Addition of Aegilops U and M Chromosomes Affects Protein and Dietary Fiber Content of Wholemeal Wheat Flour
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
28932231
PubMed Central
PMC5592229
DOI
10.3389/fpls.2017.01529
Knihovny.cz E-zdroje
- Klíčová slova
- Aegilops, U and M genomes, arabinoxylan, dietary fiber, wheat, β-glucan,
- Publikační typ
- časopisecké články MeSH
Cereal grain fiber is an important health-promoting component in the human diet. One option to improve dietary fiber content and composition in wheat is to introduce genes from its wild relatives Aegilops biuncialis and Aegilops geniculata. This study showed that the addition of chromosomes 2Ug, 4Ug, 5Ug, 7Ug, 2Mg, 5Mg, and 7Mg of Ae. geniculata and 3Ub, 2Mb, 3Mb, and 7Mb of Ae. biuncialis into bread wheat increased the seed protein content. Chromosomes 1Ug and 1Mg increased the proportion of polymeric glutenin proteins, while the addition of chromosomes 1Ub and 6Ub led to its decrease. Both Aegilops species had higher proportions of β-glucan compared to arabinoxylan (AX) than wheat lines, and elevated β-glucan content was also observed in wheat chromosome addition lines 5U, 7U, and 7M. The AX content in wheat was increased by the addition of chromosomes 5Ug, 7Ug, and 1Ub while water-soluble AX was increased by the addition of chromosomes 5U, 5M, and 7M, and to a lesser extent by chromosomes 3, 4, 6Ug, and 2Mb. Chromosomes 5Ug and 7Mb also affected the structure of wheat AX, as shown by the pattern of oligosaccharides released by digestion with endoxylanase. These results will help to map genomic regions responsible for edible fiber content in Aegilops and will contribute to the efficient transfer of wild alleles in introgression breeding programs to obtain wheat varieties with improved health benefits. Key Message: Addition of Aegilops U- and M-genome chromosomes 5 and 7 improves seed protein and fiber content and composition in wheat.
Zobrazit více v PubMed
AACC International (1995).
Ahmadpoor F., Asghari-Zakaria R., Firoozi B., Shahbazi H. (2014). Investigation of diversity in PubMed DOI
Anders N., Wilkinson M. D., Lovegrove A., Freeman J., Tryfona T., Pellny T. K., et al. (2012). Glycosyl transferases in family 61 mediate arabinofuranosyl transfer onto xylan in grasses. PubMed DOI PMC
Anderson J. W., Baird P., Davis R. H., Jr., Ferreri S., Knudtson M., Koraym A., et al. (2009). Health benefits of dietary fiber. PubMed DOI
Andersson A. A. M., Kamal-Eldin A., Fras A., Boros D., Aman P. (2008). Alkylresorcinols in wheat varieties in the HEALTHGRAIN diversity screen. PubMed DOI
Bálint A., Kovács G., Erdei L., Sutka J. (2001). Comparison of the Cu, Zn, Fe, Ca and Mg contents of the grains of wild, ancient and cultivated wheat species.
Bamforth C. W. (2010). The enzymology of cell wall breakdown during malting and mashing: An Overview. DOI
Bandou H., Rodriguez-Quijano M., Carrillo J. M., Branlard G., Zaharieva M., Monneveux P. (2009). Morphological and genetic variation in DOI
Batey I. L., Gupta R. B., MacRitchie F. (1991). Use of size-exclusion high performance liquid chromatography in the study of wheat flour proteins: an improved chromatographic procedure.
