Addition of Aegilops U and M Chromosomes Affects Protein and Dietary Fiber Content of Wholemeal Wheat Flour
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
28932231
PubMed Central
PMC5592229
DOI
10.3389/fpls.2017.01529
Knihovny.cz E-zdroje
- Klíčová slova
- Aegilops, U and M genomes, arabinoxylan, dietary fiber, wheat, β-glucan,
- Publikační typ
- časopisecké články MeSH
Cereal grain fiber is an important health-promoting component in the human diet. One option to improve dietary fiber content and composition in wheat is to introduce genes from its wild relatives Aegilops biuncialis and Aegilops geniculata. This study showed that the addition of chromosomes 2Ug, 4Ug, 5Ug, 7Ug, 2Mg, 5Mg, and 7Mg of Ae. geniculata and 3Ub, 2Mb, 3Mb, and 7Mb of Ae. biuncialis into bread wheat increased the seed protein content. Chromosomes 1Ug and 1Mg increased the proportion of polymeric glutenin proteins, while the addition of chromosomes 1Ub and 6Ub led to its decrease. Both Aegilops species had higher proportions of β-glucan compared to arabinoxylan (AX) than wheat lines, and elevated β-glucan content was also observed in wheat chromosome addition lines 5U, 7U, and 7M. The AX content in wheat was increased by the addition of chromosomes 5Ug, 7Ug, and 1Ub while water-soluble AX was increased by the addition of chromosomes 5U, 5M, and 7M, and to a lesser extent by chromosomes 3, 4, 6Ug, and 2Mb. Chromosomes 5Ug and 7Mb also affected the structure of wheat AX, as shown by the pattern of oligosaccharides released by digestion with endoxylanase. These results will help to map genomic regions responsible for edible fiber content in Aegilops and will contribute to the efficient transfer of wild alleles in introgression breeding programs to obtain wheat varieties with improved health benefits. Key Message: Addition of Aegilops U- and M-genome chromosomes 5 and 7 improves seed protein and fiber content and composition in wheat.
Zobrazit více v PubMed
AACC International (1995). Approved Methods 32-23.01. Beta-Glucan Content of Barley and Oats – Rapid Enzymatic Procedure. St. Paul, MN: AACC International.
Ahmadpoor F., Asghari-Zakaria R., Firoozi B., Shahbazi H. (2014). Investigation of diversity in Aegilops biuncialis and Aegilops umbellulata by A-PAGE. Nat. Prod. Res. 28 1626–1636. 10.1080/14786419.2014.931392 PubMed DOI
Anders N., Wilkinson M. D., Lovegrove A., Freeman J., Tryfona T., Pellny T. K., et al. (2012). Glycosyl transferases in family 61 mediate arabinofuranosyl transfer onto xylan in grasses. Proc. Natl. Acad. Sci. U.S.A. 109 989–993. 10.1073/pnas.1115858109 PubMed DOI PMC
Anderson J. W., Baird P., Davis R. H., Jr., Ferreri S., Knudtson M., Koraym A., et al. (2009). Health benefits of dietary fiber. Nutr. Rev. 67 188–205. 10.1111/j.1753-4887.2009.00189.x PubMed DOI
Andersson A. A. M., Kamal-Eldin A., Fras A., Boros D., Aman P. (2008). Alkylresorcinols in wheat varieties in the HEALTHGRAIN diversity screen. J. Agric. Food Chem. 56 9722–9725. 10.1021/jf8011344 PubMed DOI
Bálint A., Kovács G., Erdei L., Sutka J. (2001). Comparison of the Cu, Zn, Fe, Ca and Mg contents of the grains of wild, ancient and cultivated wheat species. Cereal Res. Commun. 29 375–382.
Bamforth C. W. (2010). The enzymology of cell wall breakdown during malting and mashing: An Overview. Tech. Q. Mast. Brew. Assoc. Am. 47 309–321. 10.1094/TQ-47-1-0309-01 DOI
Bandou H., Rodriguez-Quijano M., Carrillo J. M., Branlard G., Zaharieva M., Monneveux P. (2009). Morphological and genetic variation in Aegilops geniculata from Algeria. Plant Syst. Evol. 277 85–97. 10.1007/s00606-008-0106-z DOI
Batey I. L., Gupta R. B., MacRitchie F. (1991). Use of size-exclusion high performance liquid chromatography in the study of wheat flour proteins: an improved chromatographic procedure. Cereal Chem. 68 207–209.
