East African cichlid lineages (Teleostei: Cichlidae) might be older than their ancient host lakes: new divergence estimates for the east African cichlid radiation

. 2019 Apr 25 ; 19 (1) : 94. [epub] 20190425

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31023223
Odkazy

PubMed 31023223
PubMed Central PMC6482553
DOI 10.1186/s12862-019-1417-0
PII: 10.1186/s12862-019-1417-0
Knihovny.cz E-zdroje

BACKGROUND: Cichlids are a prime model system in evolutionary research and several of the most prominent examples of adaptive radiations are found in the East African Lakes Tanganyika, Malawi and Victoria, all part of the East African cichlid radiation (EAR). In the past, great effort has been invested in reconstructing the evolutionary and biogeographic history of cichlids (Teleostei: Cichlidae). In this study, we present new divergence age estimates for the major cichlid lineages with the main focus on the EAR based on a dataset encompassing representative taxa of almost all recognized cichlid tribes and ten mitochondrial protein genes. We have thoroughly re-evaluated both fossil and geological calibration points, and we included the recently described fossil †Tugenchromis pickfordi in the cichlid divergence age estimates. RESULTS: Our results estimate the origin of the EAR to Late Eocene/Early Oligocene (28.71 Ma; 95% HPD: 24.43-33.15 Ma). More importantly divergence ages of the most recent common ancestor (MRCA) of several Tanganyika cichlid tribes were estimated to be substantially older than the oldest estimated maximum age of the Lake Tanganyika: Trematocarini (16.13 Ma, 95% HPD: 11.89-20.46 Ma), Bathybatini (20.62 Ma, 95% HPD: 16.88-25.34 Ma), Lamprologini (15.27 Ma; 95% HPD: 12.23-18.49 Ma). The divergence age of the crown haplochromine H-lineage is estimated to 22.8 Ma (95% HPD: 14.40-26.32 Ma) and of the Lake Malawi radiation to 4.07 Ma (95% HDP: 2.93-5.26 Ma). In addition, we recovered a novel lineage within the Lamprologini tribe encompassing only Lamprologus of the lower and central Congo drainage with its divergence estimated to the Late Miocene or early Pliocene. Furthermore we recovered two novel mitochondrial haplotype lineages within the Haplochromini tribe: 'Orthochromis' indermauri and 'Haplochormis' vanheusdeni. CONCLUSIONS: Divergence time estimates of the MRCA of several Tanganyika cichlid tribes predate the age of the extant Lake Tanganyika basin, and hence are in line with the recently formulated "Melting-Pot Tanganyika" hypothesis. The radiation of the 'Lower Congo Lamprologus clade' might be linked with the Pliocene origin of the modern lower Congo rapids as has been shown for other Lower Congo cichlid assemblages. Finally, the age of origin of the Lake Malawi cichlid flock agrees well with the oldest age estimate for lacustrine conditions in Lake Malawi.

Zobrazit více v PubMed

Kocher TD. Adaptive evolution and explosive speciation: the cichlid fish model. Nat Rev Genet. 2004;5:288–298. doi: 10.1038/nrg1316. PubMed DOI

Wagner CE, Harmon LJ, Seehausen O. Ecological opportunity and sexual selection together predict adaptive radiation. Nature. 2012;487:366–369. doi: 10.1038/nature11144. PubMed DOI

Santos ME, Braasch I, Boileau N, Meyer BS, Sauteur L, Bohne A, Belting HG, Affolter M, Salzburger W. The evolution of cichlid fish egg-spots is linked with a cis-regulatory change. Nat Commun. 2014;5:5149. doi: 10.1038/ncomms6149. PubMed DOI PMC

McGee MD, Faircloth BC, Borstein SR, Zheng J, Darrin Hulsey C, Wainwright PC, Alfaro ME. Replicated divergence in cichlid radiations mirrors a major vertebrate innovation. Proc R Soc B Biol Sci. 2016;283:20151413. doi: 10.1098/rspb.2015.1413. PubMed DOI PMC

Genner MJ, Seehausen O, Lunt DH, Joyce DA, Shaw PW, Carvalho GR, Turner GF. Age of cichlids: new dates for ancient lake fish radiations. Mol Biol Evol. 2007;24:1269–1282. doi: 10.1093/molbev/msm050. PubMed DOI

Azuma Y, Kumazawa Y, Miya M, Mabuchi K, Nishida M. Mitogenomic evaluation of the historical biogeography of cichlids toward reliable dating of teleostean divergences. BMC Evol Biol. 2008;8:215. doi: 10.1186/1471-2148-8-215. PubMed DOI PMC

Friedman M, Keck BP, Dornburg A, Eytan RI, Martin CH, Hulsey CD, Wainwright PC, Near TJ. Molecular and fossil evidence place the origin of cichlid fishes long after Gondwanan rifting. Proc R Soc B Biol Sci. 2013;280:20131733. doi: 10.1098/rspb.2013.1733. PubMed DOI PMC