Bedford M. R., Schulze H. (1998). Exogenous enzymes for pigs and poultry. PubMed DOI
Biliaderis C. G., Izydorczyk M. S., Rattan O. (1995). Effect of arabinoxylans on bread-making quality of wheat flours. DOI
Bonnand-Ducasse M., Della Valle G., Lefebvre J., Saulnier L. (2010). Effect of wheat dietary fibres on bread dough development and rheological properties. DOI
Boros D., Lukaszewski A. J., Aniol A., Ochodzki P. (2002). Chromosome location of genes controlling the content of dietary fibre and arabinoxylans in rye. DOI
Brennan C. S., Cleary L. J. (2007). Utilisation Glucagel DOI
Brouns F. J. P. H., van Buul V. J., Shewry P. R. (2013). Does wheat make us fat and sick? DOI
Buksa K., Nowotna A., Ziobro R. (2016). Application of cross-linked and hydrolyzed arabinoxylans in baking of model rye bread. PubMed DOI
Burton R. A., Jobling S. A., Harvey A. J., Shirley N. J., Mather D. E., Bacic A., et al. (2008). The genetics and transcriptional profiles of the cellulose synthase-like HvCslF gene family in barley. PubMed DOI PMC
Burton R. A., Wilson S. M., Hrmova M., Harvey A. J., Shirley N. J., Medhurst A., et al. (2006). Cellulose synthase-like CslF genes mediate the synthesis of cell wall (1,3;1,4)-beta-D-glucans. PubMed DOI
Buttriss J. L., Stokes C. S. (2008). Dietary fibre and health: an overview. DOI
Cavallero A., Empilli S., Brighenti F., Stanca A. M. (2002). High (1-3, 1-4)-β-glucan fractions in bread making and their effect on human glycemic response. DOI
Charmet G., Masood-Quraishi U., Ravel C., Romeuf I., Rakszegi M., Guillon F., et al. (2009). Genetics of dietary fibre in bread wheat. DOI
Cleary L. J., Andersson R., Brennan C. S. (2007). The behaviour and susceptibility to degradation of high and low molecular weight barley β-glucan in wheat bread during baking and in vitro digestion. DOI
Colmer T. D., Flowers T. J., Munns R. (2006). Use of wild relatives to improve salt tolerance in wheat. PubMed DOI
Courtin C. M., Delcour J. (1998). Physicochemical and bread-making properties of low molecular weight wheat-derived Arabinoxylans. DOI
Courtin C. M., Delcour J. (2002). Arabinoxylans and endoxylanases in wheat flour bread-making. DOI
Cseh A., Kruppa K., Molnár I., Rakszegi M., Doležel J., Molnár-Láng M. (2011). Characterization of a new 4BS.7HL wheat/barley translocation line using GISH, FISH and SSR markers and its effect on the β-glucan content of wheat. PubMed DOI
Cseh A., Soós V., Rakszegi M., Türkösi E., Balázs E., Molnár-Láng M. (2013). Expression of HvCslF9 and HvCslF6 barley genes in the genetic background of wheat and their influence on the wheat β-glucan content. DOI
Cui W., Wood P. J. (2000). “Relationships between structural features, molecular weight and rheological properties of cereal beta-D- glucans,” in
Cui W., Wood P. J., Blackwell B., Nikiforuk J. (2000). Physicochemical properties and structural characterization by two-dimensional NMR spectroscopy of wheat β-D-glucan—comparison with other cereal β-D-glucans. DOI
Cyran M., Rakowska M., Miazga D. (1996). Chromosomal location of factors affecting content and composition of nonstarch polysaccharides in wheat-rye addition lines. DOI
Dai S. F., Zhao L., Xue X. F., Jia Y. N., Liu D. C., Pu Z. J., et al. (2015). Analysis of high-molecular-weight glutenin subunits in five amphidiploids and their parental diploid species DOI
Doblin M. S., Pettolino F., Bacic A. (2010). Plant cell walls: the skeleton of the plant world. DOI
