Addition of Aegilops U and M Chromosomes Affects Protein and Dietary Fiber Content of Wholemeal Wheat Flour

. 2017 ; 8 () : 1529. [epub] 20170906

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28932231

Cereal grain fiber is an important health-promoting component in the human diet. One option to improve dietary fiber content and composition in wheat is to introduce genes from its wild relatives Aegilops biuncialis and Aegilops geniculata. This study showed that the addition of chromosomes 2Ug, 4Ug, 5Ug, 7Ug, 2Mg, 5Mg, and 7Mg of Ae. geniculata and 3Ub, 2Mb, 3Mb, and 7Mb of Ae. biuncialis into bread wheat increased the seed protein content. Chromosomes 1Ug and 1Mg increased the proportion of polymeric glutenin proteins, while the addition of chromosomes 1Ub and 6Ub led to its decrease. Both Aegilops species had higher proportions of β-glucan compared to arabinoxylan (AX) than wheat lines, and elevated β-glucan content was also observed in wheat chromosome addition lines 5U, 7U, and 7M. The AX content in wheat was increased by the addition of chromosomes 5Ug, 7Ug, and 1Ub while water-soluble AX was increased by the addition of chromosomes 5U, 5M, and 7M, and to a lesser extent by chromosomes 3, 4, 6Ug, and 2Mb. Chromosomes 5Ug and 7Mb also affected the structure of wheat AX, as shown by the pattern of oligosaccharides released by digestion with endoxylanase. These results will help to map genomic regions responsible for edible fiber content in Aegilops and will contribute to the efficient transfer of wild alleles in introgression breeding programs to obtain wheat varieties with improved health benefits. Key Message: Addition of Aegilops U- and M-genome chromosomes 5 and 7 improves seed protein and fiber content and composition in wheat.

Zobrazit více v PubMed

AACC International (1995).

Ahmadpoor F., Asghari-Zakaria R., Firoozi B., Shahbazi H. (2014). Investigation of diversity in PubMed DOI

Anders N., Wilkinson M. D., Lovegrove A., Freeman J., Tryfona T., Pellny T. K., et al. (2012). Glycosyl transferases in family 61 mediate arabinofuranosyl transfer onto xylan in grasses. PubMed DOI PMC

Anderson J. W., Baird P., Davis R. H., Jr., Ferreri S., Knudtson M., Koraym A., et al. (2009). Health benefits of dietary fiber. PubMed DOI

Andersson A. A. M., Kamal-Eldin A., Fras A., Boros D., Aman P. (2008). Alkylresorcinols in wheat varieties in the HEALTHGRAIN diversity screen. PubMed DOI

Bálint A., Kovács G., Erdei L., Sutka J. (2001). Comparison of the Cu, Zn, Fe, Ca and Mg contents of the grains of wild, ancient and cultivated wheat species.

Bamforth C. W. (2010). The enzymology of cell wall breakdown during malting and mashing: An Overview. DOI

Bandou H., Rodriguez-Quijano M., Carrillo J. M., Branlard G., Zaharieva M., Monneveux P. (2009). Morphological and genetic variation in DOI

Batey I. L., Gupta R. B., MacRitchie F. (1991). Use of size-exclusion high performance liquid chromatography in the study of wheat flour proteins: an improved chromatographic procedure.

Bedford M. R., Schulze H. (1998). Exogenous enzymes for pigs and poultry. PubMed DOI

Biliaderis C. G., Izydorczyk M. S., Rattan O. (1995). Effect of arabinoxylans on bread-making quality of wheat flours. DOI

Bonnand-Ducasse M., Della Valle G., Lefebvre J., Saulnier L. (2010). Effect of wheat dietary fibres on bread dough development and rheological properties. DOI

Boros D., Lukaszewski A. J., Aniol A., Ochodzki P. (2002). Chromosome location of genes controlling the content of dietary fibre and arabinoxylans in rye. DOI

Brennan C. S., Cleary L. J. (2007). Utilisation Glucagel DOI

Brouns F. J. P. H., van Buul V. J., Shewry P. R. (2013). Does wheat make us fat and sick? DOI