McMahan CD, Chakrabarty P, Sparks JS, Smith WM, Davis MP. Temporal patterns of diversification across global cichlid biodiversity (Acanthomorpha: Cichlidae) PLoS One. 2013;8:e71162. doi: 10.1371/journal.pone.0071162. PubMed DOI PMC

Matschiner M, Musilová Z, Barth JMI, Starostova Z, Salzburger W, Steel M, Bouckaert R. Bayesian node dating based on probabilities of fossil sampling supports trans-Atlantic dispersal of cichlid fishes. Syst Biol. 2016;66:3–22. PubMed

Murray AM. Eocene cichlid fishes from Tanzania, East Africa. J Vertebr Paleontol. 2000;20:651–664. doi: 10.1671/0272-4634(2000)020[0651:ECFFTE]2.0.CO;2. DOI

Vences M, Freyhof J, Sonnenberg R, Kosuch J, Veith M. Reconciling fossils and molecules: Cenozoic divergence of cichlid fishes and the biogeography of Madagascar. J Biogeogr. 2001;28:1091–1099. doi: 10.1046/j.1365-2699.2001.00624.x. DOI

Sparks JS, Smith WL. Phylogeny and biogeography of cichlid fishes (Teleostei: Perciformes: Cichlidae) Cladistics. 2004;20:501–517. doi: 10.1111/j.1096-0031.2004.00038.x. PubMed DOI

López-Fernandez H, Arbour JH, Winemiller KO, Honeycutt RL. Testing for ancient adaptive radiations in neotropical cichlid fishes. Evolution. 2013;67:1321–1337. PubMed

Day JJ, Cotton JA, Barraclough TG. Tempo and mode of diversification of Lake Tanganyika cichlid fishes. PLoS One. 2008:3e1730. PubMed PMC

Koblmüller S, Schliewen UK, Duftner N, Sefc KM, Katongo C, Sturmbauer C. Age and spread of the haplochromine cichlid fishes in Africa. Mol Phylogenet Evol. 2008;49:153–169. doi: 10.1016/j.ympev.2008.05.045. PubMed DOI

Sturmbauer C, Baric S, Salzburger W, Rüber L, Verheyen E. Lake level fluctuations synchronize genetic divergences of cichlid fishes in African Lakes. Mol Biol Evol. 2001;18:144–154. doi: 10.1093/oxfordjournals.molbev.a003788. PubMed DOI

Weiss JD, Cotterill FP, Schliewen UK. Lake Tanganyika--a ‘melting pot’ of ancient and young cichlid lineages (Teleostei: Cichlidae)? PLoS One. 2015;10:e0125043. doi: 10.1371/journal.pone.0125043. PubMed DOI PMC

Cohen AS, Soreghan MJ, Scholz CA. Estimating the age of formation of lakes: an example from Lake Tanganyika, east African rift system. Geology. 1993;21:511–514. doi: 10.1130/0091-7613(1993)021<0511:ETAOFO>2.3.CO;2. DOI

Macgregor D. History of the development of the east African rift system: a series of interpreted maps through time. J Afr Earth Sci. 2015;101:232–252. doi: 10.1016/j.jafrearsci.2014.09.016. DOI

Bauer FU, Glasmacher UA, Ring U, Schumann A, Nagudi B. Thermal and exhumation history of the central Rwenzori Mountains, Western rift of the east African rift system, Uganda. Int J Earth Sci. 2010;99:1575–1597. doi: 10.1007/s00531-010-0549-7. DOI

Lezzar KE, Tiercelin JJ, Le Turdu C, Cohen AS, Reynolds DJ, Le Gall B. C.A. S. Control of normal fault interaction on the distribution of major Neogene sedimentary depocenters, Lake Tanganyika, East African rift. AAPG Bull. 2002;86:1027–1059.

Roller S, Hornung J, Hinderer M, Ssemmanda I. Middle Miocene to Pleistocene sedimentary record of rift evolution in the southern Albert rift (Uganda) Int J Earth Sci. 2010;99:1643–1661. doi: 10.1007/s00531-010-0560-z. DOI

Spiegel C, Kohn BP, Belton DX, Gleadow AJW. Morphotectonic evolution of the Central Kenya rift flanks: implications for late Cenozoic environmental change in East Africa. Geology. 2007;35:427. doi: 10.1130/G23108A.1. DOI

Delvaux D. Age of Lake Malawi (Nyasa) and water level fluctuations. Mus roy Afr cent, Tervuren (Belg), Dépt Géol Min. 1995;1995-1996:99–108.

