Identification of New QTLs for Dietary Fiber Content in Aegilops biuncialis

. 2022 Mar 30 ; 23 (7) : . [epub] 20220330

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35409181

Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000827 ERDF project Plants as a Tool for Sustainable Global Development
K135057 and TKP2021-NKTA-06 Hungarian National Research, Development and Innovation Office - NKFIH
H2020-MSCA-IF-2016-746253 Marie Curie Fellowship Grant award AEGILWHEAT
LM2015047 ELIXIR-CZ project, a component of the international ELIXIR infrastructure that is part of the project e-Infrastruktura CZ (LM2018140) within the program Projects of Large Re-search, Development and Innovations Infrastructures.
PON-AIM1812334-1 "CerealMed"-Enhancing diversity in Mediterranean cereal farming systems, project funded by PRIMA Section2-Multi-topic 2019 and MUR (Ministero dell'Università e della Ricerca) Projects PRIMA 2019 "CEREALMED" project "Attraction and International Mobility"

Grain dietary fiber content is an important health-promoting trait of bread wheat. A dominant dietary fiber component of wheat is the cell wall polysaccharide arabinoxylan and the goatgrass Aegilops biuncialis has high β-glucan content, which makes it an attractive gene source to develop wheat lines with modified fiber composition. In order to support introgression breeding, this work examined genetic variability in grain β-glucan, pentosan, and protein content in a collection of Ae. biuncialis. A large variation in grain protein and edible fiber content was revealed, reflecting the origin of Ae. biuncialis accessions from different eco-geographical habitats. Association analysis using DArTseq-derived SNPs identified 34 QTLs associated with β-glucan, pentosan, water-extractable pentosan, and protein content. Mapping the markers to draft chromosome assemblies of diploid progenitors of Ae. biuncialis underlined the role of genes on chromosomes 1Mb, 4Mb, and 5Mb in the formation of grain β-glucan content, while other QTLs on chromosome groups 3, 6, and 1 identified genes responsible for total- and water-extractable pentosan content. Functional annotation of the associated marker sequences identified fourteen genes, nine of which were identified in other monocots. The QTLs and genes identified in the present work are attractive targets for chromosome-mediated gene transfer to improve the health-promoting properties of wheat-derived foods.

Zobrazit více v PubMed

Collins H.M., Burton R.A., Topping D.L., Liao M.-L., Bacic A., Fincher G.B. Variability in fine structures of noncellulosic cell wall polysaccharides from cereal grains: Potential importance in human health and nutrition. Cereal Chem. 2010;87:272–282. doi: 10.1094/CCHEM-87-4-0272. DOI

Mares D.J., Stone B.A. Studies on Lolium multiflorum endosperm in tissue culture II. Fine structure of cells and cell walls and the development of cell walls. Aust. J. Biol. Sci. 1973;26:135–150. doi: 10.1071/BI9730135. DOI

Courtin C.M., Gelders G.G., Delcour J.A. Use of two endoxylanases with different substrate selectivity for understanding arabinoxylan functionality in wheat flour breadmaking. Cereal Chem. 2001;78:564–571. doi: 10.1094/CCHEM.2001.78.5.564. DOI

Frederix S.A., van Hoeymissen K.E., Courtin C.M., Delcour J.A. Water-extractable and water-unextractable arabinoxylans affect gluten agglomeration behavior during wheat flour gluten-starch separation. J. Agric. Food Chem. 2004;52:7950–7956. doi: 10.1021/jf049041v. PubMed DOI

Shewry P.R., Piironen V., Lampi A.-M., Edelmann M., Kariluoto S., Nurmi T., Fernandez-Orozco R., Ravel C., Charmet G., Andersson A.A.M., et al. The HEALTHGRAIN wheat diversity screen: Effects of genotype and environment on phytochemicals and dietary fiber components. J. Agric. Food Chem. 2010;58:9291–9298. doi: 10.1021/jf100039b. PubMed DOI