Buksa K., Nowotna A., Ziobro R. (2016). Application of cross-linked and hydrolyzed arabinoxylans in baking of model rye bread. PubMed DOI

Burton R. A., Jobling S. A., Harvey A. J., Shirley N. J., Mather D. E., Bacic A., et al. (2008). The genetics and transcriptional profiles of the cellulose synthase-like HvCslF gene family in barley. PubMed DOI PMC

Burton R. A., Wilson S. M., Hrmova M., Harvey A. J., Shirley N. J., Medhurst A., et al. (2006). Cellulose synthase-like CslF genes mediate the synthesis of cell wall (1,3;1,4)-beta-D-glucans. PubMed DOI

Buttriss J. L., Stokes C. S. (2008). Dietary fibre and health: an overview. DOI

Cavallero A., Empilli S., Brighenti F., Stanca A. M. (2002). High (1-3, 1-4)-β-glucan fractions in bread making and their effect on human glycemic response. DOI

Charmet G., Masood-Quraishi U., Ravel C., Romeuf I., Rakszegi M., Guillon F., et al. (2009). Genetics of dietary fibre in bread wheat. DOI

Cleary L. J., Andersson R., Brennan C. S. (2007). The behaviour and susceptibility to degradation of high and low molecular weight barley β-glucan in wheat bread during baking and in vitro digestion. DOI

Colmer T. D., Flowers T. J., Munns R. (2006). Use of wild relatives to improve salt tolerance in wheat. PubMed DOI

Courtin C. M., Delcour J. (1998). Physicochemical and bread-making properties of low molecular weight wheat-derived Arabinoxylans. DOI

Courtin C. M., Delcour J. (2002). Arabinoxylans and endoxylanases in wheat flour bread-making. DOI

Cseh A., Kruppa K., Molnár I., Rakszegi M., Doležel J., Molnár-Láng M. (2011). Characterization of a new 4BS.7HL wheat/barley translocation line using GISH, FISH and SSR markers and its effect on the β-glucan content of wheat. PubMed DOI

Cseh A., Soós V., Rakszegi M., Türkösi E., Balázs E., Molnár-Láng M. (2013). Expression of HvCslF9 and HvCslF6 barley genes in the genetic background of wheat and their influence on the wheat β-glucan content. DOI

Cui W., Wood P. J. (2000). “Relationships between structural features, molecular weight and rheological properties of cereal beta-D- glucans,” in

Cui W., Wood P. J., Blackwell B., Nikiforuk J. (2000). Physicochemical properties and structural characterization by two-dimensional NMR spectroscopy of wheat β-D-glucan—comparison with other cereal β-D-glucans. DOI

Cyran M., Rakowska M., Miazga D. (1996). Chromosomal location of factors affecting content and composition of nonstarch polysaccharides in wheat-rye addition lines. DOI

Dai S. F., Zhao L., Xue X. F., Jia Y. N., Liu D. C., Pu Z. J., et al. (2015). Analysis of high-molecular-weight glutenin subunits in five amphidiploids and their parental diploid species DOI

Doblin M. S., Pettolino F., Bacic A. (2010). Plant cell walls: the skeleton of the plant world. DOI

Doblin M. S., Pettolino F. A., Wilson S. M., Campbell R., Burton R. A., Fincher G. B., et al. (2009). A barley cellulose synthase-like CSLH gene mediates (1,3;1,4)-beta-D-glucan synthesis in transgenic Arabidopsis. PubMed DOI PMC

Doležel J., Vrána J., Cápal P., Kubaláková M., Burešová V., Šimková H. (2014). Advances in plant chromosome genomics. PubMed DOI

Douglas S. G. (1981). A rapid method for the determination of pentosans in wheat flour. DOI

Dulai S., Molnár I., Szopkó D., Darkó É, Vojtkó A., Sass-Gyarmati A., et al. (2014). Wheat- PubMed DOI

Farkas A., Molnár I., Dulai S., Rapi S., Oldal V., Cseh A., et al. (2014). Increased micronutrient content (Zn, Mn) in the 3Mb(4B) wheat- PubMed DOI