Lyons RP, Scholz CA, Cohen AS, King JW, Brown ET, Ivory SJ, Johnson TC, Deino AL, Reinthal PN, McGlue MM, et al. Continuous 1.3-million-year record of east African hydroclimate, and implications for patterns of evolution and biodiversity. Proc Natl Acad Sci U S A. 2015;112:15568–15573. PubMed PMC

Meier JI, Marques DA, Mwaiko S, Wagner CE, Excoffier L, Seehausen O. Ancient hybridization fuels rapid cichlid fish adaptive radiations. Nat Commun. 2017;8:14363. doi: 10.1038/ncomms14363. PubMed DOI PMC

Cotterill FPD, De Wit MJ. Geoecodynamics and the Kalahari epeirogeny: linking its genomic record, tree of life and palimpsest into a unified narrative of landscape evolution. S Afr J Geol. 2011;114:493–518. doi: 10.2113/gssajg.114.3-4.489. DOI

Altner M, Schliewen UK, Penk SBR, Reichenbacher B. †Tugenchromis pickfordi, gen. Et sp. nov., from the upper Miocene—a stem-group cichlid of the ‘east African radiation’. J Vertebr Paleontol. 2017;37:e1297819. doi: 10.1080/02724634.2017.1297819. DOI

Matschiner Michael. Gondwanan vicariance or trans-Atlantic dispersal of cichlid fishes: a review of the molecular evidence. Hydrobiologia. 2018;832(1):9–37. doi: 10.1007/s10750-018-3686-9. DOI

Takahashi T. Systematics of Tanganyikan cichlid fishes (Teleostei: Perciformes) Ichthyol Res. 2003;50:367–382. doi: 10.1007/s10228-003-0181-7. DOI

Koblmüller S, Sefc KM, Sturmbauer C. The Lake Tanganyika cichlid species assemblage: recent advances in molecular phylogenetics. Hydrobiologia. 2008;615:5–20. doi: 10.1007/s10750-008-9552-4. DOI

Greenwood PH. Towards a phyletic classification of the `genus´ Haplochromis (Pisces, Cichlidae) and related taxa. Bull British Museum (Natural History) Zool. 1979;35:265–322.

Hoogerhoud RJC. A taxonomic reconsideration of the haplochromine genera Gaurochromis Greenwood, 1980 and Labrochromis Regan, 1920 (Pisces, Cichlidae) Netherlands J Zool. 1983;34:539–565. doi: 10.1163/002829684X00281. DOI

Schwarzer J, Swartz ER, Vreven E, Snoeks J, Cotterill FP, Misof B, Schliewen UK. Repeated trans-watershed hybridization among haplochromine cichlids (Cichlidae) was triggered by Neogene landscape evolution. Proc R Soc B Biol Sci. 2012;279:4389–4398. doi: 10.1098/rspb.2012.1667. PubMed DOI PMC

Schwarzer J, Misof B, Tautz D, Schliewen UK. The root of the east African cichlid radiations. BMC Evol Biol. 2009;9:186. doi: 10.1186/1471-2148-9-186. PubMed DOI PMC

Dunz AR, Schliewen UK. Molecular phylogeny and revised classification of the haplotilapiine cichlid fishes formerly referred to as “Tilapia”. Mol Phylogenet Evol. 2013;68:64–80. doi: 10.1016/j.ympev.2013.03.015. PubMed DOI

Salzburger W, Mack T, Verheyen E, Meyer A. Out of Tanganyika: genesis, explosive speciation, key-innovations and phylogeography of the haplochromine cichlid fishes. BMC Evol Biol. 2005;5:17. doi: 10.1186/1471-2148-5-17. PubMed DOI PMC

Koblmüller S, Duftner N, Katongo C, Phiri H, Sturmbauer C. Ancient divergence in bathypelagic lake tanganyika Deepwater cichlids: mitochondrial phylogeny of the tribe bathybatini. J Mol Evol. 2005;60:297–314. doi: 10.1007/s00239-004-0033-8. PubMed DOI

Musilová Z, Kalous L, Petrtyl M, Chaloupkova P. Cichlid fishes in the Angolan headwaters region: molecular evidence of the ichthyofaunal contact between the Cuanza and Okavango-Zambezi systems. PLoS One. 2013;8:e65047. doi: 10.1371/journal.pone.0065047. PubMed DOI PMC

Neumann D. Preservation of freshwater fishes in the field. Abc Taxa. 2010;8:587–632.

Kawaguchi A, Miya M, Nishida M. Complete mitochondrial DNA sequence of Aulopus japonicas (Telostei: Aulopiformes), a basal Eurypterygii: longer DNA sequences and higher-level relationships. Ichthyol Res. 2001;48:213–223. doi: 10.1007/s10228-001-8139-0. DOI

Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, et al. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–1649. doi: 10.1093/bioinformatics/bts199. PubMed DOI PMC

He A, Luo Y, Yang H, Liu L, Li S, Wang C. Complete mitochondrial DNA sequences of the Nile tilapia (Oreochromis niloticus) and blue tilapia (Oreochromis aureus): genome characterization and phylogeny applications. Mol Biol Rep. 2011;38:2015–2021. doi: 10.1007/s11033-010-0324-7. PubMed DOI

Swofford D. PAUP*: phylogenetic analysis using parsimony. Sunderland: Sinauer Associates; 2003.

Posada D. jModelTest: Phylogenetic Model Averaging. Mol Phylogenet Evol. 2008;25:1253–1256. doi: 10.1093/molbev/msn083. PubMed DOI

Stamatakis Alexandros. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30(9):1312–1313. doi: 10.1093/bioinformatics/btu033. PubMed DOI PMC

Miller MA, Pfeiffer W, Schwartz T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. New Orleans: Proceedings of the Gateway Computing Environments Workshop (GCE); 2010. pp. 1–8.