Bedford M. R., Schulze H. (1998). Exogenous enzymes for pigs and poultry. Nutr. Res. Rev. 11 91–114. 10.1079/NRR19980007 PubMed DOI
Biliaderis C. G., Izydorczyk M. S., Rattan O. (1995). Effect of arabinoxylans on bread-making quality of wheat flours. Food Chem. 53 165–171. 10.1016/0308-8146(95)90783-4 DOI
Bonnand-Ducasse M., Della Valle G., Lefebvre J., Saulnier L. (2010). Effect of wheat dietary fibres on bread dough development and rheological properties. J. Cereal Sci. 52 200–206. 10.1016/j.jcs.2010.05.006 DOI
Boros D., Lukaszewski A. J., Aniol A., Ochodzki P. (2002). Chromosome location of genes controlling the content of dietary fibre and arabinoxylans in rye. Euphytica 128 1–8. 10.1023/A:1020639601959 DOI
Brennan C. S., Cleary L. J. (2007). Utilisation Glucagel®in the β-glucan enrichment of breads A physicochemical and nutritional evaluation. Food Res. Int. 40 291–296. 10.1016/j.foodres.2006.09.014 DOI
Brouns F. J. P. H., van Buul V. J., Shewry P. R. (2013). Does wheat make us fat and sick? J. Cereal Sci. 58 209–215. 10.1016/j.jcs.2013.06.002 DOI
Buksa K., Nowotna A., Ziobro R. (2016). Application of cross-linked and hydrolyzed arabinoxylans in baking of model rye bread. Food Chem. 192 991–996. 10.1016/j.foodchem.2015.07.104 PubMed DOI
Burton R. A., Jobling S. A., Harvey A. J., Shirley N. J., Mather D. E., Bacic A., et al. (2008). The genetics and transcriptional profiles of the cellulose synthase-like HvCslF gene family in barley. Plant Physiol. 146 1821–1833. 10.1104/pp.107.114694 PubMed DOI PMC
Burton R. A., Wilson S. M., Hrmova M., Harvey A. J., Shirley N. J., Medhurst A., et al. (2006). Cellulose synthase-like CslF genes mediate the synthesis of cell wall (1,3;1,4)-beta-D-glucans. Science 311 1940–1942. 10.1126/science.1122975 PubMed DOI
Buttriss J. L., Stokes C. S. (2008). Dietary fibre and health: an overview. Nutr. Bull. 33 186–200. 10.1111/j.1467-3010.2008.00705.x DOI
Cavallero A., Empilli S., Brighenti F., Stanca A. M. (2002). High (1-3, 1-4)-β-glucan fractions in bread making and their effect on human glycemic response. J. Cereal Sci. 36 59–66. 10.1006/jcrs.2002.0454 DOI
Charmet G., Masood-Quraishi U., Ravel C., Romeuf I., Rakszegi M., Guillon F., et al. (2009). Genetics of dietary fibre in bread wheat. Euphytica 170 155–168. 10.1007/s10681-009-0019-0 DOI
Cleary L. J., Andersson R., Brennan C. S. (2007). The behaviour and susceptibility to degradation of high and low molecular weight barley β-glucan in wheat bread during baking and in vitro digestion. Food Chem. 102 889–897. 10.1016/j.foodchem.2006.06.027 DOI
Colmer T. D., Flowers T. J., Munns R. (2006). Use of wild relatives to improve salt tolerance in wheat. J. Exp. Bot. 57 1059–1078. 10.1093/jxb/erj124 PubMed DOI
Courtin C. M., Delcour J. (1998). Physicochemical and bread-making properties of low molecular weight wheat-derived Arabinoxylans. J. Agric. Food Chem. 46 4066–4073. 10.1021/jf980339t DOI
Courtin C. M., Delcour J. (2002). Arabinoxylans and endoxylanases in wheat flour bread-making. J. Cereal Sci. 35 225–243. 10.1006/jcrs.2001.0433 DOI
Cseh A., Kruppa K., Molnár I., Rakszegi M., Doležel J., Molnár-Láng M. (2011). Characterization of a new 4BS.7HL wheat/barley translocation line using GISH, FISH and SSR markers and its effect on the β-glucan content of wheat. Genome 54 795–804. 10.1139/g11-044 PubMed DOI
Cseh A., Soós V., Rakszegi M., Türkösi E., Balázs E., Molnár-Láng M. (2013). Expression of HvCslF9 and HvCslF6 barley genes in the genetic background of wheat and their influence on the wheat β-glucan content. Ann. Appl. Biol. 163 142–150. 10.1111/aab.12043 DOI
Cui W., Wood P. J. (2000). “Relationships between structural features, molecular weight and rheological properties of cereal beta-D- glucans,” in Hydrocolloids, PT 1: Physical Chemistry and Industrial Application of Gels, Polysaccharides and Proteins, ed. Nishinari K. (Amsterdam: Elsevier; ), 159–168.
