Adaptive Radiation from a Chromosomal Perspective: Evidence of Chromosome Set Stability in Cichlid Fishes (Cichlidae: Teleostei) from the Barombi Mbo Lake, Cameroon
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
16-09784Y
Grantová Agentura České Republiky
PROMYS 166550
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
EXCELLENCE CZ.02.1.01/0.0/0.0/15_003/0000460 OP RDE
Ministerstvo Školství, Mládeže a Tělovýchovy
n/a
Basler Stiftung für Biologische Forschung
n/a
Basler Stiftung für Experimentelle Zoologie
PubMed
31601021
PubMed Central
PMC6834198
DOI
10.3390/ijms20204994
PII: ijms20204994
Knihovny.cz E-zdroje
- Klíčová slova
- African endemic fishes, FISH, Karyotype, adaptive radiation, chromosome banding, chromosome stasis, cytotaxonomy, rDNA,
- MeSH
- biologická adaptace genetika účinky záření MeSH
- biologická evoluce MeSH
- chromozomální nestabilita účinky záření MeSH
- cichlidy genetika MeSH
- hybridizace in situ fluorescenční MeSH
- jezera MeSH
- karyotyp MeSH
- karyotypizace MeSH
- mapování chromozomů MeSH
- pruhování chromozomů MeSH
- telomery genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Kamerun MeSH
Cichlid fishes are the subject of scientific interest because of their rapid adaptive radiation, resulting in extensive ecological and taxonomic diversity. In this study, we examined 11 morphologically distinct cichlid species endemic to Barombi Mbo, the largest crater lake in western Cameroon, namely Konia eisentrauti, Konia dikume, Myaka myaka, Pungu maclareni, Sarotherodon steinbachi, Sarotherodon lohbergeri, Sarotherodon linnellii, Sarotherodon caroli, Stomatepia mariae, Stomatepia pindu, and Stomatepia mongo. These species supposedly evolved via sympatric ecological speciation from a common ancestor, which colonized the lake no earlier than one million years ago. Here we present the first comparative cytogenetic analysis of cichlid species from Barombi Mbo Lake using both conventional (Giemsa staining, C-banding, and CMA3/DAPI staining) and molecular (fluorescence in situ hybridization with telomeric, 5S, and 28S rDNA probes) methods. We observed stability on both macro and micro-chromosomal levels. The diploid chromosome number was 2n = 44, and the karyotype was invariably composed of three pairs of meta/submetacentric and 19 pairs of subtelo/acrocentric chromosomes in all analysed species, with the same numbers of rDNA clusters and distribution of heterochromatin. The results suggest the evolutionary stability of chromosomal set; therefore, the large-scale chromosomal rearrangements seem to be unlikely associated with the sympatric speciation in Barombi Mbo.
Department of Biological Sciences University of Ngaoundéré Ngaoundéré P O Box 454 Cameroon
Department of Zoology Faculty of Science Charles University Prague 12844 Prague Czech Republic
Zoological Institute University of Basel 4051 Basel Switzerland
Zobrazit více v PubMed
Seehausen O. Process and pattern in cichlid radiations—Inferences for understanding unusually high rates of evolutionary diversification. New Phytol. 2015;207:304–312. doi: 10.1111/nph.13450. PubMed DOI
Salzburger W. Understanding explosive diversification through cichlid fish genomics. Nat. Rev. Genet. 2018;19:705–717. doi: 10.1038/s41576-018-0043-9. PubMed DOI
Fryer G. Comparative aspects of adaptive radiation and speciation in Lake Baikal and the great rift lakes of Africa. Hydrobiologia. 1991;211:137–146. doi: 10.1007/BF00037369. DOI
Goto A., Yokoyama R., Sideleva V.G. Evolutionary diversification in freshwater sculpins (Cottoidea): A review of two major adaptive radiations. Environ. Biol. Fishes. 2014;98:307–335. doi: 10.1007/s10641-014-0262-7. DOI
Kornfield I., Carpenter K. The Cyprinids of Lake Lanao, Philippines: Taxonomic Validity, Evolutionary Rates and Speciation Scenarios. In: Echelle A.A., Kornfield I., editors. Evolution of Fish Species Flocks. University of Maine Press; Orono, MN, USA: 1984. pp. 69–84.
