The Change in Fatty Acids and Sugars Reveals the Association between Trifoliate Orange and Endophytic Fungi

. 2021 Aug 31 ; 7 (9) : . [epub] 20210831

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34575754

Grantová podpora
T201604 Plan in Scientific and Technological Innovation Team of Outstanding Young Scientists, Hubei Provincial Department of Education
RSP-2021/134 Researchers Supporting Project Number, King Saud University, Riyadh, Saudi Arabia

Endophytes have the ability to improve plant nutrition alongside their agronomic performance, among which arbuscular mycorrhizal fungi provide the most benefits to their host. Previously, we reported for the first time that an arbuscular mycorrhizal-like fungus Piriformospora indica had the ability to colonize roots of trifoliate orange (Poncirus trifoliata) and conferred positive effects on nutrient acquisition. Present study showed the changes in fatty acids and sugars to unravel the physiological and symbiotic association of trifoliate orange with P. indica and an arbuscular mycorrhizal fungus, Funneliformis mosseae singly or in combination. All the endophytic fungi collectively increased fructose, glucose, and sucrose content in leaves and roots, along with a relatively higher increase with P. indica inoculation than with F. mosseae alone or dual inoculation. Treatment with P. indica increased the concentration of part unsaturated fatty acids such as C18:3N6, C20:2, C20:3N6, C20:4N6, C20:3N3, C20:5N3, C22:1N9, and C24:1. Additionally, P. indica induced the increase in the concentration of part saturated fatty acids such as C6:0, C8:0, C13:0, C14:0, and C24:0. F. mosseae hardly changed the content of fatty acids, except for increase in C14:0 and C20:5N3. Double inoculation only reduced the C21:0, C10:0, C12:0, C18:3N3, and C18:1 content and increased the C20:5N3 content. These endophytic fungi up-regulated the root PtFAD2, PtFAD6, PtΔ9, and PtΔ15 gene expression level, coupled with a higher expression of PtFAD2 and PtΔ9 by P. indica than by F. mosseae. It was concluded that P. indica exhibited a stronger response, for sugars and fatty acids, than F. mosseae on trifoliate orange. Such results also reveal the Pi (an in vitro culturable fungus) as a bio-stimulator applying to citriculture.

Zobrazit více v PubMed

Knapp D.G., Imrefi I., Boldpurev E., Csikos S., Akhmetova G., Berek-Nagy P.J., Otgonsuren B., Kovacs G.M. Root-colonizing endophytic fungi of the dominant grass Stipa krylovii from a mongolian steppe grassland. Front. Microbiol. 2018;10:2565. doi: 10.3389/fmicb.2019.02565. PubMed DOI PMC

Hadacek F., Kraus G.F. Plant root carbohydrates affect growth behaviour of endophytic microfungi. FEMS Microbiol. Ecol. 2002;41:161–170. doi: 10.1111/j.1574-6941.2002.tb00977.x. PubMed DOI

Bonfante P. The future has roots in the past: The ideas and scientists that shaped mycorrhizal research. New Phytol. 2018;220:982–995. doi: 10.1111/nph.15397. PubMed DOI

Jiang Y.N., Wang W.X., Xie Q.J., Liu N., Liu L.X., Wang D.P., Wang E. Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. Science. 2017;356:1172–1175. doi: 10.1126/science.aam9970. PubMed DOI

Wu Q.S., He J.D., Srivastava A.K., Zou Y.N., Kuca K. Mycorrhizas enhance drought tolerance of citrus by altering root fatty acid compositions and their saturation levels. Tree Physiol. 2019;39:1149–1158. doi: 10.1093/treephys/tpz039. PubMed DOI

Wu Q.S., Srivastava A.K., Li Y. Effect of mycorrhizal symbiosis on growth behavior and carbohdyrate metabolism of trifoliate orange under different substrate P levels. J. Plant Growth Regul. 2015;34:495–508. doi: 10.1007/s00344-015-9485-x. DOI

Wu Q.S., Li G.H., Zou Y.N. Improvement of root system architecture in peach (Prunus persica) seedlings by arbuscular mycorrhizal fungi, related to allocation of glucose/sucrose to root. Not. Bot. Horti Agrobot. 2011;39:232–236. doi: 10.15835/nbha3926232. DOI