Cui W., Wood P. J., Blackwell B., Nikiforuk J. (2000). Physicochemical properties and structural characterization by two-dimensional NMR spectroscopy of wheat β-D-glucan—comparison with other cereal β-D-glucans. Carbohydr. Polym. 41 249–258. 10.1016/S0144-8617(99)00143-5 DOI
Cyran M., Rakowska M., Miazga D. (1996). Chromosomal location of factors affecting content and composition of nonstarch polysaccharides in wheat-rye addition lines. Euphytica 89 153–157. 10.1007/BF00015732 DOI
Dai S. F., Zhao L., Xue X. F., Jia Y. N., Liu D. C., Pu Z. J., et al. (2015). Analysis of high-molecular-weight glutenin subunits in five amphidiploids and their parental diploid species Aegilops umbellulata and Aegilops uniaristata. Plant Genet. Resour. 13 186–189. 10.1017/S1479262114000719 DOI
Doblin M. S., Pettolino F., Bacic A. (2010). Plant cell walls: the skeleton of the plant world. Funct. Plant Biol. 37 357–381. 10.1071/FP09279 DOI
Doblin M. S., Pettolino F. A., Wilson S. M., Campbell R., Burton R. A., Fincher G. B., et al. (2009). A barley cellulose synthase-like CSLH gene mediates (1,3;1,4)-beta-D-glucan synthesis in transgenic Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 106 5996–6001. 10.1073/pnas.0902019106 PubMed DOI PMC
Doležel J., Vrána J., Cápal P., Kubaláková M., Burešová V., Šimková H. (2014). Advances in plant chromosome genomics. Biotechnol. Adv. 32 122–136. 10.1016/j.biotechadv.2013.12.011 PubMed DOI
Douglas S. G. (1981). A rapid method for the determination of pentosans in wheat flour. Food Chem. 7 139–145. 10.1016/0308-8146(81)90059-5 DOI
Dulai S., Molnár I., Szopkó D., Darkó É, Vojtkó A., Sass-Gyarmati A., et al. (2014). Wheat-Aegilops biuncialis amphiploids have efficient photosynthesis and biomass production during osmotic stress. J. Plant Physiol. 171 509–517. 10.1016/j.jplph.2013.11.015 PubMed DOI
Farkas A., Molnár I., Dulai S., Rapi S., Oldal V., Cseh A., et al. (2014). Increased micronutrient content (Zn, Mn) in the 3Mb(4B) wheat-Aegilops biuncialis substitution and 3Mb.4BS translocation identified by GISH and FISH. Genome 57 61–67. 10.1139/gen-2013-0204 PubMed DOI
Finnie S. M., Bettge A. D., Morris C. F. (2006). Influence of cultivar and environment on water-soluble and water-insoluble arabinoxylans in soft wheat. Cereal Chem. 83 617–623. 10.1094/CC-83-0617 DOI
Frederix S. A., Van Hoeymissen K., Courtin C. M., Delcour J. A. (2004). Water-extractable and water-unextractable arabinoxylans affect gluten agglomeration behavior during wheat flour gluten-starch separation. J. Agric. Food Chem. 52 7950–7956. 10.1021/jf049041v PubMed DOI
Freeman J., Lovegrove A., Wilkinson M. D., Saulnier L., Shewry P. R., Mitchell R. A. C. (2016). Effect of suppression of arabinoxylan synthetic genes in wheat endosperm on chain length of arabinoxylan and extract viscosity. Plant Biotechnol. J. 14 109–116. 10.1111/pbi.12361 PubMed DOI PMC
Friebe B., Jiang J., Raupp W. J., McIntosh R. A., Gill B. S. (1996). Characterization of wheat alien translocations conferring resistance to diseases and pests: current status. Euphytica 71 59–87. 10.1007/BF00035277 DOI
Friebe B., Tuleen N. A., Gill B. S. (1999). Development and identification of a complete set of Triticum aestivum–Ae. geniculata chromosome addition lines. Genome 42 374–380. 10.1139/gen-42-3-374 DOI
Garg M., Tsujimoto H., Gupta R. K., Kumar A., Kaur N., Kumar R., et al. (2016). Chromosome specific substitution lines of Aegilops geniculata alter parameters of bread making quality of wheat. PLoS ONE 11:e0162350 10.1371/journal.pone.0162350 PubMed DOI PMC
Gebruers K., Dornez E., Bedo Z., Rakszegi M., Fras A., Boros D., et al. (2010). Environment and genotype effects on the content of dietary fiber and its components in wheat in the HEALTHGRAIN diversity screen. J. Agric. Food Chem. 58 9353–9361. 10.1021/jf100447g PubMed DOI
Gebruers K., Dornez E., Boros D., Fras A., Dynkowska W., Bedo Z., et al. (2008). Variation in the content of dietary fiber and components thereof in wheats in the HEALTHGRAIN diversity screen. J. Agric. Food Chem. 56 9740–9749. 10.1021/jf800975w PubMed DOI
Heinio R. L., Noort M. W. J., Katina K., Alam S. A., Sozer N., de Kock H. L., et al. (2016). Sensory characteristics of wholegrain and bran-rich cereal foods - A review. Trends Food Sci. Technol. 47 25–38. 10.1016/j.tifs.2015.11.002 DOI
Hesselman K., Elwinger K., Nilsson M., Thomke S. (1981). The effect of beta-glucanase supplementation, stage of ripeness, and storage treatment of barley in diets fed to broiler chickens. Poult. Sci. 60 2664–2671. 10.3382/ps.0602664 DOI
Hoffmann R. A., Leeflang B. R., de Barse M. M. J., Kamerling J. P., Vliegenthart J. F. G. (1991). Characterisation of 1H-N.M.R. spectroscopy of oligosaccharides, derived from arabinoxylans of white endosperm of wheat, that contain the elements -4) [α-L-Araf-(1-3)]-β-D-Xylp-(1-or-4)[α-L-Araf-(1-2)][α-L-Araf-(1-3)]-β-D-Xylp-(1-. Carbohydr. Res. 221 63–81. 10.1016/0008-6215(91)80049-S PubMed DOI
Houston K., Russell J., Schreiber M., Halpin C., Oakey H., Washington J. M., et al. (2014). A genome wide association scan for (1,3;1,4)-β-glucan content in the grain of contemporary 2-row spring and winter barleys. BMC Genomics 15:907 10.1186/1471-2164-15-907 PubMed DOI PMC
Igartua E., Hayes P. M., Thomas W. T. B., Meyer R., Mather D. E. (2002). Genetic control of quantitative grain and malt quality traits in barley. J. Crop Prod. 5 131–164. 10.1300/J144v05n01_06 DOI
International Association for Cereal Science and Technology ICC 105/2 (1995). Determination of Crude Protein in Cereals and Cereal Products for Food and for Feed. Vienna: International Association for Cereal Science and Technology.