De Graaf M., Dejen E., Osse J.W.M., Sibbing F.A. Adaptive radiation of Lake Tana’s (Ethiopia) Labeobarbus species flock (Pisces, Cyprinidae) Mar. Freshw. Res. 2008;59:391–407. doi: 10.1071/MF07123. DOI
Præbel K., Knudsen R., Siwertsson A., Karhunen M., Kahilainen K.K., Ovaskainen O., Østbye K., Peruzzi S., Fevolden S.-E., Amundsen P.-A. Ecological speciation in postglacial European whitefish: Rapid adaptive radiations into the littoral, pelagic, and profundal lake habitats. Ecol. Evol. 2013;3:4970–4986. doi: 10.1002/ece3.867. PubMed DOI PMC
Hudson A.G., Lundsgaard-Hansen B., Lucek K., Vonlanthen P., Seehausen O. Managing cryptic biodiversity: Fine-scale intralacustrine speciation along a benthic gradient in Alpine whitefish (Coregonus spp.) Evol. Appl. 2017;10:251–266. doi: 10.1111/eva.12446. PubMed DOI PMC
Feulner P.G.D., Seehausen O. Genomic insights into the vulnerability of sympatric whitefish species flocks. Mol. Ecol. 2019;28:615–629. doi: 10.1111/mec.14977. PubMed DOI
Brooks J.L. Speciation in ancient lakes (concluded) Q. Rev. Biol. 1950;25:131–176. doi: 10.1086/397539. PubMed DOI
Martens K. Speciation in ancient lakes. Trends Ecol. Evol. Amst. 1997;12:177–182. doi: 10.1016/S0169-5347(97)01039-2. PubMed DOI
Cristescu M.E., Adamowicz S.J., Vaillant J.J., Haffner D.G. Ancient lakes revisited: From the ecology to the genetics of speciation. Mol. Ecol. 2010;19:4837–4851. doi: 10.1111/j.1365-294X.2010.04832.x. PubMed DOI
Von Rintelen T., von Rintelen K., Glaubrecht M., Schubart C., Herder F. Aquatic Biodiversity Hotspots in Wallacea: The Species Flocks in the Ancient Lakes of Sulawesi, Indonesia. In: Gower D., Johnson K., Ridchardson J., Rosen B., Rüber L., Williams S., editors. Biotic Evolution and Environmental Change in Southeast Asia. Cambridge University Press; Cambridge, UK: 2012. pp. 290–315.
Kottelat M., Xin-Luo C. Revision of Yunnanilus with descriptions of a miniature species flock and six new species from China (Cypriniformes: Homalopteridae) Environ. Biol. Fish. 1988;23:65–94. doi: 10.1007/BF00000739. DOI
Parenti L.R. Biogeography of the Andean Killifish Genus Orestias with Comments on the Species Flock Concept. In: Echelle A.A., Kornfield I., editors. Evolution of Fish Species Flocks. University of Maine Press; Orono, MN, USA: 1984. pp. 85–92.
Vila I., Scott S., Lam N., Méndez A.M. Karyological and Morphological Analysis of Divergence among Species of the Killifish Genus Orestias (Teleostei: Cyprinodontidae) from the Southern Altiplano. In: Nelson J.S., Schultze H.-P., Wilson M.V.H., editors. Origin and Phylogenetic Interrelationships of Teleosts. Verlag Dr. Friedrich Pfeil; New York, NY, USA: 2010. pp. 471–480.