Saulnier L., Sado P.-E., Branlard G., Charmet G., Guillon F. Wheat arabinoxylans: Exploiting variation in amount and composition to develop enhanced varieties. J. Cereal Sci. 2007;46:261–281. doi: 10.1016/j.jcs.2007.06.014. DOI

Andersson A.A.M., Kamal-Eldin A., Fraś A., Boros D., Aman P. Alkylresorcinols in wheat varieties in the HEALTHGRAIN Diversity Screen. J. Agric. Food Chem. 2008;56:9722–9725. doi: 10.1021/jf8011344. PubMed DOI

Gebruers K., Dornez E., Boros D., Fraś A., Dynkowska W., Bedo Z., Rakszegi M., Delcour J.A., Courtin C.M. Variation in the content of dietary fiber and components thereof in wheats in the HEALTHGRAIN Diversity Screen. J. Agric. Food Chem. 2008;56:9740–9749. doi: 10.1021/jf800975w. PubMed DOI

Rakszegi M., Boros D., Kuti C., Láng L., Bedo Z., Shewry P.R. Composition and end-use quality of 150 wheat lines selected for the HEALTHGRAIN Diversity Screen. J. Agric. Food Chem. 2008;56:9750–9757. doi: 10.1021/jf8009359. PubMed DOI

Shewry P.R., Piironen V., Lampi A.-M., Nyström L., Li L., Rakszegi M., Fraś A., Boros D., Gebruers K., Courtin C.M., et al. Phytochemical and fiber components in oat varieties in the HEALTHGRAIN Diversity Screen. J. Agric. Food Chem. 2008;56:9777–9784. doi: 10.1021/jf801880d. PubMed DOI

Ward J.L., Poutanen K., Gebruers K., Piironen V., Lampi A.-M., Nyström L., Andersson A.A.M., Aman P., Boros D., Rakszegi M., et al. The HEALTHGRAIN Cereal Diversity Screen: Concept, results, and prospects. J. Agric. Food Chem. 2008;56:9699–9709. doi: 10.1021/jf8009574. PubMed DOI

Rahman S., Islam S., Yu Z., She M., Nevo E., Ma W. Current progress in understanding and recovering the wheat genes lost in evolution and domestication. Int. J. Mol. Sci. 2020;21:5836. doi: 10.3390/ijms21165836. PubMed DOI PMC

Van Slageren M.W. Wild Wheats: A Monograph of Aegilops L. and Amblyopyrum (Jaub. & Spach) Eig (Poaceae) Agricultural University; Wageningen, The Netherlands: 1994.

Schneider A., Molnár I., Molnár-Láng M. Utilisation of Aegilops (goatgrass) species to widen the genetic diversity of cultivated wheat. Euphytica. 2008;163:1–19. doi: 10.1007/s10681-007-9624-y. DOI

Zhang P., Dundas I.S., McIntosh R.A., Xu S.S., Park R.F., Gill B.S., Friebe B. Wheat–Aegilops introgressions. In: Molnár-Láng M., Ceoloni C., Doležel J., editors. Alien Introgression in Wheat: Cytogenetics, Molecular Biology, and Genomics. Springer Science + Business Media; Cham, Switzerland: 2015. pp. 221–243.

Kishii M. An update of recent use of Aegilops species in wheat breeding. Front. Plant Sci. 2019;10:585. doi: 10.3389/fpls.2019.00585. PubMed DOI PMC

Kilian B., Mammen K., Millet E., Sharma R., Graner A., Salamini F., Hammer K., Özkan H. Aegilops. Wild Crop Relatives: Genomic and Breeding Resources. Springer; Cham, Switzerland: 2011. pp. 1–76.

