Novel de novo pathogenic variant in the GNAI1 gene as a cause of severe disorders of intellectual development
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu kazuistiky, časopisecké články
Grantová podpora
NU20-07-00145
Ministerstvo Zdravotnictví Ceské Republiky (Ministry of Health of the Czech Republic)
PubMed
34819662
DOI
10.1038/s10038-021-00988-w
PII: 10.1038/s10038-021-00988-w
Knihovny.cz E-zdroje
- MeSH
- heterozygot MeSH
- lidé MeSH
- mentální retardace * diagnóza genetika MeSH
- neurovývojové poruchy * genetika MeSH
- sekvenování exomu MeSH
- variabilita počtu kopií segmentů DNA MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
Pathogenic sequence variant in the GNAI1 gene were recently introduced as a cause of novel syndrome with a manifestation of variable developmental delay and autistic features. In our study, we report a case of monozygotic twins with severe intellectual disability and motor delay and developmental dysphasia. Both probands and their parents were examined using multi-step molecular diagnostic algorithm including whole-exome sequencing (WES), resulting in the identification of a novel, de novo pathogenic sequence variant in the GNAI1 gene, NM_002069.6:c.815 A>G, p.(Asp272Gly) in probands. Using WES we also verified the microarray findings of a familial 8q24.23q24.3 duplication and heterozygous 5q13.2 deletion, not associated with clinical symptoms in probands. Our results confirmed the role of the GNAI1 gene in the pathogenesis of syndromic neurodevelopmental disorders. They support trio- or quatro-based WES as a suitable molecular diagnostics method for the simultaneous detection of clinically relevant sequence variants and CNVs in individuals with neurodevelopmental disorders and rare diseases.
Biosciences Institute Newcastle University Newcastle upon Tyne UK
Department of Experimental Biology Faculty of Science Masaryk University Brno Czech Republic
Department of Medical Genetics and Genomics University Hospital Brno Brno Czech Republic
Zobrazit více v PubMed
Kochinke K, Zweier C, Nijhof B, Fenckova M, Cizek P, Honti F, et al. “Systematic phenomics analysis deconvolutes genes mutated in intellectual disability into biologically coherent modules”. Am J Hum Genet 2016;98:149–64. DOI
Abrahams BS, Arking DE, Campbell DB, Mefford HC, Morrow EM, Weiss LA, et al. SFARI Gene 2.0: a community-driven knowledgebase for the autism spectrum disorders. Mol Autism 2013;4:36. DOI
Pereanu W, Larsen EC, Das I, Estévez MA, Sarkar AA, Spring-Pearson S, et al. AutDB: a platform to decode the genetic architecture of autism. Nucleic Acids Res 2018;46:D1049–54. DOI
Bosch DE, Willard FS, Ramanujam R, Kimple AJ, Willard MD, Naqvi NI, et al. A P-loop mutation in Gα subunits prevents transition to the active state: implications for G-protein signalling in fungal pathogenesis. PLoS Pathog 2012;8:e1002553. DOI
Soundararajan M, Willard FS, Kimple AJ, Turnbull AP, Ball LJ, Schoch GA, et al. Proc Natl Acad Sci USA 2008;105:6457–62. DOI
Hamada N, Iwamoto I, Kawamura N, Nagata K-I. Heterotrimeric G-protein, Gi1, is involved in the regulation of proliferation, neuronal migration, and dendrite morphology during cortical development in vivo. J Neurochem 2021;154:1167–81. DOI
Hunt TW, Ta Fields, Casey PJ, Peralta EG. RGS10 is a selective activator of G alpha i GTPase activity. Nature 1996;383:175–7. DOI
Ogden SK, Fei DL, Schiling NS, Ahmed YF, Hwa J, Robbins DJ. G protein Galphai functions immediately downstream of Smoothened in Hedgehog signalling. Nature 2008;456:967–70. DOI
Kotak S, Busso C, Gönczy P. Cortical dynein is critical for proper spindle positioning in human cells. J Cell Biol 2012;199:97–110. DOI
Kiomytsu T, Cheeseman IM. Chromosome- and spindle-pole-derived signals generate an intristic code for spindle position and orientation. Nat Cell Biol 2012;14:311–7. DOI
Betke KM, Wells CA, Hamm HE. GPCR mediated regulation of synaptic transmission. Prog Neurobiol 2012;96:304–21. DOI
Muir AM, Gardner JF, van Jaarsveld RH, de Lange IM, van der Smagt JJ, Wilson GN, et al. Variants in GNAI1 cause a syndrome associated with variable features including developmental delay, seizures, and hypotonia. Genet Med 2021;23:881–7. DOI
O’Hayre M, Vázquez-Prado J, Kufareva I, Stawiski EW, Handel TM, Seshagiri S, et al. The Emerging mutational landscape of G-proteins and G-protein coupled receptors in cancer. Nat Rev Cancer 2013;13:412–4. DOI
Silva M, de Leeuw N, Mann K, Schuring-Blom H, Morgan S, Giardino D, et al. European guidelines for constitutional cytogenomic analysis. Eur J Hum Genet 2019;27:1–16. DOI
Landrum MJ, Lee JM, Benson M, Brown G, Chao C, Chitipiralla S, et al. ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res 2016;44:D862–8. DOI
Kopanos C, Tsiolkas V, Kouris A, Chapple CE, Aguilera MA, Meyer R, et al. VarSome: the human genomic variant search engine. Bioinformatics 2019;35:1978–80. DOI
Hamosh A, Scott AF, Amberger JS, Bocchini CA, McKusick VA. Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res 2005;33:D514–17. Database issue. DOI
Firth HV, Richards SM, Bevan AP, Clayton S, Corpas M, Rajan D, et al. DECIPHER: database of chromosomal imbalance and phenotype in humans using ensembl resources. Am J Hum Genet 2009;84:524–33. DOI
Adzhubei I, Jordan DM, Sunyaev S. Predicting functional effect of human missense mutations using PolyPhen-2. Curr Protoc Hum Genet 2013;0:7. Unit7.20.