Doblin M. S., Pettolino F. A., Wilson S. M., Campbell R., Burton R. A., Fincher G. B., et al. (2009). A barley cellulose synthase-like CSLH gene mediates (1,3;1,4)-beta-D-glucan synthesis in transgenic Arabidopsis. PubMed DOI PMC
Doležel J., Vrána J., Cápal P., Kubaláková M., Burešová V., Šimková H. (2014). Advances in plant chromosome genomics. PubMed DOI
Douglas S. G. (1981). A rapid method for the determination of pentosans in wheat flour. DOI
Dulai S., Molnár I., Szopkó D., Darkó É, Vojtkó A., Sass-Gyarmati A., et al. (2014). Wheat- PubMed DOI
Farkas A., Molnár I., Dulai S., Rapi S., Oldal V., Cseh A., et al. (2014). Increased micronutrient content (Zn, Mn) in the 3Mb(4B) wheat- PubMed DOI
Finnie S. M., Bettge A. D., Morris C. F. (2006). Influence of cultivar and environment on water-soluble and water-insoluble arabinoxylans in soft wheat. DOI
Frederix S. A., Van Hoeymissen K., Courtin C. M., Delcour J. A. (2004). Water-extractable and water-unextractable arabinoxylans affect gluten agglomeration behavior during wheat flour gluten-starch separation. PubMed DOI
Freeman J., Lovegrove A., Wilkinson M. D., Saulnier L., Shewry P. R., Mitchell R. A. C. (2016). Effect of suppression of arabinoxylan synthetic genes in wheat endosperm on chain length of arabinoxylan and extract viscosity. PubMed DOI PMC
Friebe B., Jiang J., Raupp W. J., McIntosh R. A., Gill B. S. (1996). Characterization of wheat alien translocations conferring resistance to diseases and pests: current status. DOI
Friebe B., Tuleen N. A., Gill B. S. (1999). Development and identification of a complete set of DOI
Garg M., Tsujimoto H., Gupta R. K., Kumar A., Kaur N., Kumar R., et al. (2016). Chromosome specific substitution lines of PubMed DOI PMC
Gebruers K., Dornez E., Bedo Z., Rakszegi M., Fras A., Boros D., et al. (2010). Environment and genotype effects on the content of dietary fiber and its components in wheat in the HEALTHGRAIN diversity screen. PubMed DOI
Gebruers K., Dornez E., Boros D., Fras A., Dynkowska W., Bedo Z., et al. (2008). Variation in the content of dietary fiber and components thereof in wheats in the HEALTHGRAIN diversity screen. PubMed DOI
Heinio R. L., Noort M. W. J., Katina K., Alam S. A., Sozer N., de Kock H. L., et al. (2016). Sensory characteristics of wholegrain and bran-rich cereal foods - A review. DOI
Hesselman K., Elwinger K., Nilsson M., Thomke S. (1981). The effect of beta-glucanase supplementation, stage of ripeness, and storage treatment of barley in diets fed to broiler chickens. DOI
Hoffmann R. A., Leeflang B. R., de Barse M. M. J., Kamerling J. P., Vliegenthart J. F. G. (1991). Characterisation of 1H-N.M.R. spectroscopy of oligosaccharides, derived from arabinoxylans of white endosperm of wheat, that contain the elements -4) [α-L-Araf-(1-3)]-β-D-Xylp-(1-or-4)[α-L-Araf-(1-2)][α-L-Araf-(1-3)]-β-D-Xylp-(1-. PubMed DOI
Houston K., Russell J., Schreiber M., Halpin C., Oakey H., Washington J. M., et al. (2014). A genome wide association scan for (1,3;1,4)-β-glucan content in the grain of contemporary 2-row spring and winter barleys. PubMed DOI PMC
Igartua E., Hayes P. M., Thomas W. T. B., Meyer R., Mather D. E. (2002). Genetic control of quantitative grain and malt quality traits in barley. DOI
International Association for Cereal Science and Technology ICC 105/2 (1995).
International Association for Cereal Science and Technology ICC 166 (1998).