International Association for Cereal Science and Technology ICC 166 (1998). Determination of β-glucan in Barley, Oat and Rye. Vienna: International Association for Cereal Science and Technology.
Izydorczyk M. S., Biliaderis C. G. (1994). Studies on the structure of wheat-endosperm arabinoxylans. Carbohydr. Polym. 24 61–71. 10.1016/0144-8617(94)90118-X DOI
Izydorczyk M. S., Dexter J. E. (2008). Barley β-glucans and arabinoxylans: Molecular structure, physicochemical properties, and uses in food products – a Review. Food Res. Int. 41 850–868. 10.1016/j.foodres.2008.04.001 DOI
Jiang G., Vasanthan T. (2000). MALDI-MS and HPLC quantification of oligosaccharides of lichenase-hydrolyzed water-soluble b-glucan from ten barley varieties. J. Agric. Food Chem. 48 3305–3310. 10.1021/jf0001278 PubMed DOI
Jones J. M., Adams J., Harriman C., Miller C., Van der Kamp J. W. (2015). Nutritional impacts of different whole grain milling techniques: a review of milling practices and existing data. Cereal Foods World 60 130–139. 10.1094/CFW-60-3-0130 DOI
Kozub N. A., Sozinov I. A., Xynias I. N., Sozinov A. A. (2011). Allelic variation at high-molecular-weight glutenin subunit loci in Aegilops biuncialis Vis. Russ. J. Genet. 47 1078–1083. 10.1134/S1022795411090092 PubMed DOI
Lafiandra D., Riccardi G., Shewry P. R. (2014). Improving cereal grain carbohydrates for diet and health. J. Cereal Sci. 59 312–326. 10.1016/j.jcs.2014.01.001 PubMed DOI PMC
Larroque O. R., Békés F. (2000). Rapid size-exclusion chromatography analysis of molecular size distribution for wheat endosperm protein. Cereal Chem. 77 451–453. 10.1094/CCHEM.2000.77.4.451 DOI
Lazaridou A., Biliaderis C. G. (2007). Molecular aspects of cereal β-glucan functionality: physical properties, technological applications and physiological effects. J. Cereal Sci. 46 101–118. 10.1016/j.jcs.2007.05.003 DOI
Lazaridou A., Biliaderis C. G., Izydorczyk M. S. (2003). Molecular size effects on rheological properties of oat beta-glucans in solution and gels. Food Hydrocoll. 17 693–712. 10.1016/S0268-005X(03)00036-5 DOI
Lazaridou A., Biliaderis C. G., Micha-Screttas M., Steele B. R. (2004). A comparative study on structure-function relations of mixed linkage (1-3), (1-4) linear β-D-glucans. Food Hydrocoll. 18 837–855. 10.1016/j.foodhyd.2004.01.002 DOI
Li S., Morris C. F., Bettge A. D. (2009). Genotype and environment variation for arabinoxylans in hard winter and spring wheats of the US Pacific Northwest. Cereal Chem. 86 88–95. 10.1094/CCHEM-86-1-0088 DOI
Lovegrove A., Wilkinson M. D., Freeman J., Pellny T. K., Tosi P., Saulnier L., et al. (2013). RNA interference suppression of genes in glycosyl transferase families 43 and 47 in wheat starchy endosperm causes large decreases in arabinoxylan content. Plant Physiol. 163 95–107. 10.1104/pp.113.222653 PubMed DOI PMC
Marcotuli I., Houston K., Schwerdt J. G., Waugh R., Fincher G. B., Burton R. A., et al. (2016). Genetic diversity and genome wide association study of β-glucan content in tetraploid wheat grains. PLoS ONE 11:e0152590 10.1371/journal.pone.0152590 PubMed DOI PMC
Marcotuli I., Houston K., Waugh R., Fincher G. B., Burton R. A., Blanco A., et al. (2015). Genome wide association mapping for arabinoxylan content in a collection of tetraploid wheats. PLoS ONE 10:e0132787 10.1371/journal.pone.0132787 PubMed DOI PMC
Mares D. J., Stone B. A. (1973). Studies on wheat endosperm. I. Chemical composition and ultrastructure of the cell walls. Aust. J. Biol. Sci. 26 793–812. 10.1071/BI9730793 DOI