Drummond AJ, Rambaut A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol. 2007;7:1–214. doi: 10.1186/1471-2148-7-214. PubMed DOI PMC

Perez GA, Rican O, Orti G, Bermingham E, Doadrio I, Zardoya R. Phylogeny and biogeography of 91 species of heroine cichlids (Teleostei: Cichlidae) based on sequences of the cytochrome b gene. Mol Phylogenet Evol. 2007;43:91–110. doi: 10.1016/j.ympev.2006.08.012. PubMed DOI

Malabarba MC, Malabarba LR, del Papa C. Gymnogeophagus eocenicus (Perciformes: Cichlidae), an Eocene cichlid from the Lumbrera formation in Argentina. J Vertebr Paleontol. 2010;30:341–350. doi: 10.1080/02724631003618348. DOI

del Papa C, Kirschbaum A, Powell J, Brod A, Hongn F, Pimentel M. Sedimentological, geochemical and paleontological insights applied to continental omission surfaces: a new approach for reconstructing an eocene foreland basin in NW Argentina. J S Am Earth Sci. 2010;29:327–345. doi: 10.1016/j.jsames.2009.06.004. DOI

Musilová Z, Říčan O, Říčanová S, Janšta P, Gahura O, Novák J. Phylogeny and historical biogeography of trans-Andean cichlid fishes (Teleostei: Cichlidae) Vertebrate Zool. 2015;65:333–350.

Perez PA, Malabarba MC, del Papa C. A new genus and species of Heroini (Perciformes : Cichlidae) from the early Eocene of southern South America. Neotropical Ichthyology. 2010;8:631–642. doi: 10.1590/S1679-62252010000300008. DOI

López-Fernandez H, Winemiller KO, Honeycutt RL. Multilocus phylogeny and rapid radiations in Neotropical cichlid fishes (Perciformes: Cichlidae: Cichlinae) Mol Phylogenet Evol. 2010;55:1070–1086. doi: 10.1016/j.ympev.2010.02.020. PubMed DOI

Malabarba MC, Malabarba LR. A new cichlid, Tremembichthys garciae (Actinopterygii, Perciformes) from the Eocene - Oligocene of eastern Brazil. Revista Brasileira de Paleontologia. 2008;11:59–68. doi: 10.4072/rbp.2008.1.06. DOI

Oliveira MEB, Garcia MJ, Fernandes MCC. Folíolose grãos de pólen de Fabales na Formação Entre-Córregos, Paleógeno da bacia de Aiuruoca, sudeste de Minas Gerais, Brasil. Bahía Blanca: SIMPÓSIO ARGENTINO DE PALEOBOTÁNICA Y PALINOLOGIA, Resúmenes; 2006. pp. 1–81.

Garcia MJ, Santos M, Hasui Y. Palinologia da parte aflorante da Formação Entre-Córregos, Bacia de Aiuruoca, Terciário do Estado de Minas Gerais, Brasil. Revista Universidade Guarulhos. 2000;5:259.

Lima MR, Salard-Cheboldaeff M, Suguio K. Étude palynologique de la Formation Tremembé, Tertiaire du Bassin de Taubaté (État de São Paulo, Brasil), d’aprés lês echantillons du sondage n-42 du CNP. In: CSF DAC, Brito IM, C F, editors. Coletânea de Trabalhos Paleontológicos. Viana: DNPM; 1985. pp. 379–393.

Riccomini C, Sant’Anna LG, Ferrari AL. Evolução geológica do rift Continental do Sudeste do Brasil. In: Mantesso-Neto V, Bartorelli A, Carneiro CDR, Brito Neves BB, editors. Geologia do continente Sul-Americano: evolução da obra de Fernando Flávio de Almeida. SãoPaulo: Beca; 2004. p. 383–406.

Kullander SO. A phylogeny and classification of the South American Cichlid (Teleostei:Perciformes). In: Malabarba LR, Reis R, Vari RP, Lucena ZM, Lucena CA, editors. Phylogeny and Classification of Neotropical Fishes. Porto Alegre: Edipucrs; 1998. p. 461–498.

López-Fernandez H, Honeycutt RL, Stiassny MLJ, Winemiller KO. Morphology, molecules, and character congruence in the phylogeny of south American geophagine cichlids (Perciformes, Labroidei) Zool Scr. 2005;34:627–651. doi: 10.1111/j.1463-6409.2005.00209.x. DOI

Říčan O, Piálek L, Zardoya R, Doadrio I, Zrzavý J, Crame A. Biogeography of the Mesoamerican Cichlidae (Teleostei: Heroini): colonization through the GAARlandia land bridge and early diversification. J Biogeogr. 2013;40:579–593. doi: 10.1111/jbi.12023. DOI

Murray AM. The fossil record and biogeography of the Cichlidae (Actinopterygii: Labroidei) Biol J Linn Soc. 2001;74:517–532. doi: 10.1111/j.1095-8312.2001.tb01409.x. DOI

Harrison T, Msuya CP, Murray AM, Fine Jacobs B, Báez AM, Mundil R, Ludwig KR. Paleontological investigations at the Eocene locality of Mahenge in north-Central Tanzania, East Africa. In: Gunnel GF, editor. Eocene biodiversity: unusual occurrences and rarely sampled habitats. New York: Kluwar Academic–Plenum Publishers; 2001. pp. 39–74.