Schliewen U.K., Tautz D., Pääbo S. Sympatric speciation suggested by monophyly of crater lake cichlids. Nature. 1994;368:629. doi: 10.1038/368629a0. PubMed DOI
Schliewen U.K., Klee B. Reticulate sympatric speciation in Cameroonian crater lake cichlids. Front. Zool. 2004;1:5. doi: 10.1186/1742-9994-1-5. PubMed DOI PMC
Symonová R., Majtánová Z., Sember A., Staaks G.B.O., Bohlen J., Freyhof J., Rábová M., Ráb P. Genome differentiation in a species pair of coregonine fishes: An extremely rapid speciation driven by stress-activated retrotransposons mediating extensive ribosomal DNA multiplications. BMC Evol. Biol. 2013;13:42. doi: 10.1186/1471-2148-13-42. PubMed DOI PMC
Dion-Côté A.-M., Symonová R., Ráb P., Bernatchez L. Reproductive isolation in a nascent species pair is associated with aneuploidy in hybrid offspring. Proc. R. Soc. B-Biol. Sci. 2015;282:20142862. doi: 10.1098/rspb.2014.2862. PubMed DOI PMC
Dion-Côté A.-M., Symonová R., Lamaze F.C., Pelikánová Š., Ráb P., Bernatchez L. Standing chromosomal variation in Lake Whitefish species pairs: The role of historical contingency and relevance for speciation. Mol. Ecol. 2017;26:178–192. doi: 10.1111/mec.13816. PubMed DOI
Ozouf-Costaz C., Coutanceau J.P., Bonillo C., Mercot H., Fermon Y., Guidi-Rontani C. New insights into the chromosomal differentiation patterns among cichlids from Africa and Madagascar. Cybium. 2017;41:35–43.
Poletto A.B., Ferreira I.A., Cabral-de-Mello D.C., Nakajima R.T., Mazzuchelli J., Ribeiro H.B., Venere P.C., Nirchio M., Kocher T.D., Martins C. Chromosome differentiation patterns during cichlid fish evolution. BMC Genet. 2010;11:50. doi: 10.1186/1471-2156-11-50. PubMed DOI PMC
Nelson J.S., Grande T.C., Wilson M.V.H. Fishes of the World. 5th ed. Wiley; Hoboken, NJ, USA: 2016.
Kocher T.D. Adaptive evolution and explosive speciation: The cichlid fish model. Nat. Rev. Genet. 2004;5:288. doi: 10.1038/nrg1316. PubMed DOI
Genner M.J., Seehausen O., Lunt D.H., Joyce D.A., Shaw P.W., Carvalho G.R., Turner G.F. Age of cichlids: New dates for ancient lake fish radiations. Mol. Biol. Evol. 2007;24:1269–1282. doi: 10.1093/molbev/msm050. PubMed DOI
Smith W.L., Chakrabarty P., Sparks J.S. Phylogeny, taxonomy, and evolution of Neotropical cichlids (Teleostei: Cichlidae: Cichlinae) Cladistics. 2008;24:625–641. doi: 10.1111/j.1096-0031.2008.00210.x. DOI
Schedel F.D.B., Musilová Z., Schliewen U.K. East African cichlid lineages (Teleostei: Cichlidae) might be older than their ancient host lakes: New divergence estimates for the east African cichlid radiation. BMC Evol. Biol. 2019;19:94. doi: 10.1186/s12862-019-1417-0. PubMed DOI PMC
Matschiner M., Musilová Z., Barth J.M.I., Starostová Z., Salzburger W., Steel M., Bouckaert R. Bayesian phylogenetic estimation of clade ages supports trans-Atlantic dispersal of cichlid fishes. Syst. Biol. 2017;66:3–22. doi: 10.1093/sysbio/syw076. PubMed DOI
Wagner C.E., Harmon L.J., Seehausen O. Ecological opportunity and sexual selection together predict adaptive radiation. Nature. 2012;487:366–369. doi: 10.1038/nature11144. PubMed DOI
Musilová Z., Indermaur A., Nyom A.R.B., Tropek R., Martin C., Schliewen U.K. Persistence of Stomatepia mongo, an endemic cichlid fish of the Barombi Mbo crater lake, southwestern Cameroon, with notes on its life history and behavior. Copeia. 2014;2014:556–560. doi: 10.1643/CI-14-021. DOI
Trewavas E., Green J., Corbet S.A. Ecological studies on crater lakes in West Cameroon Fishes of Barombi Mbo. J. Fish Zool. 1972;167:41–95. doi: 10.1111/j.1469-7998.1972.tb01722.x. DOI
Baldo L., Pretus J.L., Riera J.L., Musilová Z., Bitja A.N., Salzburger W. Convergence of gut microbiotas in the adaptive radiations of African cichlid fishes. ISME J. 2017;11:1975–1987. doi: 10.1038/ismej.2017.62. PubMed DOI PMC
