Unlocking the Genetic Diversity and Population Structure of a Wild Gene Source of Wheat, Aegilops biuncialis Vis., and Its Relationship With the Heading Time
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
31824545
PubMed Central
PMC6882925
DOI
10.3389/fpls.2019.01531
Knihovny.cz E-zdroje
- Klíčová slova
- Aegilops biuncialis, DArTseq markers, genetic diversity, heading time, hierarchical clustering, population structure,
- Publikační typ
- časopisecké články MeSH
Understanding the genetic diversity of Aegilops biuncialis, a valuable source of agronomical useful genes, may significantly facilitate the introgression breeding of wheat. The genetic diversity and population structure of 86 Ae. biuncialis genotypes were investigated by 32700 DArT markers with the simultaneous application of three statistical methods- neighbor-joining clustering, Principal Coordinate Analysis, and the Bayesian approach to classification. The collection of Ae. biuncialis accessions was divided into five groups that correlated well with their eco-geographic habitat: A (North Africa), B (mainly from Balkans), C (Kosovo and Near East), D (Turkey, Crimea, and Peloponnese), and E (Azerbaijan and the Levant region). The diversity between the Ae. biuncialis accessions for a phenological trait (heading time), which is of decisive importance in the adaptation of plants to different eco-geographical environments, was studied over 3 years. A comparison of the intraspecific variation in the heading time trait by means of analysis of variance and principal component analysis revealed four phenotypic categories showing association with the genetic structure and geographic distribution, except for minor differences. The detailed exploration of genetic and phenologic divergence provides an insight into the adaptation capacity of Ae. biuncialis, identifying promising genotypes that could be utilized for wheat improvement.
Agricultural Institute Centre for Agricultural Research Martonvásár Hungary
University of Canberra Diversity Array Technologies Canberra ACT Australia
Zobrazit více v PubMed
Araus J. L., Slafer G. A., Reynolds M. P., Royo C., (2004). “Physiology of yield and adaptation in wheat and barley breeding,” in Physiology and Biotechnology Integration for Plant Breeding. Eds.Nguyen H. T., Blum A. (New York, USA: Marcel Dekker; ), 1–49. 10.1201/9780203022030.ch16 DOI
Arora S., Singh N., Kaur S., Bains N. S., Uauy C., Poland J., et al. (2017). Genome-wide association study of grain architecture in wild wheat Aegilops tauschii. Front. Plant Sci. 8, 886–898. 10.3389/fpls.2017.00886 PubMed DOI PMC
Arrigo N., Felber F., Parisod C., Buerki S., Alvarez N., David J., et al. (2010). Origin and expansion of the allotetraploid Aegilops geniculata, a wild relative of wheat. New Phytol. 187, 1170–1180. 10.1111/j.1469-8137.2010.03328.x PubMed DOI
Bachmann A., Fernández-López J., Ginsburg S., Thomas H., Bouwkamp J. C., Solomos T., et al. (1994). Stay-green genotypes of Phaseolus vulgaris L.: chloroplast proteins and chlorophyll catabolites during foliar senescence. New Phytol. 126, 593–600. 10.1111/j.1469-8137.1994.tb02953.x DOI
Badea A., Eudes F., Salmon D., Tuvesson S., Vrolijk A., Larsson C.-T., et al. (2011). Development and assessment of DArT markers in triticale. Theor. Appl. Genet. 122, 1547–1560. 10.1007/s00122-011-1554-3 PubMed DOI
Baloch F. S., Alsaleh A., Shahid M. Q., Çiftçi V., Sáenz de Miera L. E., Aasim M., et al. (2017). A whole genome DArTseq and SNP analysis for genetic diversity assessment in durum wheat from Central Fertile Crescent. PloS One 12, e0167821. 10.1371/journal.pone.0167821 PubMed DOI PMC
Bansal M., Kaur S., Dhaliwal H. S., Bains N. S., Bariana H. S., Chhuneja P., et al. (2017). Mapping of Aegilops umbellulata-derived leaf rust and stripe rust resistance loci in wheat. Plant Pathol. 66, 38–44. 10.1111/ppa.12549 DOI
Blondel J. (2006). The “design” of Mediterranean landscapes: a millennial story of humans and ecological systems during the historic period. Hum. Ecol. 34, 713–729. 10.1007/s10745-006-9030-4 DOI
Bolibok-Brągoszewska H., Targońska M., Bolibok L., Kilian A., Rakoczy-Trojanowska M. (2014). Genome-wide characterization of genetic diversity and population structure in Secale. BMC Plant Biol. 14, 184–198. 10.1186/1471-2229-14-184 PubMed DOI PMC
Borrell A. K., Hammer G. L., Henzell R. G. (2000). Does maintaining green leaf area in Sorghum improve yield under drought? II. Dry matter production and yield. Crop Sci. 40, 1037–1048. 10.2135/cropsci2000.4041037x DOI
Cai S., Wu D., Jabeen Z., Huang Y., Huang Y., Zhang G. (2013). Genome-wide association analysis of aluminum tolerance in cultivated and Tibetan wild barley. PloS One 8, e69776. 10.1371/journal.pone.0069776 PubMed DOI PMC
Christopher J. T., Manschadi A. M., Hammer G. L., Borrell A. K. (2008). Developmental and physiological traits associated with high yield and stay-green phenotype in wheat. Aust. J. Agric. Res. 59, 354–364. 10.1071/ar07193 DOI
Colmer T. D., Flowers T. J., Munns R. (2006). Use of wild relatives to improve salt tolerance in wheat. J. Exp. Bot. 57, 1059–1078. 10.1093/jxb/erj124 PubMed DOI
Comadran J., Russell J. R., Booth A., Pswarayi A., Ceccarelli S., Grando S., et al. (2011). Mixed model association scans of multi-environmental trial data reveal major loci controlling yield and yield related traits in Hordeum vulgare in Mediterranean environments. Theor. Appl. Genet. 122, 1363–1373. 10.1007/s00122-011-1537-4 PubMed DOI PMC
Cseh A., Kruppa K., Molnár I., Rakszegi M., Doležel J., Molnár-Láng M. (2011). Characterization of a new 4BS.7HL wheat–barley translocation line using GISH, FISH, and SSR markers and its effect on the β-glucan content of wheat. Genome 54, 795–804. 10.1139/g11-044 PubMed DOI
Devictor V., Van Swaay C., Brereton T., Brotons L., Chamberlain D., Heliölö J., et al. (2012). Differences in the climatic debts of birds and butterflies at a continental scale. Nat. Clim. Change 2, 121–124. 10.1038/nclimate1347 DOI
Dulai S., Molnár I., Szopkó D., Darkó É., Vojtkó A., Sass-Gyarmati A. (2014). Wheat- Aegilops biuncialis amphiploids have efficient photosynthesis and biomass production during osmotic stress. J. Plant Physiol. 171, 509–517. 10.1016/j.jplph.2013.11.015 PubMed DOI
Dvorak J., Akhunov E. D. (2005). Tempos of gene locus deletions and duplications and their relationship to recombination rate during diploid and polyploid evolution in the Aegilops-Triticum alliance. Genetics 171, 323–332. 10.1534/genetics.105.041632 PubMed DOI PMC
Edet O. U., Gorafi Y. S. A., Nasuda S., Tsujimoto H. (2018). DArTseq-based analysis of genomic relationships among species of tribe Triticeae. Sci. Rep. 8, 16397–16408. 10.1038/s41598-018-34811-y PubMed DOI PMC
Etminan A., Pour-Aboughadareh A., Mehrabi A. A., Shooshtari L., Ahmadi-Rad A., Moradkhani H. (2019). Molecular characterization of the wild relatives of wheat using CAAT-box derived polymorphism. Plant Biosyst. 153, 398–405. 10.1080/11263504.2018.1492993 DOI
Evanno G., Regnaut S., Goudet J. (2005). Detecting the number of clusters of individuals using the software structure: a simulation study. Mol. Ecol. 14, 2611–2620. 10.1111/j.1365-294X.2005.02553.x PubMed DOI
Friebe B., Jiang J., Raupp W. J., McIntosh R. A., Gill B. S. (1996). Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica 91, 59–87. 10.1007/BF00035277 DOI
Gawroński P., Pawełkowicz M., Tofil K., Uszyński G., Sharifova S., Ahluwalia S., et al. (2016). DArT markers effectively target gene space in the rye genome. Front. Plant Sci. 07, 1600–1613. 10.3389/fpls.2016.01600 PubMed DOI PMC
Hammer Ø., Harper D. A. T., Ryan P. D. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 4–9. 10.1016/j.bcp.2008.05.025 DOI
Hickling R., Roy D. B., Hill J. K., Fox R., Thomas C. D. (2006). The distributions of a wide range of taxonomic groups are expanding polewards. Glob. Change Biol. 12, 450–455. 10.1111/j.1365-2486.2006.01116.x DOI
Jaccoud D., Peng K., Feinstein D., Kilian A. (2001). Diversity Arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Res. 29, 1–7. 10.1093/nar/29.4.e25 PubMed DOI PMC
Janzen D. H. (1984). Dispersal of small seeds by big herbivores: foliage is the fruit. Am. Nat. 123, 338–353. 10.1016/j.compstruc.2007.04.021 DOI
Jarvis A., Lane A., Hijmans R. J. (2008). The effect of climate change on crop wild relatives. Agric. Ecosyst. Environ. 126, 13–23. 10.1016/j.agee.2008.01.013 DOI
Jauhar P. P., Chibbar R. N. (1999). Chromosome-mediated and direct gene transfers in wheat. Genome 42, 570–583. 10.1139/g99-045 DOI
Jauhar P. P. (1993). “Alien gene transfer and genetic enrichment of bread wheat,” in Biodiversity and Wheat Improvement. Ed.Damania A. B. (Chichester, U.K:John Wiley & Sons; ), 103–119. Available at: www.cabdirect.org/cabdirect/abstract/19941605141 [Accessed July 5, 2019].
Jing H.-C., Bayon C., Kanyuka K., Berry S., Wenzl P., Huttner E. (2009). DArT markers: diversity analyses, genomes comparison, mapping and integration with SSR markers in Triticum monococcum. BMC Genomics 10, 458–474. 10.1186/1471-2164-10-458 PubMed DOI PMC
Jones H., Gosman N., Horsnell R., Rose G. A., Everest L. A., Bentley A. R., et al. (2013). Strategy for exploiting exotic germplasm using genetic, morphological, and environmental diversity: the Aegilops tauschii Coss. example. Theor. Appl. Genet. 126, 1793–1808. 10.1007/s00122-013-2093-x PubMed DOI
Kellogg E. A., Appels R., Mason-Gamer R. J. (1996). When genes tell different stories: the diploid genera of Triticeae (Gramineae). Syst. Bot. 21, 321–347. 10.2307/2419662 DOI
Kilian B., Özkan H., Deusch O., Effgen S., Brandolini A., Kohl J., et al. (2007). Independent wheat B and G genome origins in outcrossing Aegilops progenitor haplotypes. Mol. Biol. Evol. 24, 217–227. 10.1093/molbev/msl151 PubMed DOI
Kilian B., Mammen K., Millet E., Sharma R., Graner A., Salamini F., et al. (2011). “Aegilops,” in Wild Crop Relatives: Genomic and Breeding Resources: Cereals. Ed. Kole C. (Berlin: Springer-Verlag; ), 1–76. 10.1007/978-3-642-14871-2 DOI
Kilian A., Wenzl P., Huttner E., Carling J., Xia L., Blois H. (2012). “Diversity Arrays Technology: A generic genome profiling technology on open platforms,” in Data Production and Analysis in Population Genomics. Eds. Pompanon F., Bonin A. (Totowa, NJ: Humana Press; ), 67–89. 10.1007/978-1-61779-870-2_5 PubMed DOI
Kishii M. (2019). An update of recent use of Aegilops species in wheat breeding. Front. Plant Sci. 10, 585–603. 10.3389/fpls.2019.00585 PubMed DOI PMC
Kobata T., Shinonaga M., Yoshida H., Tomisaka K., Akai K. (2015). Stay-green trait assessment using the leaf incubation method to examine the maintenance of assimilation rates under high temperature conditions during the grain-filling period in rice. Plant Prod. Sci. 18, 254–266. 10.1626/pps.18.254 DOI
Kumar A., Seetan R., Mergoum M., Tiwari V. K., Iqbal M. J., Wang Y., et al. (2015). Radiation hybrid maps of the D-genome of Aegilops tauschii and their application in sequence assembly of large and complex plant genomes. BMC Genomics 16, 800–813. 10.1186/s12864-015-2030-2 PubMed DOI PMC
Liu W., Jin Y., Rouse M., Friebe B., Gill B., Pumphrey M. O. (2011. a). Development and characterization of wheat-Ae. searsii Robertsonian translocations and a recombinant chromosome conferring resistance to stem rust. Theor. Appl. Genet. 122, 1537–1545. 10.1007/s00122-011-1553-4 PubMed DOI