Murray AM. The Eocene cichlids (Perciformes: Labroidei) of Mahenge, Tanzania. Montreal: PhD thesis, McGill University; 2000.

Greenwood PH. The genera of pelmatochromine fishes (Teleostei, Cichlidae). A phylogenetic review. Bull British Museum (Natural History) Zool. 1987;53:139–203.

Schliewen UK, Stiassny ML. Etia nguti, a new genus and species of cichlid fish from the river Mamfue, upper Cross River basin in Cameroon, West-Central Africa. Ichthyological Explor Freshwaters. 2003;14:61–72.

Carnevale GLW, Sorbini C. Oreochromis lorenzoi, a new species of tilapiine cichlid from the late Miocene of Central Italy. J Vertebr Paleontol. 2003;23:508–516. doi: 10.1671/1858. DOI

Hilgen FJ, Krijgsman W, Langereis CG, Lourens LJ, Santarelli A, Zachariasse WJ. Extending the astronomical (polarity) time scale into the Miocene: earth planet. Earth Planet Sci Lett. 1995;136:495–510. doi: 10.1016/0012-821X(95)00207-S. DOI

Krijgsman W, Hilgen FJ, Marabini S, Vai GB. New palaeomagnetic and cyclostratigraphic age constraints on the Messinian of the northern Apennines (vena del Gesso Basin, Italy) Mem Soc Geol Ital. 1999;54:25–33.

Krijgsman W, Hilgen FJ, Raffi I, Sierro FJ, Wilson DS. Chronology, causes and progression of the Messinian salinity crisis. Letters to Nature. 1999;400:652–655. doi: 10.1038/23231. DOI

Trewavas E. Tilapiine fishes of the genera Sarotherodon, Oreochromis and Danakilia. London: British Museum of Natural History; 1983.

Pickford MHL. Geology, palaeoenvironments and vertebrate faunas of the mid- Miocene Ngoroa formation, Kenya. Geol Soc Lond, Spec Publ. 1978;6:237–262. doi: 10.1144/GSL.SP.1978.006.01.18. DOI

Rasmussen C, Reichenbacher B, Lenz O, Altner M, Penk SBR, Prieto J, BrÜSch D. Middle–late Miocene palaeoenvironments, palynological data and a fossil fish Lagerstätte from the Central Kenya rift (East Africa) Geol Mag. 2015;154:24–56. doi: 10.1017/S0016756815000849. DOI

Fine Jacobs Bonnie. Estimation of low-latitude paleoclimates using fossil angiosperm leaves: examples from the Miocene Tugen Hills, Kenya. Paleobiology. 2002;28(3):399–421. doi: 10.1666/0094-8373(2002)028<0399:EOLLPU>2.0.CO;2. DOI

Clabaut C, Salzburger W, Meyer A. Comparative phylogenetic analyses of the adaptive radiation of Lake Tanganyika cichlid fish: nuclear sequences are less homoplasious but also less informative than mitochondrial DNA. J Mol Ecol. 2005;61:666–681. doi: 10.1007/s00239-004-0217-2. PubMed DOI

Nishida M. Lake Tanganyika as an evolutionary reservoir of old lineages of east African cichlid fishes: inferences from allozyme data. Experientia. 1991;47:974–979. doi: 10.1007/BF01929896. DOI

Schliewen UK, Klee B. Reticulate sympatric speciation in Cameroonian crater lake cichlids. Front Zool. 2004;1:5. doi: 10.1186/1742-9994-1-5. PubMed DOI PMC

Schliewen UK, Tautz D, Pääbo S. Sympatric speciation suggested by monophyly of crater lake cichlids. Lett Nature. 1994;6472:629–632. doi: 10.1038/368629a0. PubMed DOI

Cornen G, Bandet Y, Giresse P, Maley J. The nature and chronostratigraphy of quaternary pyroplastic accumulations from Lake Barombi Mbo (West-Cameroon) J Volcanol Geotherm Res. 1992;51:367–374. doi: 10.1016/0377-0273(92)90108-P. DOI

Phillips MJ. Branch-length estimation bias misleads molecular dating for a vertebrate mitochondrial phylogeny. Gene. 2009;441:132–140. doi: 10.1016/j.gene.2008.08.017. PubMed DOI

Lukoschek V, Scott Keogh J, Avise JC. Evaluating fossil calibrations for dating phylogenies in light of rates of molecular evolution: a comparison of three approaches. Syst Biol. 2012;61:22–43. doi: 10.1093/sysbio/syr075. PubMed DOI

Hugall AF, Lee MS. Molecular claims of Gondwanan age for Australian agamid lizards are untenable. Mol Biol Evol. 2004;21:2102–2110. doi: 10.1093/molbev/msh219. PubMed DOI

Rambaut A, Suchard MA, Xie D, Drummond AJ. Tracer v1.6, Available from http://beast.bio.ed.ac.uk/Tracer. 2014.