Margulies M., Egholm M., Altman W. E., Attiya S., Bader J. S., Bemben L. A., et al. (2005). Genome sequencing in microfabricated high-density picolitre reactors. Nature 437 376–380. 10.1038/nature03959 PubMed DOI PMC
Martinant J. P., Billot A., Bouguennec A., Charmet G., Saulnier L., Branlard G. (1999). Genetic and environmental variations in water-extractable arabinoxylans content and flour extract viscosity. J. Cereal Sci. 30 45–48. 10.1006/jcrs.1998.0259 DOI
Martis M. M., Zhou R., Haseneyer G., Schmutzer T., Vrána J., Kubaláková M., et al. (2013). Reticulate evolution of the rye genome. Plant Cell 25 3685–3698. 10.1105/tpc.113.114553 PubMed DOI PMC
Mayer K. F. X., Martis M., Hedley P. E., Šimková H., Liu H., Morris J. A., et al. (2011). Unlocking the barley genome by chromosomal and comparative genomics. Plant Cell 23 1249–1263. 10.1105/tpc.110.082537 PubMed DOI PMC
McIntosh G. H., Whyte J., McArthur R., Nestel P. J. (1991). Barley and wheat foods – Influence on plasma-cholesterol concentrations in hypercholesterolemic men. Am. J. Clin. Nutr. 53 1205–1209. PubMed
Medouri A., Bellil I., Khelifi D. (2015). Polymorphism at high molecular weight glutenin subunits and morphological diversity of Aegilops geniculata Roth collected in Algeria. Cereal Res. Commun. 43 272–283. 10.1556/CRC.2014.0042 DOI
Mikó P., Löschenberger F., Hiltbrunner J., Aebi R., Megyeri M., Kovács G., et al. (2014). Comparison of bread wheat varieties with different breeding origin under organic and low input management. Euphytica 199 69–80. 10.1016/j.dib.2016.04.065 DOI
Miller S. S., Wood P. J., Pietrzak L. N., Fulcher R. G. (1993). Mixed linkage beta glucans, protein content, and kernel weight in Avena species. Cereal Chem. 70 231–233.
Mitchell R. A. C., Dupree P., Shewry P. R. (2007). A novel bioinformatics approach identifies candidate genes for the synthesis and feruloylation of arabinoxylan. Plant Physiol. 144 43–53. 10.1104/pp.106.094995 PubMed DOI PMC
Molina-Cano J. L., Moralejo M., Elia M., Munoz P., Russell J. R., Perez-Vendrell A. M., et al. (2007). QTL analysis of a cross between European and North American malting barleys reveals a putative candidate gene for beta-glucan content on chromosome 1H. Mol. Breed. 19 275–284. 10.1007/s11032-006-9075-5 DOI
Molnár I., Gáspár L., Sárvári É, Dulai S., Hoffmann B., Molnár-Láng M., et al. (2004). Physiological and morphological responses to water stress in Aegilops biuncialis and Triticum aestivum genotypes with differing tolerance to drought. Funct. Plant Biol. 31 1149–1159. 10.1071/FP03143 PubMed DOI
Molnár I., Vrána J., Burešová V., Cápal P., Farkas A., Darkó É, et al. (2016). Dissecting the U, M, S and C genomes of wild relatives of bread wheat (Aegilops spp.) into chromosomes and exploring their synteny with wheat. Plant J. 88 452–467. 10.1111/tpj.13266 PubMed DOI
Molnár-Láng M., Linc G., Nagy E. D., Schneider A., Molnár I. (2002). Molecular cytogenetic analysis of wheat-alien hybrids and derivatives. Acta Agron. Hung. 50 303–311. 10.1556/AAgr.50.2002.3.8 DOI
Molnár-Láng M., Linc G., Sutka J. (1996). Transfer of the recessive crossability allele kr1 from Chinese Spring into the winter wheat variety Martonvásári 9. Euphytica 90 301–305. 10.1007/BF00027480 DOI
Morales-Ortega A., Carvajal-Millan E., Lopez-Franco Y., Rascon-Chu A., Lizardi- Mendoza J., Torres-Chavez P., et al. (2013). Characterization of water extractable arabinoxylans from a spring wheat flour: rheological properties and microstructure. Molecules 18 8417–8428. 10.3390/molecules18078417 PubMed DOI PMC
MSZ 6367/4-86 (1987). Edible, Fodder and Industrial Seeds Husked Products. Determination of Test Weight, GradeThousand Kernel Weight and Classification. Budapest: Hungarian Standards Institution; Available at: www.mszt.hu