Meng L.L., He J.D., Zou Y.N., Wu Q.S., Kuča K. Mycorrhiza-released glomalin-related soil protein fractions contribute to soil total nitrogen in trifoliate orange. Plant Soil Environ. 2020;66:183–189. doi: 10.17221/100/2020-PSE. DOI

Lee Y., Johnson J.M., Chien C., Sun C., Cai D., Lou B.G., Oelmuller R., Yeh K. Growth promotion of Chinese cabbage and Arabidopsis by Piriformospora indica is not stimulated by mycelium-synthesized auxin. Mol. Plant-Microbe Interact. 2011;24:421–431. doi: 10.1094/MPMI-05-10-0110. PubMed DOI

Franken P. The plant strengthening root endophyte Piriformospora indica: Potential application and the biology behind. Appl. Microbiol. Biot. 2012;96:1455–1464. doi: 10.1007/s00253-012-4506-1. PubMed DOI PMC

Unnikumar K.R., Sree K.S., Varma A. Piriformospora indica: A versatile root endophytic symbiont. Symbiosis. 2013;60:107–113. doi: 10.1007/s13199-013-0246-y. DOI

Yang L., Cao J.L., Zou Y.N., Wu Q.S., Kuča K. Piriformospora indica: A root endophytic fungus and its roles in plants. Not. Bot. Horti Agrobot. 2020;48:1–13. doi: 10.15835/nbha48111761. DOI

Luginbuehl L.H., Menard G.N., Kurup S., van Erp H., Radhakrishnan G.V., Breakspear A., Oldroyd G.E.D., Eastmond P.J. Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant. Science. 2017;356:1175–1178. doi: 10.1126/science.aan0081. PubMed DOI

Sugiura Y., Akiyama R., Tanaka S., Yano K., Kameoka H., Marui S., Saito M., Kawaguchi M., Akiyama K., Saito K. Myristate can be used as a carbon and energy source for the asymbiotic growth of arbuscular mycorrhizal fungi. Proc. Natl. Acad. Sci. USA. 2020;117:25779–25788. doi: 10.1073/pnas.2006948117. PubMed DOI PMC

Hua M.D., Kumar R.S., Shyur L., Cheng B.Y., Tian Z.H., Oelmuller R., Yeh K. Metabolomic compounds identified in Piriformospora indica-colonized Chinese cabbage roots delineate symbiotic functions of the interaction. Sci. Rep. 2017;7:9291. doi: 10.1038/s41598-017-08715-2. PubMed DOI PMC

Wu Q.S., Srivastava A.K., Zou Y.N. AMF-induced tolerance to drought stress in citrus: A review. Sci. Hortic. 2013;164:77–87. doi: 10.1016/j.scienta.2013.09.010. DOI

Yang L., Zou Y.N., Tian Z.H., Wu Q.S., Kuča K. Effects of beneficial endophytic fungal inoculants on plant growth and nutrient absorption of trifoliate orange seedlings. Sci. Hortic. 2021;277:109815. doi: 10.1016/j.scienta.2020.109815. DOI

Phillips J.M., Hayman D.S. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc. 1970;55:158–161. doi: 10.1016/S0007-1536(70)80110-3. DOI

Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI

Liu Q., Xu J., Liu Y.Z., Zhao X.L., Deng X.X., Guo L.L., Gu J.Q. A novel bud mutation that confers abnormal patterns of lycopene accumulation in sweet orange fruit (Citrus sinensis L. Osbeck) J. Exp. Bot. 2007;58:4161–4171. doi: 10.1093/jxb/erm273. PubMed DOI

Deshmukh S., Hueckelhoven R., Schaefer P., Imani J., Sharma M., Weiss M., Waller F., Kogel K.H. The root endophytic fungus Piriformospora indica requires host cell death for proliferation during mutualistic symbiosis with barley. Proc. Natl. Acad. Sci. USA. 2006;103:18450–18457. doi: 10.1073/pnas.0605697103. PubMed DOI PMC