Finnie S. M., Bettge A. D., Morris C. F. (2006). Influence of cultivar and environment on water-soluble and water-insoluble arabinoxylans in soft wheat. DOI

Frederix S. A., Van Hoeymissen K., Courtin C. M., Delcour J. A. (2004). Water-extractable and water-unextractable arabinoxylans affect gluten agglomeration behavior during wheat flour gluten-starch separation. PubMed DOI

Freeman J., Lovegrove A., Wilkinson M. D., Saulnier L., Shewry P. R., Mitchell R. A. C. (2016). Effect of suppression of arabinoxylan synthetic genes in wheat endosperm on chain length of arabinoxylan and extract viscosity. PubMed DOI PMC

Friebe B., Jiang J., Raupp W. J., McIntosh R. A., Gill B. S. (1996). Characterization of wheat alien translocations conferring resistance to diseases and pests: current status. DOI

Friebe B., Tuleen N. A., Gill B. S. (1999). Development and identification of a complete set of DOI

Garg M., Tsujimoto H., Gupta R. K., Kumar A., Kaur N., Kumar R., et al. (2016). Chromosome specific substitution lines of PubMed DOI PMC

Gebruers K., Dornez E., Bedo Z., Rakszegi M., Fras A., Boros D., et al. (2010). Environment and genotype effects on the content of dietary fiber and its components in wheat in the HEALTHGRAIN diversity screen. PubMed DOI

Gebruers K., Dornez E., Boros D., Fras A., Dynkowska W., Bedo Z., et al. (2008). Variation in the content of dietary fiber and components thereof in wheats in the HEALTHGRAIN diversity screen. PubMed DOI

Heinio R. L., Noort M. W. J., Katina K., Alam S. A., Sozer N., de Kock H. L., et al. (2016). Sensory characteristics of wholegrain and bran-rich cereal foods - A review. DOI

Hesselman K., Elwinger K., Nilsson M., Thomke S. (1981). The effect of beta-glucanase supplementation, stage of ripeness, and storage treatment of barley in diets fed to broiler chickens. DOI

Hoffmann R. A., Leeflang B. R., de Barse M. M. J., Kamerling J. P., Vliegenthart J. F. G. (1991). Characterisation of 1H-N.M.R. spectroscopy of oligosaccharides, derived from arabinoxylans of white endosperm of wheat, that contain the elements -4) [α-L-Araf-(1-3)]-β-D-Xylp-(1-or-4)[α-L-Araf-(1-2)][α-L-Araf-(1-3)]-β-D-Xylp-(1-. PubMed DOI

Houston K., Russell J., Schreiber M., Halpin C., Oakey H., Washington J. M., et al. (2014). A genome wide association scan for (1,3;1,4)-β-glucan content in the grain of contemporary 2-row spring and winter barleys. PubMed DOI PMC

Igartua E., Hayes P. M., Thomas W. T. B., Meyer R., Mather D. E. (2002). Genetic control of quantitative grain and malt quality traits in barley. DOI

International Association for Cereal Science and Technology ICC 105/2 (1995).

International Association for Cereal Science and Technology ICC 166 (1998).

Izydorczyk M. S., Biliaderis C. G. (1994). Studies on the structure of wheat-endosperm arabinoxylans. DOI

Izydorczyk M. S., Dexter J. E. (2008). Barley β-glucans and arabinoxylans: Molecular structure, physicochemical properties, and uses in food products – a Review. DOI

Jiang G., Vasanthan T. (2000). MALDI-MS and HPLC quantification of oligosaccharides of lichenase-hydrolyzed water-soluble b-glucan from ten barley varieties. PubMed DOI

Jones J. M., Adams J., Harriman C., Miller C., Van der Kamp J. W. (2015). Nutritional impacts of different whole grain milling techniques: a review of milling practices and existing data. DOI

Kozub N. A., Sozinov I. A., Xynias I. N., Sozinov A. A. (2011). Allelic variation at high-molecular-weight glutenin subunit loci in PubMed DOI

Lafiandra D., Riccardi G., Shewry P. R. (2014). Improving cereal grain carbohydrates for diet and health. PubMed DOI PMC

