 PubMed DOI

Rodriguez J. D., Bhat S. S., Meloni I., Ladd S., Leslie N. D., Doyne E. O., et al. (2010). Intellectual Disability, Midface Hypoplasia, Facial Hypotonia, and Alport Syndrome Are Associated with a Deletion in Xq22.3. Am. J. Med. Genet. 152a (3), 713–717. 10.1002/ajmg.a.33208 PubMed DOI

Short K. M., Cox T. C. (2006). Subclassification of the RBCC/TRIM Superfamily Reveals a Novel Motif Necessary for Microtubule Binding. J. Biol. Chem. 281 (13), 8970–8980. 10.1074/jbc.M512755200 PubMed DOI

Wang P. J., McCarrey J. R., Yang F., Page D. C. (2001). An Abundance of X-Linked Genes Expressed in Spermatogonia. Nat. Genet. 27 (4), 422–426. 10.1038/86927 PubMed DOI

Zhang R., Chen S., Han P., Chen F., Kuang S., Meng Z., et al. (2020). Whole Exome Sequencing Identified a Homozygous Novel Variant in CEP290 Gene Causes Meckel Syndrome. J. Cel Mol Med 24 (2), 1906–1916. 10.1111/jcmm.14887 PubMed DOI PMC

Zheng Y., Xu J., Liang S., Lin D., Banerjee S. (2018). Whole Exome Sequencing Identified a Novel Heterozygous Mutation in HMBS Gene in a Chinese Patient with Acute Intermittent Porphyria with Rare Type of Mild Anemia. Front. Genet. 9, 129. 10.3389/fgene.2018.00129 PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Exome sequencing improves the molecular diagnostics of paediatric unexplained neurodevelopmental disorders

. 2024 Feb 06 ; 19 (1) : 41. [epub] 20240206

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...