Nemeth C., Freeman J., Jones H. D., Sparks C., Pellny T. K., Wilkinson M. D., et al. (2010). Downregulation of the CSLF6 gene results in decreased (1,3;1,4)-β-D-glucan in endosperm of wheat. Plant Physiol. 152 1209–1218. 10.1104/pp.109.151712 PubMed DOI PMC
Noort M. W. J., van Haaster D., Hemery Y., Schols H. A., Hamer R. J. (2010). The effect of particle size of wheat bran fractions on bread quality - Evidence for fibre protein interactions. J. Cereal Sci. 52 59–64. 10.1016/j.jcs.2010.03.003 DOI
Ordaz-Ortiz J. J., Devaux M. F., Saulnier L. (2005). Classification of wheat varieties based on structural features of arabinoxylans as revealed by endoxylanase treatment of flour and grain. J. Agric. Food Chem. 53 8349–8356. 10.1021/jf050755v PubMed DOI
Ordaz-Ortiz J. J., Guillon F., Tranquet O., Dervilly-Pinel G., Tran V., Saulnier L. (2004). Specificity of monoclonal antibodies generated against arabinoxylans of cereal grains. Carbohydr. Polym. 57 425–433. 10.1016/j.carbpol.2004.05.016 DOI
Ordaz-Ortiz J. J., Saulnier L. (2005). Structural variability of arabinoxylans from wheat flour. Comparison of water-extractable and xylanase-extractable arabinoxylans. J. Cereal Sci. 42 119–125. 10.1016/j.jcs.2004.02.004 DOI
Payne P. I. (1987). Genetics of wheat storage proteins and the effect of allelic variation on bread-making quality. Annu. Rev. Plant Physiol. 38 141–153. 10.1146/annurev.pp.38.060187.001041 DOI
Pellny T. K., Lovegrove A., Freeman J., Tosi P., Love C. G., Knox J. P., et al. (2012). Cell walls of developing wheat starchy endosperm: comparison of composition and RNA-Seq transcriptome. Plant Physiol. 158 612–627. 10.1104/pp.111.189191 PubMed DOI PMC
Perlin A. S. (1951). Structure of the soluble pentosans of wheat flours. Cereal Chem. 28 382–393.
Pirgozliev V., Rose S. P., Pellny T., Amerah A. M., Wickramasinghe M., Ulker M., et al. (2015). Energy utilization and growth performance of chickens fed novel wheat inbred lines selected for different pentosan levels with and without xylanase supplementation. Poult. Sci. 94 232–239. 10.3382/ps/peu059 PubMed DOI PMC
Quraishi U. M., Murat F., Abrouk M., Pont C., Confolent C., Oury F. X., et al. (2011). Combined meta-genomics analyses unravel candidate genes for the grain dietary fiber content in bread wheat (Triticum aestivum L.). Funct. Integr. Genomics 11 71–83. 10.1007/s10142-010-0183-2 PubMed DOI
Rakszegi M., Lang L., Bedo Z., Shewry P. R. (2008). Composition and end-use quality of 150 wheat lines selected for the HEALTHGRAIN diversity screen. J. Agric. Food Chem. 56 9750–9757. 10.1021/jf8009359 PubMed DOI
Rawat N., Tiwari V. K., Singh N., Randhawa G. S., Singh K., Chhuneja P., et al. (2009). Evaluation and utilization of Aegilops and wild Triticum species for enhancing iron and zinc content in wheat. Genet. Resour. Crop Evol. 56 53–64. 10.1007/s10722-008-9344-8 DOI
Rekika D., Monneveux P., Havaux M. (1997). The in vivo tolerance of photosynthetic membranes to high and low temperatures in cultivated and wild wheats of the Triticum and Aegilops genera. J. Plant Physiol. 150 734–738. 10.1016/S0176-1617(97)80291-X DOI
Renard C. M. G. C., Rouau X., Thibault J. F. (1990). Structure and properties of water-soluble pentosans from wheat flour. Sci. Aliments 10 283–292.
Rey E., Molnár I., Doležel J. (2015). “Genomics of wild relatives and alien introgressions,” in Alien Introgression in Wheat, eds Molnár-Láng M., Ceoloni C., Doležel J. (Cham: Springer International Publishing; ), 347–381.