Musilová Z., Indermaur A., Bitja-Nyom A.R., Omelchenko D., Kłodawska M., Albergati L., Remišová K., Salzburger W. Evolution of visual sensory system in cichlid fishes from crater lake Barombi Mbo in Cameroon. Mol. Ecol. 2019 doi: 10.1111/mec.15217. PubMed DOI
Friedman M., Keck B.P., Dornburg A., Eytan R.I., Martin C.H., Hulsey C.D., Wainwright P.C., Near T.J. Molecular and fossil evidence place the origin of cichlid fishes long after Gondwanan rifting. Proc. Biol. Sci. 2013;280:20131733. doi: 10.1098/rspb.2013.1733. PubMed DOI PMC
Cornen G., Bande Y., Giresse P., Maley J. The nature and chronostratigraphy of Quaternary pyroclastic accumulations from Lake Barombi Mbo (West-Cameroon) J. Volcanol. Geoth. Res. 1992;51:357–374. doi: 10.1016/0377-0273(92)90108-P. DOI
Tchamabé B., Youmen D., Owona S., Issa, Ohba T., Németh K., Ngapna M., Asaah A., Aka F., Tanyileke G., et al. Eruptive history of the Barombi Mbo Maar, Cameroon Volcanic Line, Central Africa: Constraints from volcanic facies analysis. Open Geosci. 2014;5:480–496.
Dunz A.R., Schliewen U.K. Molecular phylogeny and revised classification of the haplotilapiine cichlid fishes formerly referred to as “Tilapia”. Mol. Phylogenet. Evol. 2013;68:64–80. doi: 10.1016/j.ympev.2013.03.015. PubMed DOI
Dominey W.J., Snyder A.M. Kleptoparasitism of freshwater crabs by cichlid fishes endemic to Lake Barombi Mbo, Cameroon, West Africa. Environ. Biol. Fish. 1988;22:155. doi: 10.1007/BF00001545. DOI
Richards E.J., Poelstra J.W., Martin C.H. Don’t throw out the sympatric speciation with the crater lake water: Fine-scale investigation of introgression provides equivocal support for causal role of secondary gene flow in one of the clearest examples of sympatric speciation. Evol. Lett. 2018;2:524–540. doi: 10.1002/evl3.78. PubMed DOI PMC
Coyne J.A., Orr H.A. Speciation. Oxford University Press; Oxford, UK: New York, NY, USA: 2004.
Dobzhansky T. Genetics and the Origin of Species. Columbia University Press; New York, NY, USA: 1937.
Rieseberg L.H. Chromosomal rearrangements and speciation. Trends Ecol. Evol. 2001;16:351–358. doi: 10.1016/S0169-5347(01)02187-5. PubMed DOI
Navarro A., Barton N.H. Chromosomal speciation and molecular divergence-accelerated evolution in rearranged chromosomes. Science. 2003;300:321–324. doi: 10.1126/science.1080600. PubMed DOI
Searle J.B., Polly P.D., Zima J. Shrews, Chromosomes and Speciation. Volume 6. Cambridge University Press; Cambridge, UK: 2019.
Potter S., Bragg J.G., Blom M.P.K., Deakin J.E., Kirkpatrick M., Eldridge M.D.B., Moritz C. Chromosomal speciation in the genomics era: Disentangling phylogenetic evolution of rock-wallabies. Front. Genet. 2017;8:10. doi: 10.3389/fgene.2017.00010. PubMed DOI PMC
Livingstone K., Rieseberg L. Chromosomal evolution and speciation: A recombination-based approach. New Phytol. 2004;161:107–112. doi: 10.1046/j.1469-8137.2003.00942.x. PubMed DOI PMC
Kandul N.P., Lukhtanov V.A., Pierce N.E. Karyotypic diversity and speciation in Agrodiaetus butterflies. Evolution. 2007;61:546–559. doi: 10.1111/j.1558-5646.2007.00046.x. PubMed DOI
Supiwong W., Pinthong K., Seetapan K., Saenjundaeng P., Bertollo L.A.C., de Oliveira E.A., Yano C.F., Liehr T., Phimphan S., Tanomtong A., et al. Karyotype diversity and evolutionary trends in the Asian swamp eel Monopterus albus (Synbranchiformes, Synbranchidae): A case of chromosomal speciation? BMC Evol. Biol. 2019;19:73. doi: 10.1186/s12862-019-1393-4. PubMed DOI PMC
Bertollo L.A.C. Chromosome Evolution in the Neotropical Erythrinidae Fish Family: An Overview. In: Pisano E., Ozouf-Costaz C., Foresti F., Kapoor B.G., editors. Fish Cytogenetics. Science Publishers; Enfield, NH, USA: 2007. pp. 195–211.