Izydorczyk M. S., Biliaderis C. G. (1994). Studies on the structure of wheat-endosperm arabinoxylans. DOI
Izydorczyk M. S., Dexter J. E. (2008). Barley β-glucans and arabinoxylans: Molecular structure, physicochemical properties, and uses in food products – a Review. DOI
Jiang G., Vasanthan T. (2000). MALDI-MS and HPLC quantification of oligosaccharides of lichenase-hydrolyzed water-soluble b-glucan from ten barley varieties. PubMed DOI
Jones J. M., Adams J., Harriman C., Miller C., Van der Kamp J. W. (2015). Nutritional impacts of different whole grain milling techniques: a review of milling practices and existing data. DOI
Kozub N. A., Sozinov I. A., Xynias I. N., Sozinov A. A. (2011). Allelic variation at high-molecular-weight glutenin subunit loci in PubMed DOI
Lafiandra D., Riccardi G., Shewry P. R. (2014). Improving cereal grain carbohydrates for diet and health. PubMed DOI PMC
Larroque O. R., Békés F. (2000). Rapid size-exclusion chromatography analysis of molecular size distribution for wheat endosperm protein. DOI
Lazaridou A., Biliaderis C. G. (2007). Molecular aspects of cereal β-glucan functionality: physical properties, technological applications and physiological effects. DOI
Lazaridou A., Biliaderis C. G., Izydorczyk M. S. (2003). Molecular size effects on rheological properties of oat beta-glucans in solution and gels. DOI
Lazaridou A., Biliaderis C. G., Micha-Screttas M., Steele B. R. (2004). A comparative study on structure-function relations of mixed linkage (1-3), (1-4) linear β-D-glucans. DOI
Li S., Morris C. F., Bettge A. D. (2009). Genotype and environment variation for arabinoxylans in hard winter and spring wheats of the US Pacific Northwest. DOI
Lovegrove A., Wilkinson M. D., Freeman J., Pellny T. K., Tosi P., Saulnier L., et al. (2013). RNA interference suppression of genes in glycosyl transferase families 43 and 47 in wheat starchy endosperm causes large decreases in arabinoxylan content. PubMed DOI PMC
Marcotuli I., Houston K., Schwerdt J. G., Waugh R., Fincher G. B., Burton R. A., et al. (2016). Genetic diversity and genome wide association study of β-glucan content in tetraploid wheat grains. PubMed DOI PMC
Marcotuli I., Houston K., Waugh R., Fincher G. B., Burton R. A., Blanco A., et al. (2015). Genome wide association mapping for arabinoxylan content in a collection of tetraploid wheats. PubMed DOI PMC
Mares D. J., Stone B. A. (1973). Studies on wheat endosperm. I. Chemical composition and ultrastructure of the cell walls. DOI
Margulies M., Egholm M., Altman W. E., Attiya S., Bader J. S., Bemben L. A., et al. (2005). Genome sequencing in microfabricated high-density picolitre reactors. PubMed DOI PMC
Martinant J. P., Billot A., Bouguennec A., Charmet G., Saulnier L., Branlard G. (1999). Genetic and environmental variations in water-extractable arabinoxylans content and flour extract viscosity. DOI
Martis M. M., Zhou R., Haseneyer G., Schmutzer T., Vrána J., Kubaláková M., et al. (2013). Reticulate evolution of the rye genome. PubMed DOI PMC
Mayer K. F. X., Martis M., Hedley P. E., Šimková H., Liu H., Morris J. A., et al. (2011). Unlocking the barley genome by chromosomal and comparative genomics. PubMed DOI PMC
McIntosh G. H., Whyte J., McArthur R., Nestel P. J. (1991). Barley and wheat foods – Influence on plasma-cholesterol concentrations in hypercholesterolemic men. PubMed
Medouri A., Bellil I., Khelifi D. (2015). Polymorphism at high molecular weight glutenin subunits and morphological diversity of DOI
Mikó P., Löschenberger F., Hiltbrunner J., Aebi R., Megyeri M., Kovács G., et al. (2014). Comparison of bread wheat varieties with different breeding origin under organic and low input management. DOI
Miller S. S., Wood P. J., Pietrzak L. N., Fulcher R. G. (1993). Mixed linkage beta glucans, protein content, and kernel weight in Avena species.