Duchêne S, Lanfear R, Ho SY. The impact of calibration and clock-model choice on molecular estimates of divergence times. Mol Biol Evol. 2014;78:277–289. PubMed

Ho SY. The changing face of the molecular evolutionary clock. Trends Ecol Evol. 2014;29:496–503. doi: 10.1016/j.tree.2014.07.004. PubMed DOI

Ho SY, Larson G. Molecular clocks: when timesare a-changin’. Trends Genet. 2006;22:79–83. doi: 10.1016/j.tig.2005.11.006. PubMed DOI

Ho SY, Lanfear R, Bromham L, Phillips MJ, Soubrier J, Rodrigo AG, Cooper A. Time-dependent rates of molecular evolution. Mol Ecol. 2011;20:3087–3101. doi: 10.1111/j.1365-294X.2011.05178.x. PubMed DOI

Schwarzer J, Lamboj A, Langen K, Misof B, Schliewen UK. Phylogeny and age of chromidotilapiine cichlids (Teleostei: Cichlidae) Hydrobiologia. 2014;748:185–199. doi: 10.1007/s10750-014-1918-1. DOI

Salzburger W, Meyer A, Baric S, Verheyen E, Sturmbauer C. Phylogeny of the Lake Tanganyika cichlid species flock and its relationship to the central and east African haplochromine cichlid fish faunas. Syst Biol. 2002;51:113–135. doi: 10.1080/106351502753475907. PubMed DOI

Kocher TD, Conroy JA, McKaye KR, Stauffer JR, Lockwood SF. Evolution of NADH dehydrogenase subunit 2 in east African cichlid fish. Mol Phylogenet Evol. 1995;4:420–432. doi: 10.1006/mpev.1995.1039. PubMed DOI

Duftner N, Koblmuller S, Sturmbauer C. Evolutionary relationships of the limnochromini, a tribe of benthic Deepwater cichlid fish endemic to Lake Tanganyika, East Africa. J Mol Evol. 2005;60:277–289. doi: 10.1007/s00239-004-0017-8. PubMed DOI

Takahashi T, Sota T. A robust phylogeny among major lineages of the east African cichlids. Mol Phylogenet Evol. 2016;100:234–242. doi: 10.1016/j.ympev.2016.04.012. PubMed DOI

Mayer WE, Tichy H, Klein J. Phylogeny of African cichlid fishes as revealed by molecular markers. Heredity. 1998;80:702–714. doi: 10.1046/j.1365-2540.1998.00347.x. PubMed DOI

Joyce DA, Lunt DH, Bills R, Turner GF, Katongo C, Duftner N, Sturmbauer C, Seehausen O. An extant cichlid fish radiation emerged in an extinct Pleistocene lake. Nature. 2005;435:90–95. doi: 10.1038/nature03489. PubMed DOI

Verheyen E, Salzburger W, Snoeks J, Meyer A. Origin of the superflock of cichlid fishes from Lake Victoria, East Africa. Science. 2003;300:325–329. doi: 10.1126/science.1080699. PubMed DOI

Schedel FDB, Katemo Manda B, Chocha Manda A, Abwe E, Vreven EJWMN, Schliewen UK. Description of five new rheophilic Orthochromis species (Teleostei: Cichlidae) from the upper Congo drainage in Zambia and the Democratic Republic of the Congo. Zootaxa. 2018;4461:301–349. doi: 10.11646/zootaxa.4464.3.1. PubMed DOI

Cummings MP, Handley SA, Myers DS, Reed DL, Rokas A, Winka K, Rannala B. Comparing bootstrap and posterior probability values in the four-taxon case. Syst Biol. 2003;52:477–487. doi: 10.1080/10635150390218213. PubMed DOI

Erixon P, Svennblad B, Britton T, Oxelman B, Sullivan J. Reliability of Bayesian posterior probabilities and bootstrap frequencies in Phylogenetics. Syst Biol. 2003;52:665–673. doi: 10.1080/10635150390235485. PubMed DOI

Meyer BS, Matschiner M, Salzburger W. Disentangling incomplete lineage sorting and introgression to refine species-tree estimates for Lake Tanganyika cichlid fishes. Systematic Biol. 2016;66:531–550. PubMed

Irisarri I, Singh P, Koblmuller S, Torres-Dowdall J, Henning F, Franchini P, Fischer C, Lemmon AR, Lemmon EM, Thallinger GG, et al. Phylogenomics uncovers early hybridization and adaptive loci shaping the radiation of Lake Tanganyika cichlid fishes. Nat Commun. 2018;9:1–12. doi: 10.1038/s41467-018-05479-9. PubMed DOI PMC

Říčan O, Piálek P, Dragová K, Novák J. Diversity and evolution of the middle American cichlid fishes (Teleostei: Cichlidae) with revised classification. Vertebrate Zool. 2016;66:1–102.