Conte M.A., Joshi R., Moore E.C., Nandamuri S.P., Gammerdinger W.J., Roberts R.B., Carleton K.L., Lien S., Kocher T.D. Chromosome-scale assemblies reveal the structural evolution of African cichlid genomes. Gigascience. 2019;8:1–20. doi: 10.1093/gigascience/giz030. PubMed DOI PMC
Arai R. Fish Karyotypes: A Check List. 2011 ed. Springer; Tokyo, Japan: New York, NY, USA: 2011.
Schneider C.H., Gross M.C., Terencio M.L., Artoni R.F., Vicari M.R., Martins C., Feldberg E. Chromosomal evolution of neotropical cichlids: The role of repetitive DNA sequences in the organization and structure of karyotype. Rev. Fish Biol. Fisher. 2013;23:201–214. doi: 10.1007/s11160-012-9285-3. DOI
Marescalchi O. Karyotype and mitochondrial 16S gene characterizations in seven South American Cichlasomatini species (Perciformes, Cichlidae) J. Zool. Syst. Evol. Res. 2005;43:22–28. doi: 10.1111/j.1439-0469.2004.00285.x. DOI
Hodaňová L., Kalous L., Musilová Z. Comparative cytogenetics of Neotropical cichlid fishes (Nannacara, Ivanacara and Cleithracara) indicates evolutionary reduction of diploid chromosome numbers. Comp. Cytogenet. 2014;8:169–183. PubMed PMC
Krajáková L., Musilová Z., Kalous L. Karyotype Characterizations in Two South American Cichlasomatini Species (Perciformes, Cichlidae); Proceedings of the Workshop on Animal Biodiversity; Jevany, Czech Republic. 7 July 2010; pp. 78–80.
Valente G.T., de Andrade Vitorino C., Cabral-de-Mello D.C., Oliveira C., Souza I.L., Martins C., Venere P.C. Comparative cytogenetics of ten species of cichlid fishes (Teleostei, Cichlidae) from the Araguaia River system, Brazil, by conventional cytogenetic methods. Comp. Cytogenet. 2012;6:163–181. PubMed PMC
Oliveira C., Wright J.M. Molecular cytogenetic analysis of heterochromatin in the chromosomes of tilapia, Oreochromis niloticus (Teleostei: Cichlidae) Chromosome Res. 1998;6:205–211. doi: 10.1023/A:1009211701829. PubMed DOI
Kornfield I., Smith P.F. African cichlid fishes: Model systems for evolutionary biology. Annu. Rev. Ecol. Syst. 2000;31:163–196. doi: 10.1146/annurev.ecolsys.31.1.163. DOI
Green J., Corbet S.A., Betney E. Ecological studies on crater lakes in West Cameroon the blood of endemic cichlids in Barombi Mbo in relation to stratification and their feeding habits. J. Zool. 1973;170:299–308. doi: 10.1111/j.1469-7998.1973.tb01379.x. DOI
Thieme M.L., Abell R., Stiassny M.L.J., Skelton P. Freshwater Ecoregions of Africa and Madagascar: A Conservation Assessment. Island Press; Washington, DC, USA: 2005.