Choi Y, Chan AP. PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics 2015;31:2745–7. DOI
Stephenson JD, Laskowski RA, Nightingale A, Hurles ME, Thornton JM. VarMap: a web tool for mapping genomic coordinates to protein sequence and structure and retrieving protein structural annotations. Bioinformatics 2019;35:4854–6. DOI
Steinhaus R, Proft S, Schuelke M, Cooper DN, Schwarz JM, Seelow D. MutationTaster2021. Nucleic Acids Res 2021;49:W446–W451. DOI
Stelzer G, Rosen N, Plaschkes I, Zimmerman S, Twik M, Fishilevich S, et al. The GeneCards Suite: from gene data mining to disease genome sequence analyses. Curr Protoc Bioinformatics. 2016;54:1.30.1–1.30.33.
Pineda VV, Athos JI, Wang H, Celver J, Ippolito D, Boulay G, et al. Removal of Giα1 constraints on adenylyl cyclase in the hippocampus enhances LTP and impairs memory formation. Neuron. 2004;41:153–63. DOI
Yang G, Shcheglovitov A. Probing disrupted neurodevelopment in autism using human stem-cell derived neurons and organoids: An outlook into future diagnostics and drug development. Dev Dyn 2020;249:6–33. DOI
Turner TN, Hormozdiari F, Duyzend MH, McClymont SA, Hook PW, Iossifov I, et al. Genome sequencing of autism-affected families reveals disruption of putative noncoding regulatory DNA. Am J Hum Genet 2016;98:58–74. DOI
Coe BP, Stessman HAF, Sulovari A, Geisheker MR, Bakken TE, Lake AM, et al. Neurodevelopmental disease genes implicated by de novo mutation and copy number variation morbidity. Nat Genet 2019;51:106–16. DOI
Satterstrom FK, Kosmicki JA, Wang J, Breen MS, De Rubeis S, An J-Y, et al. Large-Scale exome sequencing study implicates both developmental and functional changes in the neurobiology of autism. Cell 2020;180:568–584.e23. DOI
Deciphering Developmental Disorders Study. Prevalence and architecture of de novo mutations in developmental disorders. Nature 2017;542:433–38. DOI
Kaplanis J, Samocha KE, Wiel L, Zhang Z, Arvai KJ, Eberhardt RY, et al. Evidence for 28 genetic disorders discovered by combining healthcare and research data. Nature 2020;586:757–62. DOI
Soukupova J, Pohlreich P, Seemanova E. Characterization of ATM mutations in Slavic Ataxia telangiectasia patients. Neuromolecular Med 2011;13:204–11. DOI
Broeks A, Urbanus JHM, Floore AN, Dahler EC, Klijn JGM, Rutgers EJT, et al. ATM-heterozygous germline mutations contribute to breast cancer-susceptibility. Am J Hum Genet 2000;66:494–500. DOI
Choi M, Kipps T, Kurzrock R. ATM mutations in cancer: therapeutic implications. Mol Cancer Ther 2016;15:1781–91. DOI
Koch M, Schulze J, Hansen U, Ashwodt T, Keene DR, Brunken WJ, et al. A novel marker of tissue junctions, collagen XXII. J Biol Chem 2004;279:22514–21. DOI
Eggermann K, Gläser D, Abicht A, Wirth B. Spinal muscular atrophy (SMA): best practice of diagnostics, newborn screening and therapy. Med Genet. 2020;32:263–72.
Wayhelova M, Oppelt J, Smetana J, Hladilkova E, filkova H, Makaturova E, et al. Novel de novo frameshift variant in the ASXL3 gene in a child with microcephaly and global developmental delay. Mol Med Rep. 2019;20:505–12. PubMed PMC
Wayhelova M, Ryzi M, Oppelt J, Hladilkova E, Vallova V, Krskova L, et al. Novel familial IQSEC2 pathogenic sequence variant associated with neurodevelopmental disorders and epilepsy. Neurogenetics 2020;21:269–78. DOI
Miller DT, Adam MP, Aradhya S, Biesecker LG, Brothman AR, Carter NP, et al. Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities ot congenital abnormalities. Am J Hum Genet 2010;86:749–64. DOI
Gao C, Wang Y, Mei S, Li D, Duan J, Zhang P, et al. Diagnostic yields of trio-WES accompanied by CNVSeq for rare neurodevelopmental disorders. Front Genet 2019;10:485. DOI