Malabarba MC, Zuleta OD, del Papa C. Proterocara Argentina, a new fossil cichlid from the Lumbrera formation, Eocene of Argentina. J Vertebr Paleontol. 2006;26:267–275. doi: 10.1671/0272-4634(2006)26[267:PAANFC]2.0.CO;2. DOI

Smith WL, Chakrabarty P, Sparks JS. Phylogeny, taxonomy, and evolution of Neotropical cichlids (Teleostei: Cichlidae: Cichlinae) Cladistics. 2008;24:625–641. doi: 10.1111/j.1096-0031.2008.00210.x. DOI

Murray AM. Late Eocene and early Oligocene teleost and associated ichthyofauna of the Jebel Qatrani formation, Fayum, Egypt. Palaeontology. 2004;47:711–724. doi: 10.1111/j.0031-0239.2004.00384.x. DOI

Lippitsch E, Micklich N. Cichlid fish biodiversity in an Oligocene lake. Ital J Zool. 1998;65:185–188. doi: 10.1080/11250009809386810. DOI

Tamura K, Battistuzzi FU, Billing-Ross P, Murillo O, Filipski A, Kumar S. Estimating divergence times in large molecular phylogenies. Proc Natl Acad Sci. 2012;109:19333–19338. doi: 10.1073/pnas.1213199109. PubMed DOI PMC

Lozano-Fernandez J, Dos Reis M, Donoghue PCJ, Pisani D. RelTime rates collapse to a strict clock when estimating the timeline of animal diversification. Genome Biol Evol. 2017;9:1320–1328. doi: 10.1093/gbe/evx079. PubMed DOI PMC

Battistuzzi FU, Tao Q, Jones L, Tamura K, Kumar S. RelTime relaxes the strict molecular clock throughout the phylogeny. Genome Biol Evol. 2018;10:1631–1636. doi: 10.1093/gbe/evy118. PubMed DOI PMC

Chakrabarty P. Cichlid biogeography: comment and review. Fish Fish. 2004;5:97–119. doi: 10.1111/j.1467-2979.2004.00148.x. DOI

Heine C, Zoethout J, Müller RD. Kinematics of the South Atlantic rift. Solid Earth. 2013;4:215–253. doi: 10.5194/se-4-215-2013. DOI

Measey GJ, Vences M, Drewes RC, Chiari Y, Melo M, Bourles B. Freshwater paths across the ocean: molecular phylogeny of the frog Ptychadena newtoni gives insights into amphibian colonization of oceanic islands. J Biogeogr. 2007;34:7–20. doi: 10.1111/j.1365-2699.2006.01589.x. DOI

de Oliveira FB, Molina EC, Marroig G. Paleogeography of the South Atlantic: a route for Primates and rodents into the New World? In: Garber PA, Estrada A, Bicca-Marques JC, Heymann EW, editors. South American Primates, developments in Primatology: Progress and Prospects.  New York: Springer; 2009. p. 55–68.

Markwick PJ, Valdes PJ. Palaeo-digital elevation models for use as boundary conditions in coupled ocean–atmosphere GCM experiments: a Maastrichtian (late cretaceous) example. Palaeogeogr Palaeoclimatol Palaeoecol. 2004;213:37–63. doi: 10.1016/S0031-0182(04)00330-X. DOI

Reinthal PN, Stiassny MLJ. The freshwater fishes of Madagascar: a study of an endangered fauna with recomnlendations for a conservation strategy. Conserv Biol. 1991;5:231–243. doi: 10.1111/j.1523-1739.1991.tb00128.x. DOI

Ward JA, Wyman RL. Ethology and ecology of cichlid fishes of the genus Etroplus in Sri Lanka: preliminary findings. Environ Biol Fish. 1977;2:137–145. doi: 10.1007/BF00005369. DOI

Uchida K, Kaneko T, Miyazaki H, Hasegawa S, Hirano T. Excellent salinity tolerance of Mozambique Tilapia (Oreochromis mossambicus): elevated chloride cell activity in the branchial and Opercular epithelia of the fish adapted to concentrated seawater. Zool Sci. 2000;17:149–160. doi: 10.2108/zsj.17.149. DOI

Tiercelin JJ, Mondeguer A. The geology of the Tanganyika trough. In: Coulter GW, editor. Lake Tanganyika and its Life. London: Oxford University Press; 1991. p. 7–48.

Meyer BS, Matschiner M, Salzburger W. A tribal level phylogeny of Lake Tanganyika cichlid fishes based on a genomic multi-marker approach. Mol Phylogenet Evol. 2015;83:56–71. doi: 10.1016/j.ympev.2014.10.009. PubMed DOI PMC

Day JJ, Santini S, Garcia-Moreno J. Phylogenetic relationships of the Lake Tanganyika cichlid tribe Lamprologini: the story from mitochondrial DNA. Mol Phylogenet Evol. 2007;45:629–642. doi: 10.1016/j.ympev.2007.02.025. PubMed DOI

Sturmbauer CE, Verheyen E, Meyer A. Mitochondrial phylogeny of the Lamprologini, the major substrate spawning lineage of cichlid fish from Lake Tanganyika in eastern Africa. Mol Phylogenet Evol. 1994;10:751–768. PubMed