Liu W., Rouse M., Friebe B., Jin Y., Gill B., Pumphrey M. (2011. b). Discovery and molecular mapping of a new gene conferring resistance to stem rust, Sr53, derived from Aegilops geniculata and characterization of spontaneous translocation stocks with reduced alien chromatin. Chromosom. Res. 19, 669–682. 10.1007/s10577-011-9226-3 PubMed DOI
Marais G. F., McCallum B., Marais A. S. (2006). Leaf rust and stripe rust resistance genes derived from Aegilops sharonensis. Euphytica 149, 373–380. 10.1007/s10681-006-9092-9 DOI
Marais F., Marais A., McCallum B., Pretorius Z. (2009). Transfer of leaf rust and stripe rust resistance genes Lr62 and Yr42 from Aegilops neglecta Req. ex Bertol. to common wheat. Crop Sci. 49, 871–879. 10.2135/cropsci2008.06.0317 DOI
Matsuoka Y., Takumi S., Kawahara T. (2008). Flowering time diversification and dispersal in central Eurasian wild wheat Aegilops tauschii Coss.: genealogical and ecological framework. PloS One 3, e3138. 10.1371/journal.pone.0003138 PubMed DOI PMC
Matsuoka Y., Takumi S., Kawahara T. (2015). Intraspecific lineage divergence and its association with reproductive trait change during species range expansion in central Eurasian wild wheat Aegilops tauschii Coss. (Poaceae). BMC Evol. Biol. 15, 213–222. 10.1186/s12862-015-0496-9 PubMed DOI PMC
Meimberg H., Hammond J. I., Jorgensen C. M., Park T. W., Gerlach J. D., Rice K. J., et al. (2006). Molecular evidence for an extreme genetic bottleneck during introduction of an invading grass to California. Biol. Invasions 8, 1355–1366. 10.1007/s10530-005-2463-7 DOI
Meimberg H., Milan N. F., Karatassiou M., Espeland E. K., McKay J. K., Rice K. J. (2010). Patterns of introduction and adaptation during the invasion of Aegilops triuncialis (Poaceae) into Californian serpentine soils. Mol. Ecol. 19, 5308–5319. 10.1111/j.1365-294X.2010.04875.x PubMed DOI
Mendlinger S., Zohary D. (1995). The extent and structure of genetic variation in species of the sitopsis group of aegilops. Heredity (Edinb). 74, 616–627. 10.1038/hdy.1995.85 DOI
Mikó P., Löschenberger F., Hiltbrunner J., Aebi R., Megyeri M., Kovács G., et al. (2014). Comparison of bread wheat varieties with different breeding origin under organic and low input management. Euphytica 199, 69–80. 10.1007/s10681-014-1171-8 DOI
Millet E. (2007). Exploitation of Aegilops species of section Sitopsis for wheat improvement. Isr. J. Plant Sci. 55, 277–287. 10.1560/ijps.55.3-4.277 DOI
Mizuno N., Yamasaki M., Matsuoka Y., Kawahara T., Takumi S. (2010). Population structure of wild wheat D-genome progenitor Aegilops tauschii Coss.: Implications for intraspecific lineage diversification and evolution of common wheat. Mol. Ecol. 19, 999–1013. 10.1111/j.1365-294X.2010.04537.x PubMed DOI
Molnár I., Gáspár L., Sárvári É., Dulai S., Hoffmann B., Molnár-Láng M. (2004). Physiological and morphological responses to water stress in Aegilops biuncialis and Triticum aestivum genotypes. Biol. Funct. Plant 31, 1149–1159. 10.1071/FP03143 PubMed DOI
Molnár I., Cifuentes M., Schneider A., Benavente E., Molnár-Láng M. (2011). Association between simple sequence repeat-rich chromosome regions and intergenomic translocation breakpoints in natural populations of allopolyploid wild wheats. Ann. Bot. 107, 65–76. 10.1093/aob/mcq215 PubMed DOI PMC
Molnár-Láng M., Molnár I., Szakács É., Linc G., Bedö Z. (2014). “Production and molecular cytogenetic identification of wheat-alien hybrids and introgression lines,” in Genomics of Plant Genetic Resources. Eds.Tuberosa R., Graner A., Frison E. (Dordrecht:Springer Netherlands; ), 255–283. 10.1007/978-94-007-7572-5_11 DOI
Monneveux P., Zaharieva M., Rekika D. (2000). “The utilisation of Triticum and Aegilops species for the improvement of durum wheat,” in Durum Wheat Improvement in the Mediterranean Region: New Challenges. Eds.Royo C., Nachit M., Di Fonzo N., Araus J. L. (CIHEAM Zaragoza; ), 71–81. Available at: www.ciheam.org/%5Cnhttp://om.ciheam.org/.