Bago B., Pfeffer P.E., Abubaker J., Jun J., Allen J., Brouillette J.N., Douds D., Lammers P., Shacharhill Y. Carbon export from arbuscular mycorrhizal roots involves the translocation of carbohydrate as well as lipid. Plant. Physiol. 2003;131:1496–1507. doi: 10.1104/pp.102.007765. PubMed DOI PMC

Schubert A., Allara P., Morte A. Cleavage of sucrose in roots of soybean (Glycine max) colonized by an arbuscular mycorrhizal fungus. New Phytol. 2004;161:495–501. doi: 10.1046/j.1469-8137.2003.00965.x. PubMed DOI

Baier M.C., Keck M., Godde V., Niehaus K., Kuster H., Hohnjec N. Knockdown of the symbiotic sucrose synthase MtSucS1 affects arbuscule maturation and maintenance in mycorrhizal roots of Medicago truncatula. Plant. Physiol. 2010;152:1000–1014. doi: 10.1104/pp.109.149898. PubMed DOI PMC

Roycewicz P., Malamy J.E. Dissecting the effects of nitrate, sucrose and osmotic potential on Arabidopsis root and shoot system growth in laboratory assays. Philos. Trans. R. Soc. B. 2012;367:1489–1500. doi: 10.1098/rstb.2011.0230. PubMed DOI PMC

Hu M.Y., Li H., Zhang Y. Photosynthesis and related physiological characteristics affected by exogenous glucose in wheat seedlings under water stress. Acta Agron. Sin. 2009;35:724–732. doi: 10.3724/SP.J.1006.2009.00724. DOI

Howe G., Schilmiller A.L. Oxylipin metabolism in response to stress. Curr. Opin. Plant. Biol. 2002;5:230–236. doi: 10.1016/S1369-5266(02)00250-9. PubMed DOI

Stumpe M., Carsjens J.G., Stenzel I., Gobel C., Lang I., Pawlowski K., Hause B., Feussner I. Lipid metabolism in arbuscular mycorrhizal roots of Medicago truncatula. Phytochemistry. 2005;66:781–791. doi: 10.1016/j.phytochem.2005.01.020. PubMed DOI

Shimizu S., Kawashima H., Shinmen Y., Akimoto K., Yamada H. Production of eicosapentaenoic acid by Mortierella fungi. J. Am. Oil Chem. Soc. 1988;65:1455–1459. doi: 10.1007/BF02898307. DOI

Cao F.L., Wang H.L., Yu W.W., Cheng H. Progress of research on fatty acid desaturase and their coding genes in higher plant. J. Nanjing For. Univ. 2012;36:125–132.

Dyer J.M., Mullen R.T. Immunocytological localization of two plant fatty acid desaturases in the endoplasmic reticulum. FEBS Lett. 2001;494:44–47. doi: 10.1016/S0014-5793(01)02315-8. PubMed DOI

Hildebrand D. Lipid Biosynthesis. In: Ashihara H., Crozier A., Komanine A., editors. Plant Metabolism and Biotechnolog. John Wiley & Sons, Ltd.; Chichester, UK: 2011. pp. 27–66.

Beilby J.P. Fatty acid and sterol composition of ungerminated spores of the vesicular-arbuscular mycorrhizal fungus, Acaulospora laevis. Lipids. 1980;15:949–952. doi: 10.1007/BF02534420. DOI

Cheeld H., Bhutada G., Beaudoin F., Eastmond P.J. DES2 is a fatty acid Δ11 desaturase capable of synthesizing palmitvaccenic acid in the arbuscular mycorrhizal fungus Rhizophagus irregularis. FEBS Lett. 2020;594:1770–1777. doi: 10.1002/1873-3468.13762. PubMed DOI PMC

Pfeffer P., Douds D., Bécard G., Shachar-Hill Y. Carbon uptake and the metabolism and transport of lipids in an arbuscular mycorrhiza. Plant. Physiol. 1999;120:587–598. doi: 10.1104/pp.120.2.587. PubMed DOI PMC

Kameoka H., Tsutsui I., Saito K., Kikuchi Y., Handa Y., Ezawa T., Hayashi H., Kawaguchi M., Akiyama K. Stimulation of asymbiotic sporulation in arbuscular mycorrhizal fungi by fatty acids. Nat. Microbiol. 2019;4:1654–1660. doi: 10.1038/s41564-019-0485-7. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...