Sturmbauer C, Salzburger W, Duftner N, Schelly R, Koblmuller S. Evolutionary history of the Lake Tanganyika cichlid tribe Lamprologini (Teleostei: Perciformes) derived from mitochondrial and nuclear DNA data. Mol Phylogenet Evol. 2010;57:266–284. doi: 10.1016/j.ympev.2010.06.018. PubMed DOI PMC

Schwarzer J, Misof B, Ifuta SN, Schliewen UK. Time and origin of cichlid colonization of the lower Congo rapids. PLoS One. 2011;6:e22380. doi: 10.1371/journal.pone.0022380. PubMed DOI PMC

Schelly RC, Stiassny MLJ. Revision of the Congo river Lamprologus Schilthuis, 1891 (Teleostei: Cichlidae), with description of two new species. Am Mus Novit. 2004;3451:40. doi: 10.1206/0003-0082(2004)451<0001:ROTCRL>2.0.CO;2. DOI

Schelly R, Salzburger W, Koblmuller S, Duftner N, Sturmbauer C. Phylogenetic relationships of the lamprologine cichlid genus Lepidiolamprologus (Teleostei: Perciformes) based on mitochondrial and nuclear sequences, suggesting introgressive hybridization. Mol Phylogenet Evol. 2006;38:426–438. doi: 10.1016/j.ympev.2005.04.023. PubMed DOI

Nevado B, Koblmuller S, Sturmbauer C, Snoeks J, Usano-Alemany J, Verheyen E. Complete mitochondrial DNA replacement in a Lake Tanganyika cichlid fish. Mol Ecol. 2009;18:4240–4255. doi: 10.1111/j.1365-294X.2009.04348.x. PubMed DOI

Sturmbauer C, Koblmüller S, Sefc KM, Duftner N. Phylogeographic history of the genus Tropheus, a lineage of rock-dwelling cichlid fishes endemic to Lake Tanganyika. Hydrobiologia. 2005;542:335–366. doi: 10.1007/s10750-004-4664-y. DOI

Koblmüller S, Egger B, Sturmbauer C, Sefc KM. Rapid radiation, ancient incomplete lineage sorting and ancient hybridization in the endemic Lake Tanganyika cichlid tribe Tropheini. Mol Phylogenet Evol. 2010;55:318–334. doi: 10.1016/j.ympev.2009.09.032. PubMed DOI

Sturmbauer C, Börger C, Van Steenberge M, Koblmüller S. A separate lowstand lake at the northern edge of Lake Tanganyika? Evidence from phylogeographic patterns in the cichlid genus Tropheus. Hydrobiologia. 2016;791:51–68. doi: 10.1007/s10750-016-2939-8. DOI

Genner MJ, Ngatunga BP, Mzighani S, Smith A, Turner GF. Geographical ancestry of Lake Malawi’s cichlid fish diversity. Biol Lett. 2015;11:20150232. doi: 10.1098/rsbl.2015.0232. PubMed DOI PMC

Genner MJ, Turner GF. Timing of population expansions within the Lake Malawi haplochromine cichlid fish radiation. Hydrobiologia. 2014;748:121–132. doi: 10.1007/s10750-014-1884-7. DOI

Ebinger CJ, Deino AL, Drake RE, Tesha AL. Chronology of volcanism and rift basin propagation: Rungwe Volcanic Province, East Africa. Geol Soc Am Bull. 1989;94:785–803.

Ebinger CJ, Deino AL, Tesha AL, Becker T, Ring U. Tectonic controls on rift basin morphology: evolution of the northern Malawi (Nyasa) rift. J Geophys Res. 1993;98:821–836. doi: 10.1029/93JB01392. DOI

Betzler C, Ring U. Edimentology of the Malawi rift: facies and stratigraphy oft he Chiwondo beds, northern Malawi. J Hum Evol. 1995;28:23–35. doi: 10.1006/jhev.1995.1004. DOI

Johnson TC, Scholz CA, Talbot MR, Kelts K, Ricketts RD, Ngobi G, Beuning K, Ssemmanda I, McGill JW. Late Pleistocene desiccation of Lake Victoria and rapid evolution of cichlid fishes. Science. 1996;273:1091–1093. doi: 10.1126/science.273.5278.1091. PubMed DOI

Kent PE. The Miocene beds of Kavirondo, Kenya. Q J Geol Soc. 1944;100:85–118. doi: 10.1144/GSL.JGS.1944.100.01-04.07. DOI

Stager JC, Johnson TC. The late Pleistocene desiccation of Lake Victoria and the origin of its endemic biota. Hydrobiologia. 2007;596:5–16. doi: 10.1007/s10750-007-9158-2. DOI

Elmer KR, Reggio C, Wirth T, Verheyen E, Salzburger W, Meyer A. Pleistocene desiccation in East Africa bottlenecked but did not extirpate the adaptive radiation of Lake Victoria haplochromine cichlid fishes. PNAS. 2009;106:13404–13409. doi: 10.1073/pnas.0902299106. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace