Comparative cytogenetics of Neotropical cichlid fishes (Nannacara, Ivanacara and Cleithracara) indicates evolutionary reduction of diploid chromosome numbers

. 2014 ; 8 (3) : 169-83. [epub] 20140808

Status PubMed-not-MEDLINE Jazyk angličtina Země Bulharsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid25349669

A comparative cytogenetic analysis was carried out in five species of a monophyletic clade of neotropical Cichlasomatine cichlids, namely Cleithracara maronii Steindachner, 1881, Ivanacara adoketa (Kullander & Prada-Pedreros, 1993), Nannacara anomala Regan, 1905, N. aureocephalus Allgayer, 1983 and N. taenia Regan, 1912. Karyotypes and other chromosomal characteristics were revealed by CDD banding and mapped onto the phylogenetic hypothesis based on molecular analyses of four genes, namely cyt b, 16S rRNA, S7 and RAG1. The diploid numbers of chromosomes ranged from 44 to 50, karyotypes were composed predominantly of monoarmed chromosomes and one to three pairs of CMA3 signal were observed. The results showed evolutionary reduction in this monophyletic clade and the cytogenetic mechanisms (fissions/fusions) were hypothesized and discussed.

Zobrazit více v PubMed

Affonso PR, Galetti PM Jr. (2005) Chromosomal diversification of reef fishes from genus Centropyge (Perciformes, Pomacanthidae). Genetica 123(3): 227–233. doi: 10.1007/s10709-004-3214-x PubMed DOI

Arai R. (2011) Fish Karyotypes. Springer, Japan, 340 pp. doi: 10.1007/978-4-431-53877-6 DOI

Cioffi MB, Martins C, Bertollo LA. (2010) Chromosome spreading of associated transposable elements and ribosomal DNA in the fish Erythrinus erythrinus. Implications for genome change and karyoevolution in fish. BMC Evolutionary Biology 10: 271–280. doi: 10.1186/1471-2148-10-271 PubMed DOI PMC

Eschmeyer WN, Fricke R. (2012) Catalog of Fishes electronic version. Available from http://research.calacademy.org/research/ichthyology/catalog/fishcatmain.asp

Feldberg E, Bertollo LAC. (1985) Karyotypes of 10 species of Neotropical cichlids (Pisces, Perciformes). Caryologia 38(3–4): 257–268. doi: 10.1080/00087114.1985.10797749 DOI

Feldberg E, Porto JIR, Bertollo LAC. (2003) Chromosomal changes and adaption of cichlid fishes during evolution. In: Val AL, Kapoor BG. (Eds) Fish Adaption.Science Publishers, Enfield-NH, USA, 285–308

Ferreira I, Poletto B, Kocher TD, Mota-Velasco JC, Penman DJ, Martins C. (2010) Chromosome evolution in African cichlid fish: contributions from the physical mapping of repeated DNAs. Cytogenetic and genome research 129(4): 314–22. doi: 10.1159/000315895 PubMed DOI PMC

Fontana F, Tagliavini J, Congiu L. (2001) Sturgeon genetics and cytogenetics: recent advancements and perspectives. Genetica 111: 359–373. doi: 10.1023/A:1013711919443 PubMed DOI

Galetti PM Jr, Aguilar CT, Molina WF. (2000) An overview on marine fish cytogenetics. Hydrobilogia 420: 55–62. doi: 10.1007/978-94-017-2184-4_6 DOI

Gromicho M, Ozouf-Costaz C, Collares-Pereira MJ. (2005) Lack of correspondence between CMA3-, Ag-positive signals and 28S rDNA loci in two Iberian minnows (Teleostei, Cyprinidae) evidenced by sequential banding. Cytogenetic Genome Research 109: 507–511. doi: 10.1159/000084211 PubMed DOI

Hall TA. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95–98

Hsu TC, Spirito SE, Pardue LM. (1975) Distribution of 18/28S ribosomal genes in Mammalian genomes. Chromosoma 53: 25–36. doi: 10.1007/BF00329388 PubMed DOI

Kalous L, Knytl M, Krajáková L. (2010) Usage of non-destructive method of chromosome preparation applied on silver Prussian carp (Carassius gibelio). In: Kubík S, Barták M. (Eds) Proceedings of the Workshop on Animal Biodiversity.Jevany, July 7, 2010, 57–60

Kocher TD. (2004) Adaptive evolution and explosive speciation: the cichlid fish model. Nature Reviews Genetics 5: 288–98. doi: 10.1038/nrgl316 PubMed DOI

Kornfield IL. (1984) Descriptive Genetics of Cichlid fishes. In: Turner BJ. (Ed) Evolutionary Genetics of Fishes.Plenum Press, New York, 591–616. doi: 10.1007/978-1-4684-4652-4_12 DOI

Kullander SO. (1998) A phylogeny and classification of the South American Cichlidae (Teleostei: Perciformes). In: Malabara LR, Reis RE, Vari RP, Lucena ZM, Lucena CAS. (Eds) Phylogeny and Classification of Neotropical Fishes, Part 5.EDUPUCRS, Porto Alegre, 461–498

Kullander SO, Nijssen H. (1989) The Cichlids of Surinam. E. J. Brill, Leiden, 251 pp

Kullander SO, Prada-Pedreros S. (1993) Nannacara adoketa, a new species of cichlid fish from the Rio Negro in Brazil Ichthyological Exploration of Freshwaters 4(4): 357–366.

Levan A, Fredga K, Sanger AA. (1964) Nomenclature for centromeric position on chromosomes. Hereditas 52: 201–220. doi: 10.1111/j.1601-5223.1964.tb01953.x DOI

Mank, JE, Avise JC. (2006) Phylogenetic conservation of chromosome numbers in Actinopterygiian fishes. Genetica 127: 321–327. doi: 10.1007/s10709-005-524 PubMed DOI

Marescalchi O. (2004) Karyotype and mitochondrial 16S gene characterizations in seven South American Cichlasomatini species (Perciformes, Cichlidae). Journal of Zoological Systematics & Evolutionary Research 43: 22–28. doi: 10.1111/j.1439-0469.2004.00285.x DOI

Mayr B, Ráb P, Kalat M. (1985) Localisation of NORs and counterstain-enhanced fluorescence studies in Perca fluviatilis (Pisces, Percidae). Genetica 67: 51–56. doi: 10.1007/BF02424460 DOI

Mazzuchelli J, Kocher TD, Yang F, Martins C. (2012) Integrating cytogenetics and genomics in comparative evolutionary studies of cichlid fish. BMC genomics 13(1): 463–477. doi: 10.1186/1471-2164-13-463 PubMed DOI PMC

Musilová Z, Říčan O, Janko K, Novák J. (2008) Molecular phylogeny and biogeography of the Neotropical cichlid fish tribe Cichlasomatini (Teleostei: Cichlidae: Cichlasomatinae). Molecular Phylogenetics and Evolution 46(2): 659–72. doi: 10.1016/j.ympev.2007.10.011 PubMed DOI

Musilová Z, Říčan O, Novák J. (2009) Phylogeny of the Neotropical cichlid fish tribe Cichlasomatini (Teleostei: Cichlidae) based on morphological and molecular data, with the description of a new genus. Journal of Zoological Systematics and Evolutionary Research 47(3): 234–247. doi: 10.1111/j.1439-0469.2009.00528.x DOI

Nakatani Y, Takeda H, Kohara Y, Morishita S. (2007) Reconstruction of the vertebrate ancestral genome reveals dynamic genome reorganization in early vertebrates. Genome Research 17(9): 1254–1265. doi: 10.1101/gr.6316407 PubMed DOI PMC

Ohno S, Muramoto J, Klein J, Atkin NB. (1969) Diploid-tetraploid relationship in clupeoid and salmon fish. Chromozómes Today 2: 139–147

Poletto AB, Ferreira IA, Cabral de Mello DC, Nakajima RT, Mazzuchelli J, Ribeiro HB, Venere PC, Nirchio M, Kocher TD, Martins C. (2010) Chromosome differentiation patterns during cichlid fish evolution. BMC Genetics 11: 50. doi: 10.1186/1471-2156-13-2 PubMed DOI PMC

Posada D. (2008) jModelTest: Phylogenetic Model Averaging. Molecular Phylogenetics Evolution 25: 1253–1256. doi: 10.1093/molbev/msn083 PubMed DOI

Ráb P, Bohlen J, Rábová M, Flajšhans M, Kalous L. (2007) Cytogenetics as a tool in fish conservation: the present situation in Europe. In: Pisano E, Ozouf- Costaz C, Foresti F, Kapoor BG (Eds) Fish Cytogenetics. Science Publishers, Enfield, USA.