Larroque O. R., Békés F. (2000). Rapid size-exclusion chromatography analysis of molecular size distribution for wheat endosperm protein. DOI

Lazaridou A., Biliaderis C. G. (2007). Molecular aspects of cereal β-glucan functionality: physical properties, technological applications and physiological effects. DOI

Lazaridou A., Biliaderis C. G., Izydorczyk M. S. (2003). Molecular size effects on rheological properties of oat beta-glucans in solution and gels. DOI

Lazaridou A., Biliaderis C. G., Micha-Screttas M., Steele B. R. (2004). A comparative study on structure-function relations of mixed linkage (1-3), (1-4) linear β-D-glucans. DOI

Li S., Morris C. F., Bettge A. D. (2009). Genotype and environment variation for arabinoxylans in hard winter and spring wheats of the US Pacific Northwest. DOI

Lovegrove A., Wilkinson M. D., Freeman J., Pellny T. K., Tosi P., Saulnier L., et al. (2013). RNA interference suppression of genes in glycosyl transferase families 43 and 47 in wheat starchy endosperm causes large decreases in arabinoxylan content. PubMed DOI PMC

Marcotuli I., Houston K., Schwerdt J. G., Waugh R., Fincher G. B., Burton R. A., et al. (2016). Genetic diversity and genome wide association study of β-glucan content in tetraploid wheat grains. PubMed DOI PMC

Marcotuli I., Houston K., Waugh R., Fincher G. B., Burton R. A., Blanco A., et al. (2015). Genome wide association mapping for arabinoxylan content in a collection of tetraploid wheats. PubMed DOI PMC

Mares D. J., Stone B. A. (1973). Studies on wheat endosperm. I. Chemical composition and ultrastructure of the cell walls. DOI

Margulies M., Egholm M., Altman W. E., Attiya S., Bader J. S., Bemben L. A., et al. (2005). Genome sequencing in microfabricated high-density picolitre reactors. PubMed DOI PMC

Martinant J. P., Billot A., Bouguennec A., Charmet G., Saulnier L., Branlard G. (1999). Genetic and environmental variations in water-extractable arabinoxylans content and flour extract viscosity. DOI

Martis M. M., Zhou R., Haseneyer G., Schmutzer T., Vrána J., Kubaláková M., et al. (2013). Reticulate evolution of the rye genome. PubMed DOI PMC

Mayer K. F. X., Martis M., Hedley P. E., Šimková H., Liu H., Morris J. A., et al. (2011). Unlocking the barley genome by chromosomal and comparative genomics. PubMed DOI PMC

McIntosh G. H., Whyte J., McArthur R., Nestel P. J. (1991). Barley and wheat foods – Influence on plasma-cholesterol concentrations in hypercholesterolemic men. PubMed

Medouri A., Bellil I., Khelifi D. (2015). Polymorphism at high molecular weight glutenin subunits and morphological diversity of DOI

Mikó P., Löschenberger F., Hiltbrunner J., Aebi R., Megyeri M., Kovács G., et al. (2014). Comparison of bread wheat varieties with different breeding origin under organic and low input management. DOI

Miller S. S., Wood P. J., Pietrzak L. N., Fulcher R. G. (1993). Mixed linkage beta glucans, protein content, and kernel weight in Avena species.

Mitchell R. A. C., Dupree P., Shewry P. R. (2007). A novel bioinformatics approach identifies candidate genes for the synthesis and feruloylation of arabinoxylan. PubMed DOI PMC

Molina-Cano J. L., Moralejo M., Elia M., Munoz P., Russell J. R., Perez-Vendrell A. M., et al. (2007). QTL analysis of a cross between European and North American malting barleys reveals a putative candidate gene for beta-glucan content on chromosome 1H. DOI

Molnár I., Gáspár L., Sárvári É, Dulai S., Hoffmann B., Molnár-Láng M., et al. (2004). Physiological and morphological responses to water stress in PubMed DOI

Molnár I., Vrána J., Burešová V., Cápal P., Farkas A., Darkó É, et al. (2016). Dissecting the U, M, S and C genomes of wild relatives of bread wheat (Aegilops spp.) into chromosomes and exploring their synteny with wheat. PubMed DOI