Ivanizs L., Monostori I., Farkas A., Megyeri M., Mikó P., Türkösi E., Gaál E., Lenykó-Thegze A., Szőke-Pázsi K., Szakács É., et al. Unlocking the genetic diversity and population structure of a wild gene source of wheat, Aegilops biuncialis Vis., and its relationship with the heading time. Front. Plant Sci. 2019;10:1531. doi: 10.3389/fpls.2019.01531. PubMed DOI PMC

Makkouk K.M., Ghulam W., Comeau A. Resistance to barley yellow dwarf luteovirus in Aegilops species. Can. J. Plant. Sci. 1994;74:631–634. doi: 10.4141/cjps94-113. DOI

Li H., Dong Z., Ma C., Tian X., Xiang Z., Xia Q., Ma P., Liu W. Discovery of powdery mildew resistance gene candidates from Aegilops biuncialis chromosome 2Mb based on transcriptome sequencing. PLoS ONE. 2019;14:e0220089. doi: 10.1371/journal.pone.0220089. PubMed DOI PMC

Damania A.B., Pecetti L. Variability in a collection of Aegilops species and evaluation for yellow rust resistance at two locations in Northern Syria. J. Genet. Breed. 1990;44:97–102.

Dimov A., Zaharieva M., Mihova S. Rust and powdery mildew resistance in Aegilops accessions from Bulgaria. In: Damania A.B., editor. Biodiversity and Wheat Improvement. John Wiley & Sons; New York, NY, USA: Chichester, UK: 1993. pp. 165–169.

Kwiatek M., Błaszczyk L., Wiśniewska H., Apolinarska B. Aegilops-Secale amphiploids: Chromosome categorisation, pollen viability and identification of fungal disease resistance genes. J. Appl. Genet. 2012;53:37–40. doi: 10.1007/s13353-011-0071-z. PubMed DOI PMC

Olivera P.D., Rouse M.N., Jin Y. Identification of new sources of resistance to wheat stem rust in Aegilops spp. in the tertiary genepool of wheat. Front. Plant Sci. 2018;9:1719. doi: 10.3389/fpls.2018.01719. PubMed DOI PMC

Ekmekci Y., Terzioglu S. Changes in the electrophoretic pattern of soluble shoot proteins of wild and cultivated tetraploid wheats following cold acclimation and freezing. Isr. J. Plant Sci. 2002;50:95–102. doi: 10.1560/DXB5-VHCC-LQCF-PUM4. DOI

Colmer T.D., Flowers T.J., Munns R. Use of wild relatives to improve salt tolerance in wheat. J. Exp. Bot. 2006;57:1059–1078. doi: 10.1093/jxb/erj124. PubMed DOI

Darkó É., Khalil R., Dobi Z., Kovács V., Szalai G., Janda T., Molnár I. Addition of Aegilops biuncialis chromosomes 2M or 3M improves the salt tolerance of wheat in different way. Sci. Rep. 2020;10:22327. doi: 10.1038/s41598-020-79372-1. PubMed DOI PMC

Molnár I., Gáspár L., Sárvári É., Dulai S., Hoffmann B., Molnár-Láng M., Galiba G. Physiological and morphological responses to water stress in Aegilops biuncialis and Triticum aestivum genotypes with differing tolerance to drought. Funct. Plant Biol. 2004;31:1149–1159. doi: 10.1071/FP03143. PubMed DOI

Dulai S., Molnár I., Szopkó D., Darkó É., Vojtkó A., Sass-Gyarmati A., Molnár-Láng M. Wheat-Aegilops biuncialis amphiploids have efficient photosynthesis and biomass production during osmotic stress. J. Plant Physiol. 2014;171:509–517. doi: 10.1016/j.jplph.2013.11.015. PubMed DOI

Farkas A., Molnár I., Dulai S., Rapi S., Oldal V., Cseh A., Kruppa K., Molnár-Láng M. Increased micronutrient content (Zn, Mn) in the 3M(b)(4B) wheat-Aegilops biuncialis substitution and 3M(b).4BS translocation identified by GISH and FISH. Genome. 2014;57:61–67. doi: 10.1139/gen-2013-0204. PubMed DOI

Rakszegi M., Molnár I., Lovegrove A., Darkó É., Farkas A., Láng L., Bedő Z., Doležel J., Molnár-Láng M., Shewry P. Addition of Aegilops U and M chromosomes affects protein and dietary fiber content of wholemeal wheat flour. Front. Plant Sci. 2017;8:1529. doi: 10.3389/fpls.2017.01529. PubMed DOI PMC

Marcotuli I., Colasuonno P., Cutillo S., Simeone R., Blanco A., Gadaleta A. β-glucan content in a panel of Triticum and Aegilops genotypes. Genet. Resour. Crop Evol. 2019;66:897–907. doi: 10.1007/s10722-019-00753-1. DOI

Rakszegi M., Darkó É., Lovegrove A., Molnár I., Láng L., Bedő Z., Molnár-Láng M., Shewry P. Drought stress affects the protein and dietary fiber content of wholemeal wheat flour in wheat/Aegilops addition lines. PLoS ONE. 2019;14:e0211892. doi: 10.1371/journal.pone.0211892. PubMed DOI PMC

Schneider A., Linc G., Molnár I., Molnár-Láng M. Molecular cytogenetic characterization of Aegilops biuncialis and its use for the identification of 5 derived wheat-Aegilops biuncialis disomic addition lines. Genome. 2005;48:1070–1082. doi: 10.1139/g05-062. PubMed DOI

Molnár I., Benavente E., Molnár-Láng M. Detection of intergenomic chromosome rearrangements in irradiated Triticum aestivum-Aegilops biuncialis amphiploids by multicolour genomic in situ hybridization. Genome. 2009;52:156–165. doi: 10.1139/G08-114. PubMed DOI

Schneider A., Molnár-Láng M. Detection of various U and M chromosomes in wheat-Aegilops biuncialis hybrids and derivatives using fluorescence in situ hybridisation and molecular markers. Czech J. Genet. Plant Breed. 2012;48:169–177. doi: 10.17221/45/2012-CJGPB. DOI

Zhou J.P., Yao C.H., Yang E.N., Yin M.Q., Liu C., Ren Z.L. Characterization of a new wheat-Aegilops biuncialis addition line conferring quality-associated HMW glutenin subunits. Genet. Mol. Res. 2014;13:660–669. doi: 10.4238/2014.January.28.11. PubMed DOI

Zhou J.P., Cheng Y., Zang L.L., Yang E.N., Liu C., Zheng X.L., Deng K.J., Zhu Y.Q., Zhang Y. Characterization of a new wheat-Aegilops biuncialis 1Mb(1B) substitution line with good quality-associated HMW glutenin subunit. Cereal Res. Commun. 2016;44:198–205. doi: 10.1556/0806.43.2015.048. DOI

Wenzl P., Carling J., Kudrna D., Jaccoud D., Huttner E., Kleinhofs A., Kilian A. Diversity Arrays Technology (DArT) for whole-genome profiling of barley. Proc. Natl. Acad. Sci. USA. 2004;101:9915–9920. doi: 10.1073/pnas.0401076101. PubMed DOI PMC

Sansaloni C., Petroli C., Jaccoud D., Carling J., Detering F., Grattapaglia D., Kilian A. Diversity Arrays Technology (DArT) and next-generation sequencing combined: Genome-wide, high throughput, highly informative genotyping for molecular breeding of Eucalyptus. BMC Proc. 2011;5:P54. doi: 10.1186/1753-6561-5-S7-P54. PubMed DOI

Kilian A., Wenzl P., Huttner E., Carling J., Xia L., Blois H., Caig V., Heller-Uszynska K., Jaccoud D., Hopper C., et al. Diversity Arrays Technology: A generic genome profiling technology on open platforms. In: Pompanon F., Bonin A., editors. Data Production and Analysis in Population Genomics: Methods and Protocols. Humana Press; New York, NY, USA: 2012. pp. 67–89. PubMed

Kumar A., Seetan R., Mergoum M., Tiwari V.K., Iqbal M.J., Wang Y., Al-Azzam O., Šimková H., Luo M.-C., Dvorak J., et al. Radiation hybrid maps of the D-genome of Aegilops tauschii and their application in sequence assembly of large and complex plant genomes. BMC Genom. 2015;16:800. doi: 10.1186/s12864-015-2030-2. PubMed DOI PMC

Olivera P.D., Kilian A., Wenzl P., Steffenson B.J. Development of a genetic linkage map for Sharon goatgrass (Aegilops sharonensis) and mapping of a leaf rust resistance gene. Genome. 2013;56:367–376. doi: 10.1139/gen-2013-0065. PubMed DOI

Molnár I., Vrána J., Burešová V., Cápal P., Farkas A., Darkó É., Cseh A., Kubaláková M., Molnár-Láng M., Doležel J. Dissecting the U, M, S and C genomes of wild relatives of bread wheat (Aegilops spp.) into chromosomes and exploring their synteny with wheat. Plant J. 2016;88:452–467. doi: 10.1111/tpj.13266. PubMed DOI

Said M., Holušová K., Farkas A., Ivanizs L., Gaál E., Cápal P., Abrouk M., Martis-Thiele M.M., Kalapos B., Bartoš J., et al. Development of DNA markers from physically mapped loci in Aegilops comosa and Aegilops umbellulata using single-gene FISH and chromosome sequences. Front. Plant Sci. 2021;12:689031. doi: 10.3389/fpls.2021.689031. PubMed DOI PMC

Li S., Morris C.F., Bettge A.D. Genotype and environment variation for arabinoxylans in hard winter and spring wheats of the U.S. Pacific Northwest. Cereal Chem. 2009;86:88–95. doi: 10.1094/CCHEM-86-1-0088. DOI

Tremmel-Bede K., Szentmiklóssy M., Tömösközi S., Török K., Lovegrove A., Shewry P.R., Láng L., Bedő Z., Vida G., Rakszegi M. Stability analysis of wheat lines with increased level of arabinoxylan. PLoS ONE. 2020;15:e0232892. doi: 10.1371/journal.pone.0232892. PubMed DOI PMC

Martinant J.-P., Billot A., Bouguennec A., Charmet G., Saulnier L., Branlard G. Genetic and environmental variations in water-extractable arabinoxylans content and flour extract viscosity. J. Cereal Sci. 1999;30:45–48. doi: 10.1006/jcrs.1998.0259. DOI

Dornez E., Gebruers K., Joye I.J., de Ketelaere B., Lenartz J., Massaux C., Bodson B., Delcour J.A., Courtin C.M. Effects of genotype, harvest year and genotype-by-harvest year interactions on arabinoxylan, endoxylanase activity and endoxylanase inhibitor levels in wheat kernels. J. Cereal Sci. 2008;47:180–189. doi: 10.1016/j.jcs.2007.03.008. DOI

Monte J.V., de Nova P.J., Soler C. AFLP-based analysis to study genetic variability and relationships in the Spanish species of the genus Aegilops. Hereditas. 2001;135:233–238. doi: 10.1111/j.1601-5223.2001.00233.x. PubMed DOI

Okuno K., Ebana K., Noov B., Yoshida H. Genetic diversity of Central Asian and north Caucasian Aegilops species as revealed by RAPD markers. Genet. Resour. Crop Evol. 1998;45:389–394. doi: 10.1023/A:1008660001263. DOI

Arrigo N., Felber F., Parisod C., Buerki S., Alvarez N., David J., Guadagnuolo R. Origin and expansion of the allotetraploid Aegilops geniculata, a wild relative of wheat. New Phytol. 2010;187:1170–1180. doi: 10.1111/j.1469-8137.2010.03328.x. PubMed DOI

Meimberg H., Rice K.J., Milan N.F., Njoku C.C., McKay J.K. Multiple origins promote the ecological amplitude of allopolyploid Aegilops (Poaceae) Am. J. Bot. 2009;96:1262–1273. doi: 10.3732/ajb.0800345. PubMed DOI

Caldwell K.S., Russell J., Langridge P., Powell W. Extreme population-dependent linkage disequilibrium detected in an inbreeding plant species, Hordeum vulgare. Genetics. 2006;172:557–567. doi: 10.1534/genetics.104.038489. PubMed DOI PMC