Ráb P, Rábova M, Reed KM, Phillips RB. (1999) Chromosomal characteristics of ribosomal DNA in the primitive semionotiform fish, longnose gar Lepisosteus osseus. Chromosome Research 7: 475–480. doi: 10.1023/A:1009202030456 PubMed DOI

Römer U, Hahn I. (2007) Ivanacara gen. n. (Teleostei: Perciformes, Cichlasomatini) – a new genus of cichlids from the Neotropis. In: Römer U. (Ed) Cichlid Atlas.Volume 2, Natural History of South American Dwarf Cichlids, Part 2. Mergus Verlag GmbH, Melle, 1190–1197

Ronquist F, Teslenko M, Van der Mark P, Ayres, DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61(3): 539–42. doi: 10.1093/sysbio/sys029 PubMed DOI PMC

Saitoh Y, Laemmli UK. (1994) Metaphase chromosome structure: bands arise from a differential folding path of the highly AT-rich scaffold. Cell 76: 609–622. doi: 10.1016/0092-8674(94)90502-9 PubMed DOI

Schmid M, Guttenbach M. (1988) Evolutionary diversity of reverse (R) fluorescent chromosome bands in vertebrates. Chromosoma 97: 327–344. doi: 10.1007/BF00327367 PubMed DOI

Schneider CH, Gross MC, Terencio ML, do Carmo EJ, Martins C, Feldberg E. (2013) Evolutionary dynamics of retrotransposable elements Rex1, Rex3 and Rex6 in neotropical cichlid genomes. BMC Evolutionary Biology 13: 152. doi: 10.1186/1471-2148-13-152 PubMed DOI PMC

Sola L, Rossi AR, Laselli V, Rasch, EM, Monaco PJ. (1992) Cytogenetics of bisexual/unisexual species of Poecilia. II. Analysis of heterochromatin and nucleolar organizer regions in Poecilia mexicana mexicana by C-banding and DAPI, quinacrine, chromomycin A3, and silver staining. Cytogenetics and Cell Genetics 60: 229–235. doi: 10.1159/000133346 PubMed DOI

Staeck W, Schindler I. (2004) Nannacara quadrispinae sp. n. – a new dwarf cichlid fish (Teleostei: Perciformes: Cichlidae) from the drainage of the Orinoco Delta in Venezuela. Zoolgishe Abhandlungen aus dem Staatlichen Museum fur Tierkunde in Dresden 54: 155–161

Symonová R, Majtánová Z, Sember A, Staaks GBO, Bohlen J, Freyhof J, Rábová M, Ráb P. (2013) Genome differentiation in a species pair of coregonine fishes: an extremely rapid speciation driven by stress-activated retrotransposons mediating extensive ribosomal DNA multiplications. BMC Evolutionary Biology 3: 42. doi: 10.1186/1471-2148-13-42 PubMed DOI PMC

Thompson KW. (1979) Cytotaxonomy of 41 species of Neotropical Cichlidae. Copeia 4: 679–691. doi: 10.2307/1443877 DOI

Valente GT, Schneider CH, Gross MC, Feldberg E, Martins C. (2009) Comparative cytogenetics of cichlid fishes through genomic in-situ hybridization (GISH) with emphasis on Oreochromis niloticus. Chromosome Research 17(6): 791–9. doi: 10.1007/s10577-009-9067-5 PubMed DOI

Völker M, Sonnenberg R, Ráb P, Kullmann H. (2006) Karyotype differentiation in Chromaphyosemion killifishes (Cyprinodontiformes, Nothobranchiidae). II: Cytogenetic and mitochondrial DNA analyses demonstrate karyotype differentiation and its evolutionary directionin C. riggenbachi. Cytogenetic Genome Research 115: 70–83. doi: 10.1159/000094803 PubMed DOI

Völker M, Ráb P, Kullmann H. (2008) Karyotype differentiation in Chromaphyosemion killifishes (Cyprinodontiformes, Nothobranchiidae): patterns, mechanisms, and evolutionary implications. Biological Journal of the Linnean Society 94(1): 143–153. doi: 10.1111/j.1095-8312.2008.00967.x DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...