Molnár-Láng M., Linc G., Nagy E. D., Schneider A., Molnár I. (2002). Molecular cytogenetic analysis of wheat-alien hybrids and derivatives. DOI

Molnár-Láng M., Linc G., Sutka J. (1996). Transfer of the recessive crossability allele kr1 from Chinese Spring into the winter wheat variety Martonvásári 9. DOI

Morales-Ortega A., Carvajal-Millan E., Lopez-Franco Y., Rascon-Chu A., Lizardi- Mendoza J., Torres-Chavez P., et al. (2013). Characterization of water extractable arabinoxylans from a spring wheat flour: rheological properties and microstructure. PubMed DOI PMC

MSZ 6367/4-86 (1987).

Nemeth C., Freeman J., Jones H. D., Sparks C., Pellny T. K., Wilkinson M. D., et al. (2010). Downregulation of the CSLF6 gene results in decreased (1,3;1,4)-β-D-glucan in endosperm of wheat. PubMed DOI PMC

Noort M. W. J., van Haaster D., Hemery Y., Schols H. A., Hamer R. J. (2010). The effect of particle size of wheat bran fractions on bread quality - Evidence for fibre protein interactions. DOI

Ordaz-Ortiz J. J., Devaux M. F., Saulnier L. (2005). Classification of wheat varieties based on structural features of arabinoxylans as revealed by endoxylanase treatment of flour and grain. PubMed DOI

Ordaz-Ortiz J. J., Guillon F., Tranquet O., Dervilly-Pinel G., Tran V., Saulnier L. (2004). Specificity of monoclonal antibodies generated against arabinoxylans of cereal grains. DOI

Ordaz-Ortiz J. J., Saulnier L. (2005). Structural variability of arabinoxylans from wheat flour. Comparison of water-extractable and xylanase-extractable arabinoxylans. DOI

Payne P. I. (1987). Genetics of wheat storage proteins and the effect of allelic variation on bread-making quality. DOI

Pellny T. K., Lovegrove A., Freeman J., Tosi P., Love C. G., Knox J. P., et al. (2012). Cell walls of developing wheat starchy endosperm: comparison of composition and RNA-Seq transcriptome. PubMed DOI PMC

Perlin A. S. (1951). Structure of the soluble pentosans of wheat flours.

Pirgozliev V., Rose S. P., Pellny T., Amerah A. M., Wickramasinghe M., Ulker M., et al. (2015). Energy utilization and growth performance of chickens fed novel wheat inbred lines selected for different pentosan levels with and without xylanase supplementation. PubMed DOI PMC

Quraishi U. M., Murat F., Abrouk M., Pont C., Confolent C., Oury F. X., et al. (2011). Combined meta-genomics analyses unravel candidate genes for the grain dietary fiber content in bread wheat ( PubMed DOI

Rakszegi M., Lang L., Bedo Z., Shewry P. R. (2008). Composition and end-use quality of 150 wheat lines selected for the HEALTHGRAIN diversity screen. PubMed DOI

Rawat N., Tiwari V. K., Singh N., Randhawa G. S., Singh K., Chhuneja P., et al. (2009). Evaluation and utilization of DOI

Rekika D., Monneveux P., Havaux M. (1997). The in vivo tolerance of photosynthetic membranes to high and low temperatures in cultivated and wild wheats of the Triticum and DOI

Renard C. M. G. C., Rouau X., Thibault J. F. (1990). Structure and properties of water-soluble pentosans from wheat flour.

Rey E., Molnár I., Doležel J. (2015). “Genomics of wild relatives and alien introgressions,” in

Saulnier L., Robert P., Grintchenko M., Jamme F., Bouchet B., Guillon F. (2009). Wheat endosperm cell walls: spatial heterogeneity of polysaccharide structure and composition using micro-scale enzymatic fingerprinting and FT-IR microspectroscopy. DOI

Saulnier L., Sado P. E., Branlard G., Charmet G., Guillon F. (2007). Wheat arabinoxylans: exploiting variation in amount and composition to develop enhanced varieties. DOI