Saulnier L., Robert P., Grintchenko M., Jamme F., Bouchet B., Guillon F. (2009). Wheat endosperm cell walls: spatial heterogeneity of polysaccharide structure and composition using micro-scale enzymatic fingerprinting and FT-IR microspectroscopy. J. Cereal Sci. 50 312–317. 10.1016/j.jcs.2009.05.003 DOI
Saulnier L., Sado P. E., Branlard G., Charmet G., Guillon F. (2007). Wheat arabinoxylans: exploiting variation in amount and composition to develop enhanced varieties. J. Cereal Sci. 46 261–281. 10.1016/j.jcs.2007.06.014 DOI
Schneider A., Linc G., Molnár I., Molnár-Láng M. (2005). Molecular cytogenetic characterization of Aegilops biuncialis and its use for the identification of five derived wheat-Aegilops biuncialis disomic addition lines. Genome 48 1070–1082. 10.1139/g05-062 PubMed DOI
Schneider A., Molnár I., Molnár-Láng M. (2008). Utilisation of Aegilops (goatgrass) species to widen the genetic diversity of cultivated wheat. Euphytica 163 1–19. 10.1007/s10681-007-9624-y DOI
Schooneveld-Bergmans M. E. F., Beldman G., Voragen A. G. J. (1999). Structural features of (glucurono) arabinoxylans extracted from wheat bran by barium hydroxide. J. Cereal Sci. 29 63–75. 10.1006/jcrs.1998.0222 DOI
Schreiber M., Wright F., MacKenzie K., Hedley P. E., Schwerdt J. G., Little A., et al. (2014). The barley genome sequence assembly reveals three additional members of the CslF (1,3;1,4)-β-Glucan synthase gene family. PLoS ONE 9:e90888 10.1371/journal.pone.0090888 PubMed DOI PMC
Shewry P. R., D’Ovidio R., Lafiandra D., Jenkins J. A., Mills E. N. C., Bekes F. (2009). “Wheat grain proteins,” in Wheat: Chemistry and Technology, eds Khan K., Shewry P. R. (St. Paul, MN: AACC; ), 223–298. 10.1094/9781891127557.008 DOI
Shewry P. R., Freeman J., Wilkinson M., Pellny T., Mitchell R. A. C. (2010a). “Challenges and opportunities for using wheat for biofuel production,” in Energy Crops, eds Halford N., Karp A. (London: Royal Society of Chemistry; ), 13–26.
Shewry P. R., Piironen V., Lampi A. M., Edelmann M., Kariluoto S., Nurmi T., et al. (2010b). The HEALTHGRAIN wheat diversity screen: effects of genotype and environment on phytochemicals and dietary fiber components. J. Agric. Food Chem. 58 9291–9298. 10.1021/jf100039b PubMed DOI
Shewry P. R., Saulnier L., Guillon F., Gebruers K., Courtin C., Delcour J., et al. (2010c). “Improving the benefits of wheat as a source of dietary fibre,” in Dietary Fibre: New Frontiers for Food and Health, eds van der Kamp J. W., Jones J., McCleary B., Topping D. (Wageningen: Wageningen Academic Publishers; ), 65–78.
Shewry P. R., Halford N. G., Lafiandra D. (2003a). “The genetics of wheat gluten proteins,” in Advances in Genetics Vol. 49 eds Hall J. C., Dunlap J. C., Friedman T. (Cambridge, MA: Academic Press; ), 111–184. PubMed
Shewry P. R., Halford N. G., Tatham A. S., Popineau Y., Lafiandra D., Belton P. (2003b). The high molecular weight subunits of wheat glutenin and their role in determining wheat processing properties. Adv. Food Nutr. Res. 45 221–302. 10.1016/S1043-4526(03)45006-7 PubMed DOI
Shewry P. R., Li L., Piironen V., Lampi A. M., Nystrom L., Rakszegi M., et al. (2008). Phytochemicals and fiber components in oat varieties in the HEALTHGRAIN diversity screen. J. Agric. Food Chem. 56 9777–9784. 10.1021/jf801880d PubMed DOI
Shewry P. R., Tatham A. S., Forde J., Kreis M., Miflin B. J. (1986). The classification and nomenclature of wheat gluten proteins: a reassessment. J. Cereal Sci. 4 97–106. 10.1016/S0733-5210(86)80012-1 DOI
Shu X. L., Rasmussen S. K. (2014). Quantification of amylose, amylopectin, and beta-glucan in search for genes controlling the three major quality traits in barley by genome-wide association studies. Front. Plant Sci. 5:197 10.3389/fpls.2014.00197 PubMed DOI PMC
Šimková H., Svensson J. T., Condamine P., Hřibová E., Suchánková P., Bhat P. R., et al. (2008). Coupling amplified DNA from flow-sorted chromosomes to high-density SNP mapping in barley. BMC Genomics 9:294 10.1186/1471-2164-9-294 PubMed DOI PMC
Skendi A., Papageorgiou M., Biliaderis C. G. (2009). Effect of barley β-glucan molecular size and level on wheat dough rheological properties. J. Food Eng. 91 594–601. 10.1016/j.jfoodeng.2008.10.009 DOI