Kim S., Plagnol V., Hu T.T., Toomajian C., Clark R.M., Ossowski S., Ecker J.R., Weigel D., Nordborg M. Recombination and linkage disequilibrium in Arabidopsis thaliana. Nat. Genet. 2007;39:1151–1155. doi: 10.1038/ng2115. PubMed DOI

Li Y., Haseneyer G., Schön C.-C., Ankerst D., Korzun V., Wilde P., Bauer E. High levels of nucleotide diversity and fast decline of linkage disequilibrium in rye (Secale cereale L.) genes involved in frost response. BMC Plant Biol. 2011;11:6. doi: 10.1186/1471-2229-11-6. PubMed DOI PMC

Tiwari V.K., Wang S., Danilova T., Koo D.H., Vrána J., Kubaláková M., Hřibová E., Rawat N., Kalia B., Singh N., et al. Exploring the tertiary gene pool of bread wheat: Sequence assembly and analysis of chromosome 5Mg of Aegilops geniculata. Plant J. 2015;84:733–746. doi: 10.1111/tpj.13036. PubMed DOI

Molnár I., Šimková H., Leverington-Waite M., Goram R., Cseh A., Vrána J., Farkas A., Doležel J., Molnár-Láng M., Griffiths S. Syntenic relationships between the U and M genomes of Aegilops, wheat and the model species Brachypodium and rice as revealed by COS markers. PLoS ONE. 2013;8:e70844. doi: 10.1371/journal.pone.0070844. PubMed DOI PMC

Edae E.A., Olivera P.D., Jin Y., Poland J.A., Rouse M.N. Genotype-by-sequencing facilitates genetic mapping of a stem rust resistance locus in Aegilops umbellulata, a wild relative of cultivated wheat. BMC Genom. 2016;17:1039. doi: 10.1186/s12864-016-3370-2. PubMed DOI PMC

Edae E.A., Olivera P.D., Jin Y., Rouse M.N. Genotyping-by-sequencing facilitates a high-density consensus linkage map for Aegilops umbellulata, a wild relative of cultivated wheat. G3 Genes Genomes Genet. 2017;7:1551–1561. doi: 10.1534/g3.117.039966. PubMed DOI PMC

Zhang H., Jia J., Gale M.D., Devos K.M. Relationships between the chromosomes of Aegilops umbellulata and wheat. Theor. Appl. Genet. 1998;96:69–75. doi: 10.1007/s001220050710. DOI

Marcotuli I., Colasuonno P., Hsieh Y.S.Y., Fincher G.B., Gadaleta A. Non-Starch polysaccharides in durum wheat: A review. Int. J. Mol. Sci. 2020;21:2933. doi: 10.3390/ijms21082933. PubMed DOI PMC

Schreiber M., Wright F., MacKenzie K., Hedley P.E., Schwerdt J.G., Little A., Burton R.A., Fincher G.B., Marshall D., Waugh R., et al. The barley genome sequence assembly reveals three additional members of the CslF (1,3;1,4)-β-glucan synthase gene family. PLoS ONE. 2014;9:e90888. doi: 10.1371/journal.pone.0090888. PubMed DOI PMC

Burton R.A., Jobling S.A., Harvey A.J., Shirley N.J., Mather D.E., Bacic A., Fincher G.B. The genetics and transcriptional profiles of the cellulose synthase-like HvCslF gene family in barley. Plant Physiol. 2008;146:1821–1833. doi: 10.1104/pp.107.114694. PubMed DOI PMC

Islam S., Rahman I.A., Islam T., Ghosh A. Genome-wide identification and expression analysis of glutathione S-transferase gene family in tomato: Gaining an insight to their physiological and stress-specific roles. PLoS ONE. 2017;12:e0187504. doi: 10.1371/journal.pone.0187504. PubMed DOI PMC