Schneider A., Linc G., Molnár I., Molnár-Láng M. (2005). Molecular cytogenetic characterization of PubMed DOI

Schneider A., Molnár I., Molnár-Láng M. (2008). Utilisation of DOI

Schooneveld-Bergmans M. E. F., Beldman G., Voragen A. G. J. (1999). Structural features of (glucurono) arabinoxylans extracted from wheat bran by barium hydroxide. DOI

Schreiber M., Wright F., MacKenzie K., Hedley P. E., Schwerdt J. G., Little A., et al. (2014). The barley genome sequence assembly reveals three additional members of the PubMed DOI PMC

Shewry P. R., D’Ovidio R., Lafiandra D., Jenkins J. A., Mills E. N. C., Bekes F. (2009). “Wheat grain proteins,” in DOI

Shewry P. R., Freeman J., Wilkinson M., Pellny T., Mitchell R. A. C. (2010a). “Challenges and opportunities for using wheat for biofuel production,” in

Shewry P. R., Piironen V., Lampi A. M., Edelmann M., Kariluoto S., Nurmi T., et al. (2010b). The HEALTHGRAIN wheat diversity screen: effects of genotype and environment on phytochemicals and dietary fiber components. PubMed DOI

Shewry P. R., Saulnier L., Guillon F., Gebruers K., Courtin C., Delcour J., et al. (2010c). “Improving the benefits of wheat as a source of dietary fibre,” in

Shewry P. R., Halford N. G., Lafiandra D. (2003a). “The genetics of wheat gluten proteins,” in PubMed

Shewry P. R., Halford N. G., Tatham A. S., Popineau Y., Lafiandra D., Belton P. (2003b). The high molecular weight subunits of wheat glutenin and their role in determining wheat processing properties. PubMed DOI

Shewry P. R., Li L., Piironen V., Lampi A. M., Nystrom L., Rakszegi M., et al. (2008). Phytochemicals and fiber components in oat varieties in the HEALTHGRAIN diversity screen. PubMed DOI

Shewry P. R., Tatham A. S., Forde J., Kreis M., Miflin B. J. (1986). The classification and nomenclature of wheat gluten proteins: a reassessment. DOI

Shu X. L., Rasmussen S. K. (2014). Quantification of amylose, amylopectin, and beta-glucan in search for genes controlling the three major quality traits in barley by genome-wide association studies. PubMed DOI PMC

Šimková H., Svensson J. T., Condamine P., Hřibová E., Suchánková P., Bhat P. R., et al. (2008). Coupling amplified DNA from flow-sorted chromosomes to high-density SNP mapping in barley. PubMed DOI PMC

Skendi A., Papageorgiou M., Biliaderis C. G. (2009). Effect of barley β-glucan molecular size and level on wheat dough rheological properties. DOI

Storsley J. M., Izydorczyk M. S., You S., Biliaderis C. G., Rossnagel B. (2003). Structure and physicochemical properties of b-glucans and arabinoxylans isolated from hull-less barley. DOI

Symons L. J., Brennan C. S. (2004). The influence of a (1-3, 1-4)-β-D-glucan rich fraction on the physico-chemical properties and in vitro reducing sugar release of white wheat breads. DOI

Taketa S., Yuo T., Tonooka T., Tsumuraya Y., Inagaki Y., Haruyama N., et al. (2012). Functional characterization of barley betaglucanless mutants demonstrates a unique role for CslF6 in (1,3;1,4)-β-D-glucan biosynthesis. PubMed DOI PMC

The International Wheat Genome Sequencing Consortium [IWGSC] (2014). A chromosome-based draft sequence of the hexaploid bread wheat ( PubMed DOI

Tighe P., Duthie G., Vaughan N., Brittenden J., Simpson W. G., Duthie S., et al. (2010). Effect of increased consumption of whole-grain foods on blood pressure and other cardiovascular risk markers in healthy middle-aged persons: a randomized controlled trial. PubMed DOI

Tiwari V. K., Wang S., Danilova T., Koo D. H., Vrána J., Kubaláková M., et al. (2015). Exploring the tertiary gene pool of bread wheat: sequence assembly and analysis of chromosome 5Mg of PubMed DOI

Toole G. A., Le Gall G., Colquhoun I. J., Nemeth C., Saulnier L., Lovegrove A., et al. (2010). Temporal and spatial changes in cell wall composition in developing grains of wheat cv. PubMed DOI

Vaikousi H., Biliaderis C. G., Izydorczyk M. S. (2004). Solution flow behaviour and gelling properties of water- soluble barley (1-3, 1-4)-beta-glucans varying in molecular size. DOI

van Slageren M. W. (1994).