Mitchell R. A. C., Dupree P., Shewry P. R. (2007). A novel bioinformatics approach identifies candidate genes for the synthesis and feruloylation of arabinoxylan. PubMed DOI PMC
Molina-Cano J. L., Moralejo M., Elia M., Munoz P., Russell J. R., Perez-Vendrell A. M., et al. (2007). QTL analysis of a cross between European and North American malting barleys reveals a putative candidate gene for beta-glucan content on chromosome 1H. DOI
Molnár I., Gáspár L., Sárvári É, Dulai S., Hoffmann B., Molnár-Láng M., et al. (2004). Physiological and morphological responses to water stress in PubMed DOI
Molnár I., Vrána J., Burešová V., Cápal P., Farkas A., Darkó É, et al. (2016). Dissecting the U, M, S and C genomes of wild relatives of bread wheat (Aegilops spp.) into chromosomes and exploring their synteny with wheat. PubMed DOI
Molnár-Láng M., Linc G., Nagy E. D., Schneider A., Molnár I. (2002). Molecular cytogenetic analysis of wheat-alien hybrids and derivatives. DOI
Molnár-Láng M., Linc G., Sutka J. (1996). Transfer of the recessive crossability allele kr1 from Chinese Spring into the winter wheat variety Martonvásári 9. DOI
Morales-Ortega A., Carvajal-Millan E., Lopez-Franco Y., Rascon-Chu A., Lizardi- Mendoza J., Torres-Chavez P., et al. (2013). Characterization of water extractable arabinoxylans from a spring wheat flour: rheological properties and microstructure. PubMed DOI PMC
MSZ 6367/4-86 (1987).
Nemeth C., Freeman J., Jones H. D., Sparks C., Pellny T. K., Wilkinson M. D., et al. (2010). Downregulation of the CSLF6 gene results in decreased (1,3;1,4)-β-D-glucan in endosperm of wheat. PubMed DOI PMC
Noort M. W. J., van Haaster D., Hemery Y., Schols H. A., Hamer R. J. (2010). The effect of particle size of wheat bran fractions on bread quality - Evidence for fibre protein interactions. DOI
Ordaz-Ortiz J. J., Devaux M. F., Saulnier L. (2005). Classification of wheat varieties based on structural features of arabinoxylans as revealed by endoxylanase treatment of flour and grain. PubMed DOI
Ordaz-Ortiz J. J., Guillon F., Tranquet O., Dervilly-Pinel G., Tran V., Saulnier L. (2004). Specificity of monoclonal antibodies generated against arabinoxylans of cereal grains. DOI
Ordaz-Ortiz J. J., Saulnier L. (2005). Structural variability of arabinoxylans from wheat flour. Comparison of water-extractable and xylanase-extractable arabinoxylans. DOI
Payne P. I. (1987). Genetics of wheat storage proteins and the effect of allelic variation on bread-making quality. DOI
Pellny T. K., Lovegrove A., Freeman J., Tosi P., Love C. G., Knox J. P., et al. (2012). Cell walls of developing wheat starchy endosperm: comparison of composition and RNA-Seq transcriptome. PubMed DOI PMC
Perlin A. S. (1951). Structure of the soluble pentosans of wheat flours.