Monostori I., Szira F., Tondelli A., Árendás T., Gierczik K., Cattivelli L., et al. (2017). Genome-wide association study and genetic diversity analysis on nitrogen use efficiency in a Central European winter wheat (Triticum aestivum L.) collection. PloS One 12, e0189265. 10.1371/journal.pone.0189265 PubMed DOI PMC
Monte J. V., Nova P. J. G., Soler C. (2001). AFLP-based analysis to study genetic variability and relationships in the Spanish species of the genus Aegilops. Hereditas 135, 233–238. 10.1111/j.1601-5223.2001.00233.x PubMed DOI
Nagy E. D., Molnár I., Schneider A., Kovács G., Molnár-Láng M. (2006). Characterization of chromosome-specific S-SAP markers and their use in studying genetic diversity in Aegilops species. Genome 49, 289–296. 10.1139/g05-109 PubMed DOI
Nielsen N. H., Backes G., Stougaard J., Andersen S. U., Jahoor A. (2014). Genetic diversity and population structure analysis of European hexaploid bread wheat (Triticum aestivum L.) varieties. PloS One 9, e94000. 10.1371/journal.pone.0094000 PubMed DOI PMC
Okuno K., Ebana K., Noov B., Yoshida H. (1998). Genetic diversity of Central Asian and north Caucasian Aegilops species as revealed by RAPD markers. Genet. Resour. Crop Evol. 45, 389–394. 10.1023/A:1008660001263 DOI
Olivera P. D., Steffenson B. J. (2009). Aegilops sharonensis: origin, genetics, diversity, and potential for wheat improvement. Botany 87, 740–756. 10.1139/b09-040 DOI
Olivera P. D., Anikster Y., Steffenson B. J. (2010). Genetic diversity and population structure in Aegilops sharonensis. Crop Sci. 50, 636–648. 10.2135/cropsci2009.04.0192 DOI
Olivera P. D., Rouse M. N., Jin Y. (2018). Identification of new sources of resistance to wheat stem rust in Aegilops spp. in the tertiary genepool of wheat. Front. Plant Sci. 9, 1719–1726. 10.3389/fpls.2018.01719 PubMed DOI PMC
Olson E. L., Rouse M. N., Pumphrey M. O., Bowden R. L., Gill B. S., Poland J. A. (2013). Introgression of stem rust resistance genes SrTA10187 and SrTA10171 from Aegilops tauschii to wheat. Theor. Appl. Genet. 126, 2477–2484. 10.1007/s00122-013-2148-z PubMed DOI
Ostrowski M. F., Prosperi J. M., David J. (2016). Potential implications of climate change on Aegilops species distribution: sympatry of these crop wild relatives with the major European crop Triticum aestivum and conservation issues. PloS One 11, 1–27. 10.1371/journal.pone.0153974 PubMed DOI PMC
Parmesan C., Yohe G. (2003). A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42. 10.1038/nature01286 PubMed DOI
Peleg Z., Fahima T., Abbo S., Krugman T., Nevo E., Yakir D., et al. (2005). Genetic diversity for drought resistance in wild emmer wheat and its ecogeographical associations. Plant Cell Environ. 28, 176–191. 10.1111/j.1365-3040.2005.01259.x DOI
Pestsova E., Korzun V., Goncharov N. P., Hammer K., Ganal M. W., Röder M. S. (2000). Microsatellite analysis of Aegilops tauschii germplasm. Theor. Appl. Genet. 101, 100–106. 10.1007/s001220051456 DOI
Peters A., Johnson D. E., George M. R. (1996). Barb goatgrass: a threat to California rangelands. Rangelands 18, 8–10.