Malinsky M., Challis R.J., Tyers A.M., Schiffels S., Terai Y., Ngatunga B.P., Miska E.A., Durbin R., Genner M.J., Turner G.F. Genomic islands of speciation separate cichlid ecomorphs in an East African crater lake. Science. 2015;350:1493–1498. doi: 10.1126/science.aac9927. PubMed DOI PMC
Schluter D., McPhail J.D. Ecological character displacement and speciation in sticklebacks. Am. Nat. 1992;140:85–108. doi: 10.1086/285404. PubMed DOI
Danley P.D., Kocher T.D. Speciation in rapidly diverging systems: Lessons from Lake Malawi. Mol. Ecol. 2001;10:1075–1086. doi: 10.1046/j.1365-294X.2001.01283.x. PubMed DOI
Skúlason S., Snorrason S.S., Noakes D.L.G., Ferguson M.M., Malmquist H.J. Segregation in spawning and early life history among polymorphic Arctic charr, Salvelinus alpinus, in Thingvallavatn, Iceland. J. Fish Biol. 1989;35:225–232. doi: 10.1111/j.1095-8649.1989.tb03065.x. DOI
Volff J.N. Genome evolution and biodiversity in teleost fish. Heredity. 2005;94:280–294. doi: 10.1038/sj.hdy.6800635. PubMed DOI
Ferreira I.A., Poletto A.B., Kocher T.D., Mota-Velasco J.C., Penman D.J., Martins C. Chromosome evolution in African cichlid fish: Contributions from the physical mapping of repeated DNAs. Cytogenet. Genome Res. 2010;129:314–322. doi: 10.1159/000315895. PubMed DOI PMC
Valente G.T., Mazzuchelli J., Ferreira I.A., Poletto A.B., Fantinatti B.E.A., Martins C. Cytogenetic mapping of the retroelements Rex1, Rex3 and Rex6 among cichlid fish: New insights on the chromosomal distribution of transposable elements. Cytogenet. Genome Res. 2011;133:34–42. doi: 10.1159/000322888. PubMed DOI
Mazzuchelli J., Kocher T.D., Yang F., Martins C. Integrating cytogenetics and genomics in comparative evolutionary studies of cichlid fish. BMC Genom. 2012;13:463. doi: 10.1186/1471-2164-13-463. PubMed DOI PMC
Nakajima R.T., Cabral-de-Mello D.C., Valente G.T., Venere P.C., Martins C. Evolutionary dynamics of rRNA gene clusters in cichlid fish. BMC Evol. Biol. 2012;12:198. doi: 10.1186/1471-2148-12-198. PubMed DOI PMC
Clark F.E., Conte M.A., Ferreira-Bravo I.A., Poletto A.B., Martins C., Kocher T.D. Dynamic sequence evolution of a sex-associated B chromosome in Lake Malawi cichlid fish. J. Hered. 2017;108:53–62. doi: 10.1093/jhered/esw059. PubMed DOI
Clark F.E., Conte M.A., Kocher T.D. Genomic Characterization of a B chromosome in Lake Malawi cichlid fishes. Genes. 2018;9:610. doi: 10.3390/genes9120610. PubMed DOI PMC
Feldberg E., Ivan J., Porto R., Antonio L., Bertollo C. Chromosomal Changes and Adaptation of Cichlid Fishes during Evolution. In: Val A.L., Kapoor B.G., editors. Fish Adaptation. Science Publishers; Enfield, NH, USA: 2003. pp. 285–308.