Pirgozliev V., Rose S. P., Pellny T., Amerah A. M., Wickramasinghe M., Ulker M., et al. (2015). Energy utilization and growth performance of chickens fed novel wheat inbred lines selected for different pentosan levels with and without xylanase supplementation. PubMed DOI PMC
Quraishi U. M., Murat F., Abrouk M., Pont C., Confolent C., Oury F. X., et al. (2011). Combined meta-genomics analyses unravel candidate genes for the grain dietary fiber content in bread wheat ( PubMed DOI
Rakszegi M., Lang L., Bedo Z., Shewry P. R. (2008). Composition and end-use quality of 150 wheat lines selected for the HEALTHGRAIN diversity screen. PubMed DOI
Rawat N., Tiwari V. K., Singh N., Randhawa G. S., Singh K., Chhuneja P., et al. (2009). Evaluation and utilization of DOI
Rekika D., Monneveux P., Havaux M. (1997). The in vivo tolerance of photosynthetic membranes to high and low temperatures in cultivated and wild wheats of the Triticum and DOI
Renard C. M. G. C., Rouau X., Thibault J. F. (1990). Structure and properties of water-soluble pentosans from wheat flour.
Rey E., Molnár I., Doležel J. (2015). “Genomics of wild relatives and alien introgressions,” in
Saulnier L., Robert P., Grintchenko M., Jamme F., Bouchet B., Guillon F. (2009). Wheat endosperm cell walls: spatial heterogeneity of polysaccharide structure and composition using micro-scale enzymatic fingerprinting and FT-IR microspectroscopy. DOI
Saulnier L., Sado P. E., Branlard G., Charmet G., Guillon F. (2007). Wheat arabinoxylans: exploiting variation in amount and composition to develop enhanced varieties. DOI
Schneider A., Linc G., Molnár I., Molnár-Láng M. (2005). Molecular cytogenetic characterization of PubMed DOI
Schneider A., Molnár I., Molnár-Láng M. (2008). Utilisation of DOI
Schooneveld-Bergmans M. E. F., Beldman G., Voragen A. G. J. (1999). Structural features of (glucurono) arabinoxylans extracted from wheat bran by barium hydroxide. DOI
Schreiber M., Wright F., MacKenzie K., Hedley P. E., Schwerdt J. G., Little A., et al. (2014). The barley genome sequence assembly reveals three additional members of the PubMed DOI PMC
Shewry P. R., D’Ovidio R., Lafiandra D., Jenkins J. A., Mills E. N. C., Bekes F. (2009). “Wheat grain proteins,” in DOI
Shewry P. R., Freeman J., Wilkinson M., Pellny T., Mitchell R. A. C. (2010a). “Challenges and opportunities for using wheat for biofuel production,” in
Shewry P. R., Piironen V., Lampi A. M., Edelmann M., Kariluoto S., Nurmi T., et al. (2010b). The HEALTHGRAIN wheat diversity screen: effects of genotype and environment on phytochemicals and dietary fiber components. PubMed DOI
Shewry P. R., Saulnier L., Guillon F., Gebruers K., Courtin C., Delcour J., et al. (2010c). “Improving the benefits of wheat as a source of dietary fibre,” in
Shewry P. R., Halford N. G., Lafiandra D. (2003a). “The genetics of wheat gluten proteins,” in PubMed
Shewry P. R., Halford N. G., Tatham A. S., Popineau Y., Lafiandra D., Belton P. (2003b). The high molecular weight subunits of wheat glutenin and their role in determining wheat processing properties. PubMed DOI
Shewry P. R., Li L., Piironen V., Lampi A. M., Nystrom L., Rakszegi M., et al. (2008). Phytochemicals and fiber components in oat varieties in the HEALTHGRAIN diversity screen. PubMed DOI
Shewry P. R., Tatham A. S., Forde J., Kreis M., Miflin B. J. (1986). The classification and nomenclature of wheat gluten proteins: a reassessment. DOI
Shu X. L., Rasmussen S. K. (2014). Quantification of amylose, amylopectin, and beta-glucan in search for genes controlling the three major quality traits in barley by genome-wide association studies. PubMed DOI PMC