Charmet G., Masood-Quraishi U., Ravel C., Romeuf I., Balfourier F., Perretant M.R., Joseph J.L., Rakszegi M., Guillon F., Sado P.E., et al. Genetics of dietary fibre in bread wheat. Euphytica. 2009;170:155–168. doi: 10.1007/s10681-009-0019-0. DOI

Quraishi U.M., Murat F., Abrouk M., Pont C., Confolent C., Oury F.X., Ward J., Boros D., Gebruers K., Delcour J.A., et al. Combined meta-genomics analyses unravel candidate genes for the grain dietary fiber content in bread wheat (Triticum aestivum L.) Funct. Integr. Genom. 2011;11:71–83. doi: 10.1007/s10142-010-0183-2. PubMed DOI

Mitchell R.A.C., Dupree P., Shewry P.R. A novel bioinformatics approach identifies candidate genes for the synthesis and feruloylation of arabinoxylan. Plant Physiol. 2007;144:43–53. doi: 10.1104/pp.106.094995. PubMed DOI PMC

Lovegrove A., Wilkinson M.D., Freeman J., Pellny T.K., Tosi P., Saulnier L., Shewry P.R., Mitchell R.A.C. RNA interference suppression of genes in glycosyl transferase families 43 and 47 in wheat starchy endosperm causes large decreases in arabinoxylan content. Plant Physiol. 2013;163:95–107. doi: 10.1104/pp.113.222653. PubMed DOI PMC

Zeng W., Jiang N., Nadella R., Killen T.L., Nadella V., Faik A. A glucurono(arabino)xylan synthase complex from wheat contains members of the GT43, GT47, and GT75 families and functions cooperatively. Plant Physiol. 2010;154:78–97. doi: 10.1104/pp.110.159749. PubMed DOI PMC

Anders N., Wilkinson M.D., Lovegrove A., Freeman J., Tryfona T., Pellny T.K., Weimar T., Mortimer J.C., Stott K., Baker J.M., et al. Glycosyl transferases in family 61 mediate arabinofuranosyl transfer onto xylan in grasses. Proc. Natl. Acad. Sci. USA. 2012;109:989–993. doi: 10.1073/pnas.1115858109. PubMed DOI PMC

Hatfield R.D., Nevins D.J. Hydrolytic activity and substrate specificity of an endoglucanase from Zea mays seedling cell walls. Plant Physiol. 1987;83:203–207. doi: 10.1104/pp.83.1.203. PubMed DOI PMC

Wang Y., Li Y., Zhang H., Zhai H., Liu Q., He S. A soluble starch synthase I gene, IbSSI, alters the content, composition, granule size and structure of starch in transgenic sweet potato. Sci. Rep. 2017;7:2315. doi: 10.1038/s41598-017-02481-x. PubMed DOI PMC

Naumoff D.G. Hierarchical classification of glycoside hydrolases. Biochemestry. 2011;76:622–635. doi: 10.1134/S0006297911060022. PubMed DOI

McArthur J.B., Chen X. Glycosyltransferase engineering for carbohydrate synthesis. Biochem. Soc. Trans. 2016;44:129–142. doi: 10.1042/BST20150200. PubMed DOI PMC

Molnár-Láng M., Linc G., Sutka J. Transfer of the recessive crossability allele kr1 from Chinese Spring into the winter wheat variety Martonvásári 9. Euphytica. 1996;90:301–305. doi: 10.1007/BF00027480. DOI

Molnár-Láng M., Molnár I., Szakács É., Linc G., Bedö Z. Production and molecular cytogenetic identification of wheat-alien hybrids and introgression lines. In: Tuberosa R., Graner A., Frison E.A., editors. Genomics of Plant Genetic Resources. Springer; New York, NY, USA: 2014. pp. 255–283.

ICC Standard Method No. 167 . Grain and Grain Products for Food and Feed. Determination of Crude Protein in Grain and Grain Products for Food and Feed by the Dumas Combustion Principle. International Association for Cereal Science and Technology; Vienna, Austria: 2000.