Sochorová J., Garcia S., Gálvez F., Symonová R., Kovařík A. Evolutionary trends in animal ribosomal DNA loci: Introduction to a new online database. Chromosoma. 2018;127:141–150. doi: 10.1007/s00412-017-0651-8. PubMed DOI PMC
Gornung E. Twenty years of physical mapping of major ribosomal RNA genes across the Teleosts: A review of research. Cytogenet. Genome Res. 2013;141:90–102. doi: 10.1159/000354832. PubMed DOI
Cioffi M.B., Bertollo L.A.C. Chromosomal distribution and evolution of repetitive DNAs in fish. Genome Dyn. 2012;7:197–221. PubMed
Martins C., Wasko A.P., Oliveira C., Porto-Foresti F., Parise-Maltempi P.P., Wright J.M., Foresti F. Dynamics of 5S rDNA in the tilapia (Oreochromis niloticus) genome: Repeat units, inverted sequences, pseudogenes and chromosome loci. Cytogenet. Genome Res. 2002;98:78–85. doi: 10.1159/000068542. PubMed DOI
Symonová R., Majtánová Z., Arias-Rodriguez L., Mořkovský L., Kořínková T., Cavin L., Pokorná M.J., Doležálková M., Flajšhans M., Normandeau E., et al. Genome compositional organization in gars shows more similarities to mammals than to oher ray-finned fish. J. Exp. Zool. B Mol. Dev. Evol. 2017;328:607–619. doi: 10.1002/jez.b.22719. PubMed DOI
Escobar J.S., Glémin S., Galtier N. GC-biased gene conversion impacts ribosomal DNA evolution in vertebrates, angiosperms, and other eukaryotes. Mol. Biol. Evol. 2011;28:2561–2575. doi: 10.1093/molbev/msr079. PubMed DOI
Bertollo L.A.C., Cioffi M.B., Moreira-Filho O. Direct Chromosome Preparation from Freshwater Teleost Fishes. In: Ozouf-Costaz C., Pisano E., Foresti F., Foresti de Almeida-Toledo L., editors. Fish Cytogenetic Techniques. CRC Press, Inc.; Enfield, NH, USA: 2015. pp. 21–26.
Völker M., Ráb P. Direct Chromosome Preparation from Regenerating Fin Tissue. In: Ozouf-Costaz C., Pisano E., Foresti F., Foresti de Almeida-Toledo L., editors. Fish Cytogenetic Techniques. CRC Press, Inc.; Enfield, NH, USA: 2015. pp. 37–41.
Sumner A.T. A simple technique for demonstrating centromeric heterochromatin. Exp. Cell Res. 1972;75:304–306. doi: 10.1016/0014-4827(72)90558-7. PubMed DOI
Pokorná M., Rens W., Rovatsos M., Kratochvíl L. A ZZ/ZW sex chromosome system in the thick-tailed gecko (Underwoodisaurus milii; Squamata: Gekkota: Carphodactylidae), a member of the ancient gecko lineage. Cytogenet. Genome Res. 2014;142:190–196. doi: 10.1159/000358847. PubMed DOI
Sola L., Rossi A.R., Iaselli V., Rasch E.M., Monaco P.J. Cytogenetics of bisexual/unisexual species of Poecilia. II. Analysis of heterochromatin and nucleolar organizer regions in Poecilia mexicana mexicana by C-banding and DAPI, quinacrine, chromomycin A3, and silver staining. Cytogenet. Cell Genet. 1992;60:229–235. doi: 10.1159/000133346. PubMed DOI
Zhang Q., Cooper R.K., Tiersch T.R. Chromosomal location of the 28S ribosomal RNA gene of channel catfish by in situ polymerase chain reaction. J. Fish Biol. 2000;56:388–397. doi: 10.1111/j.1095-8649.2000.tb02113.x. DOI
Komiya H., Takemura S. Nucleotide sequence of 5S ribosomal RNA from rainbow trout (Salmo gairdnerii) liver. J. Biochem. 1979;86:1067–1080. doi: 10.1093/oxfordjournals.jbchem.a132601. PubMed DOI
Majtánová Z., Moy K.G., Unmack P.J., Ráb P., Ezaz T. Characterization of the karyotype and accumulation of repetitive sequences in Australian Darling hardyhead Craterocephalus amniculus (Atheriniformes, Teleostei) PeerJ. 2019;7:e7347. doi: 10.7717/peerj.7347. PubMed DOI PMC
Symonová R., Sember A., Majtánová Z., Ráb P. Characterization of Fish Genomes by GISH and CGH. In: Ozouf-Costaz C., Pisano E., Foresti F., de Almeida L., editors. Fish Cytogenetic Techniques. CRC Press; Boca Raton, FL, USA: 2015. pp. 118–131.
Levan A., Fredga K., Sandberg A.A. Nomenclature for centromeric position on chromosomes. Hereditas. 1964;52:201–220. doi: 10.1111/j.1601-5223.1964.tb01953.x. DOI