Šimková H., Svensson J. T., Condamine P., Hřibová E., Suchánková P., Bhat P. R., et al. (2008). Coupling amplified DNA from flow-sorted chromosomes to high-density SNP mapping in barley. PubMed DOI PMC
Skendi A., Papageorgiou M., Biliaderis C. G. (2009). Effect of barley β-glucan molecular size and level on wheat dough rheological properties. DOI
Storsley J. M., Izydorczyk M. S., You S., Biliaderis C. G., Rossnagel B. (2003). Structure and physicochemical properties of b-glucans and arabinoxylans isolated from hull-less barley. DOI
Symons L. J., Brennan C. S. (2004). The influence of a (1-3, 1-4)-β-D-glucan rich fraction on the physico-chemical properties and in vitro reducing sugar release of white wheat breads. DOI
Taketa S., Yuo T., Tonooka T., Tsumuraya Y., Inagaki Y., Haruyama N., et al. (2012). Functional characterization of barley betaglucanless mutants demonstrates a unique role for CslF6 in (1,3;1,4)-β-D-glucan biosynthesis. PubMed DOI PMC
The International Wheat Genome Sequencing Consortium [IWGSC] (2014). A chromosome-based draft sequence of the hexaploid bread wheat ( PubMed DOI
Tighe P., Duthie G., Vaughan N., Brittenden J., Simpson W. G., Duthie S., et al. (2010). Effect of increased consumption of whole-grain foods on blood pressure and other cardiovascular risk markers in healthy middle-aged persons: a randomized controlled trial. PubMed DOI
Tiwari V. K., Wang S., Danilova T., Koo D. H., Vrána J., Kubaláková M., et al. (2015). Exploring the tertiary gene pool of bread wheat: sequence assembly and analysis of chromosome 5Mg of PubMed DOI
Toole G. A., Le Gall G., Colquhoun I. J., Nemeth C., Saulnier L., Lovegrove A., et al. (2010). Temporal and spatial changes in cell wall composition in developing grains of wheat cv. PubMed DOI
Vaikousi H., Biliaderis C. G., Izydorczyk M. S. (2004). Solution flow behaviour and gelling properties of water- soluble barley (1-3, 1-4)-beta-glucans varying in molecular size. DOI
van Slageren M. W. (1994).
Wan Y., Poole R. L., Huttly A. K., Toscano-Underwood C., Feeney K., Welham S., et al. (2008). Transcriptome analysis of grain development in hexaploid wheat. PubMed DOI PMC
Wang S. L., Chen D., Guo G. F., Zhang T., Jiang S. S., Shen X. X. (2012). Molecular characterization of LMW-GS genes from C, N, U and S-s genomes among Aegilops species. DOI
Wang Y. J., Wang C. Y., Zhang H., Li H., Liu X. L., Ji W. Q. (2015). Identification and evaluation of disease resistance and HMW-GS composition of DOI
Ward J. L., Poutanen K., Gebruers K., Piironen V., Lampi A. M., Nystrom L., et al. (2008). The HEALTHGRAIN cereal diversity screen: concept, results and prospects. PubMed DOI
Wood P. J. (2007). Cereal β-glucans in diet and health. DOI
Wood P. J., Weisz J., Beer M. U., Newman C. W., Newman R. K. (2003). Structure of (1-3)(1-4)-β-D-glucan in waxy and nonwaxy barley. DOI
Zaharieva M., Gaulin E., Havaux M., Acevedo E., Monneveux P. (2001a). Drought and heat responses in the wild wheat relative DOI
Zaharieva M., Monneveux P., Henry M., Rivoal R., Valkoun J., Nachit M. M. (2001b). Evaluation of a collection of wild wheat relative DOI
Zeng W., Jiang N., Nadella R., Killen T. L., Nadella V., Faik A. A. (2010). Glucurono(arabino)xylan synthase complex from wheat contains members of the GT43, GT47, and GT75 families and functions cooperatively. PubMed DOI PMC
Zimin A. V., Marçais G., Puiu D., Roberts M., Salzberg S. L., Yorke J. A. (2013). The MaSuRCA genome assembler. PubMed DOI PMC
Identification of New QTLs for Dietary Fiber Content in Aegilops biuncialis