Douglas S. A rapid method for the determination of pentosans in wheat flour. Food Chem. 1981;7:139–145. doi: 10.1016/0308-8146(81)90059-5. DOI

Finnie S.M., Bettge A.D., Morris C.F. Influence of cultivar and environment on water-soluble and water-insoluble arabinoxylans in soft wheat. Cereal Chem. 2006;83:617–623. doi: 10.1094/CC-83-0617. DOI

ICC Standard Method No. 166 . Determination of β-Glucan in Barley, Oat and Rye. International Association for Cereal Science and Technology; Vienna, Austria: 1998.

AACC Method No. 32-23.01 . AACC Approved Methods of Analysis. 11th ed. American Association of Cereal Chemists; St Paul, MN, USA: 2009. β-Glucan Content of Barley and Oats, Rapid Enzymatic Procedure.

Peakall R., Smouse P.E. GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes. 2006;6:288–295. doi: 10.1111/j.1471-8286.2005.01155.x. PubMed DOI PMC

Peakall R., Smouse P.E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics. 2012;28:2537–2539. doi: 10.1093/bioinformatics/bts460. PubMed DOI PMC

Falush D., Stephens M., Pritchard J.K. Inference of population structure using multilocus genotype data: Dominant markers and null alleles. Mol. Ecol. Notes. 2007;7:574–578. doi: 10.1111/j.1471-8286.2007.01758.x. PubMed DOI PMC

Hubisz M.J., Falush D., Stephens M., Pritchard J.K. Inferring weak population structure with the assistance of sample group information. Mol. Ecol. Resour. 2009;9:1322–1332. doi: 10.1111/j.1755-0998.2009.02591.x. PubMed DOI PMC

Pritchard J.K., Stephens M., Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155:945–959. doi: 10.1093/genetics/155.2.945. PubMed DOI PMC

Falush D., Stephens M., Pritchard J.K. Inference of population structure using multilocus genotype data: Linked loci and correlated allele frequencies. Genetics. 2003;164:1567–1587. doi: 10.1093/genetics/164.4.1567. PubMed DOI PMC

Bradbury P.J., Zhang Z., Kroon D.E., Casstevens T.M., Ramdoss Y., Buckler E.S. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics. 2007;23:2633–2635. doi: 10.1093/bioinformatics/btm308. PubMed DOI

Dabney A., Storey J.D., Warnes G.R. Qvalue: Q-Value Estimation for False Discovery Rate Control. R Package Version 1.16.0. 2008. [(accessed on 21 May 2021)]. Available online: http://bioconductor.org/packages/2.4/bioc/html/qvalue.html.

R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2018. [(accessed on 21 May 2021)]. Available online: https://www.R-project.org/

International Wheat Genome Sequencing Consortium (IWGSC) Appels R., Eversole K., Feuillet C., Keller B., Rogers J., Stein N., Pozniak C.J., Choulet F., Distelfeld A., et al. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science. 2018;361:eaar7191. doi: 10.1126/science.aar7191. PubMed DOI

Eddy S.R. A new generation of homology search tools based on probabilistic inference. Genome Inform. 2009;23:205–211. PubMed

El-Gebali S., Mistry J., Bateman A., Eddy S.R., Luciani A., Potter S.C., Qureshi M., Richardson L.J., Salazar G.A., Smart A., et al. The Pfam protein families database in 2019. Nucleic Acids Res. 2019;47:D427–D432. doi: 10.1093/nar/gky995. PubMed DOI PMC

Lombard V., Golaconda Ramulu H., Drula E., Coutinho P.M., Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014;42:D490–D495. doi: 10.1093/nar/gkt1178. PubMed DOI PMC

Virk D.S., Pandit D.B., Sufian M.A., Ahmed F., Siddique M.A., Samad M.A., Rahman M.M., Islam M.M., Ortiz-Ferrara G., Joshi K.D., et al. REML is an effective analysis for mixed modelling of unbalanced on-farm varietal trials. Exp. Agric. 2009;45:77–91. doi: 10.1017/S0014479708007047. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...