Wan Y., Poole R. L., Huttly A. K., Toscano-Underwood C., Feeney K., Welham S., et al. (2008). Transcriptome analysis of grain development in hexaploid wheat. PubMed DOI PMC

Wang S. L., Chen D., Guo G. F., Zhang T., Jiang S. S., Shen X. X. (2012). Molecular characterization of LMW-GS genes from C, N, U and S-s genomes among Aegilops species. DOI

Wang Y. J., Wang C. Y., Zhang H., Li H., Liu X. L., Ji W. Q. (2015). Identification and evaluation of disease resistance and HMW-GS composition of DOI

Ward J. L., Poutanen K., Gebruers K., Piironen V., Lampi A. M., Nystrom L., et al. (2008). The HEALTHGRAIN cereal diversity screen: concept, results and prospects. PubMed DOI

Wood P. J. (2007). Cereal β-glucans in diet and health. DOI

Wood P. J., Weisz J., Beer M. U., Newman C. W., Newman R. K. (2003). Structure of (1-3)(1-4)-β-D-glucan in waxy and nonwaxy barley. DOI

Zaharieva M., Gaulin E., Havaux M., Acevedo E., Monneveux P. (2001a). Drought and heat responses in the wild wheat relative DOI

Zaharieva M., Monneveux P., Henry M., Rivoal R., Valkoun J., Nachit M. M. (2001b). Evaluation of a collection of wild wheat relative DOI

Zeng W., Jiang N., Nadella R., Killen T. L., Nadella V., Faik A. A. (2010). Glucurono(arabino)xylan synthase complex from wheat contains members of the GT43, GT47, and GT75 families and functions cooperatively. PubMed DOI PMC

Zimin A. V., Marçais G., Puiu D., Roberts M., Salzberg S. L., Yorke J. A. (2013). The MaSuRCA genome assembler. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

A linkage map of Aegilops biuncialis reveals significant genomic rearrangements compared to bread wheat

. 2025 Mar ; 18 (1) : e70009.

DArTseq genotyping facilitates identification of Aegilops biuncialis chromatin introgressed into bread wheat Mv9kr1

. 2024 Nov 07 ; 114 (6) : 122. [epub] 20241107

Chromosome genomics facilitates the marker development and selection of wheat-Aegilops biuncialis addition, substitution and translocation lines

. 2023 Nov 22 ; 13 (1) : 20499. [epub] 20231122

Comparative genomic analysis of 5Mg chromosome of Aegilops geniculata and 5Uu chromosome of Aegilops umbellulata reveal genic diversity in the tertiary gene pool

. 2023 ; 14 () : 1144000. [epub] 20230713

Flow karyotyping of wheat-Aegilops additions facilitate dissecting the genomes of Ae. biuncialis and Ae. geniculata into individual chromosomes

. 2022 ; 13 () : 1017958. [epub] 20221003

Identification of New QTLs for Dietary Fiber Content in Aegilops biuncialis

. 2022 Mar 30 ; 23 (7) : . [epub] 20220330

Addition of Aegilops biuncialis chromosomes 2M or 3M improves the salt tolerance of wheat in different way

. 2020 Dec 18 ; 10 (1) : 22327. [epub] 20201218

1RS arm of Secale cereanum 'Kriszta' confers resistance to stripe rust, improved yield components and high arabinoxylan content in wheat

. 2020 Feb 04 ; 10 (1) : 1792. [epub] 20200204

Identification of COS markers specific for Thinopyrum elongatum chromosomes preliminary revealed high level of macrosyntenic relationship between the wheat and Th. elongatum genomes

. 2018 ; 13 (12) : e0208840. [epub] 20181212

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...