Storsley J. M., Izydorczyk M. S., You S., Biliaderis C. G., Rossnagel B. (2003). Structure and physicochemical properties of b-glucans and arabinoxylans isolated from hull-less barley. Food Hydrocoll. 17 831–844. 10.1016/S0268-005X(03)00104-8 DOI
Symons L. J., Brennan C. S. (2004). The influence of a (1-3, 1-4)-β-D-glucan rich fraction on the physico-chemical properties and in vitro reducing sugar release of white wheat breads. J. Food Sci. 69 463–467. 10.1111/j.1365-2621.2004.tb10989.x DOI
Taketa S., Yuo T., Tonooka T., Tsumuraya Y., Inagaki Y., Haruyama N., et al. (2012). Functional characterization of barley betaglucanless mutants demonstrates a unique role for CslF6 in (1,3;1,4)-β-D-glucan biosynthesis. J. Exp. Bot. 63 381–392. 10.1093/jxb/err285 PubMed DOI PMC
The International Wheat Genome Sequencing Consortium [IWGSC] (2014). A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 345:1251788 10.1126/science.1251788 PubMed DOI
Tighe P., Duthie G., Vaughan N., Brittenden J., Simpson W. G., Duthie S., et al. (2010). Effect of increased consumption of whole-grain foods on blood pressure and other cardiovascular risk markers in healthy middle-aged persons: a randomized controlled trial. Am. J. Clin. Nutr. 92 733–740. 10.3945/ajcn.2010.29417 PubMed DOI
Tiwari V. K., Wang S., Danilova T., Koo D. H., Vrána J., Kubaláková M., et al. (2015). Exploring the tertiary gene pool of bread wheat: sequence assembly and analysis of chromosome 5Mg of Aegilops geniculata. Plant J. 84 733–746. 10.1111/tpj.13036 PubMed DOI
Toole G. A., Le Gall G., Colquhoun I. J., Nemeth C., Saulnier L., Lovegrove A., et al. (2010). Temporal and spatial changes in cell wall composition in developing grains of wheat cv. Hereward. Planta 232 677–689. 10.1007/s00425-010-1199-5 PubMed DOI
Vaikousi H., Biliaderis C. G., Izydorczyk M. S. (2004). Solution flow behaviour and gelling properties of water- soluble barley (1-3, 1-4)-beta-glucans varying in molecular size. J. Cereal Sci. 39 119–137. 10.1016/j.jcs.2003.09.001 DOI
van Slageren M. W. (1994). Wild Wheats: a Monograph of Aegilops L. and Amblyopyrum (Jaub and Spach) Eig (Poaceae). Wageningen: Wageningen Agricultural University Papers.
Wan Y., Poole R. L., Huttly A. K., Toscano-Underwood C., Feeney K., Welham S., et al. (2008). Transcriptome analysis of grain development in hexaploid wheat. BMC Genomics 9:121 10.1186/1471-2164-9-121 PubMed DOI PMC
Wang S. L., Chen D., Guo G. F., Zhang T., Jiang S. S., Shen X. X. (2012). Molecular characterization of LMW-GS genes from C, N, U and S-s genomes among Aegilops species. Cereal Res. Commun. 40 542–551. 10.1007/s00122-010-1354-1 DOI
Wang Y. J., Wang C. Y., Zhang H., Li H., Liu X. L., Ji W. Q. (2015). Identification and evaluation of disease resistance and HMW-GS composition of Aegilops geniculata Roth. Genet. Resour. Crop Evol. 62 1085–1093. 10.1007/s10722-015-0217-7 DOI
Ward J. L., Poutanen K., Gebruers K., Piironen V., Lampi A. M., Nystrom L., et al. (2008). The HEALTHGRAIN cereal diversity screen: concept, results and prospects. J. Agric. Food Chem. 56 9699–9709. 10.1021/jf8009574 PubMed DOI
Wood P. J. (2007). Cereal β-glucans in diet and health. J. Cereal Sci. 46 230–238. 10.1016/j.jcs.2007.06.012 DOI
Wood P. J., Weisz J., Beer M. U., Newman C. W., Newman R. K. (2003). Structure of (1-3)(1-4)-β-D-glucan in waxy and nonwaxy barley. Cereal Chem. 80 329–332. 10.1094/CCHEM.2003.80.3.329 DOI
Zaharieva M., Gaulin E., Havaux M., Acevedo E., Monneveux P. (2001a). Drought and heat responses in the wild wheat relative Aegilops geniculata Roth. Crop Sci. 41 1321–1329. 10.2135/cropsci2001.4141321x DOI
Zaharieva M., Monneveux P., Henry M., Rivoal R., Valkoun J., Nachit M. M. (2001b). Evaluation of a collection of wild wheat relative Aegilops geniculata Roth and identification of potential sources for useful traits. Euphytica 119 33–38. 10.1023/A:1017500728227 DOI
Zeng W., Jiang N., Nadella R., Killen T. L., Nadella V., Faik A. A. (2010). Glucurono(arabino)xylan synthase complex from wheat contains members of the GT43, GT47, and GT75 families and functions cooperatively. Plant Physiol. 154 78–97. 10.1104/pp.110.159749 PubMed DOI PMC
Zimin A. V., Marçais G., Puiu D., Roberts M., Salzberg S. L., Yorke J. A. (2013). The MaSuRCA genome assembler. Bioinformatics 29 2669–2677. 10.1093/bioinformatics/btt476 PubMed DOI PMC
Identification of New QTLs for Dietary Fiber Content in Aegilops biuncialis