Pritchard J. K., Stephens M., Donnelly P. (2000). Inference of population structure using multilocus genotype data. Genetics 155, 945–959. 10.1111/j.1471-8286.2007.01758.x PubMed DOI PMC
Qi L., Friebe B., Gill B. S. (2006). Complex genome rearrangements reveal evolutionary dynamics of pericentromeric regions in the Triticeae. Genome 49, 1628–1639. 10.1139/g06-123 PubMed DOI
Römermann C., Tackenberg O., Poschlod P. (2005). How to predict attachment potential of seeds to sheep and cattle coat from simple morphological seed traits. Oikos 110, 219–230. 10.1111/j.0030-1299.2005.13911.x DOI
Rekika D., Monneveux P., Havaux M. (1997). The in vivo tolerance of photosynthetic membranes to high and low temperatures in cultivated and wild wheats of the Triticum and Aegilops genera. J. Plant Physiol. 150, 734–738. 10.1016/S0176-1617(97)80291-X DOI
Sansaloni C., Petroli C., Jaccoud D., Carling J., Detering F., Grattapaglia D., et al. (2011). Diversity Arrays Technology (DArT) and next-generation sequencing combined: genome-wide, high throughput, highly informative genotyping for molecular breeding of Eucalyptus. BMC Proc. 5, 54–55. 10.1186/1753-6561-5-S7-P54 DOI
Schneider A., Molnár I., Molnár-Láng M. (2008). Utilisation of Aegilops (goatgrass) species to widen the genetic diversity of cultivated wheat. Euphytica 163, 1–19. 10.1007/s10681-007-9624-y DOI
Singh N., Wu S., Tiwari V., Sehgal S., Raupp J., Wilson D., et al. (2019). Genomic analysis confirms population structure and identifies inter-lineage hybrids in Aegilops tauschii. Front. Plant Sci. 10, 9–21. 10.3389/fpls.2019.00009 PubMed DOI PMC
Sohail Q., Shehzad T., Kilian A., Eltayeb A. E., Tanaka H., Tsujimoto H. (2012). Development of diversity array technology (DArT) markers for assessment of population structure and diversity in Aegilops tauschii. Breed. Sci. 62, 38–45. 10.1270/jsbbs.62.38 PubMed DOI PMC
Spano G., Di Fonzo N., Perrotta C., Platani C., Ronga G., Lawlor D. W., et al. (2003). Physiological characterization of “stay green” mutants in durum wheat. J. Exp. Bot. 54, 1415–1420. 10.1093/jxb/erg150 PubMed DOI
Tahernezhad Z., Zamani M. J., Solouki M., Zahravi M., Imamjomeh A. A., Jafaraghaei M., et al. (2010). Genetic diversity of Iranian Aegilops tauschii Coss. using microsatellite molecular markers and morphological traits. Mol. Biol. Rep. 37, 3413–3420. 10.1007/s11033-009-9931-6 PubMed DOI
Thomas K. G., Bebeli P. J. (2010). Genetic diversity of Greek Aegilops species using different types of nuclear genome markers. Mol. Phylogenet. Evol. 56, 951–961. 10.1016/J.YMPEV.2010.04.041 PubMed DOI
Thomas H., Howarth C. J. (2000). Five ways to stay green. J. Exp. Bot. 51, 329–337. 10.1093/jexbot/51.suppl_1.329 PubMed DOI
Thomas H., Schellenberg M., Vicentini F., Matile P. (1996). Gregor Mendel’s green and yellow pea seeds. Bot. Acta 109, 3–4. 10.1111/j.1438-8677.1996.tb00862.x DOI
Thomas C. D., Cameron A., Green R. E., Bakkenes M., Beaumont L. J., Collingham Y. C., et al. (2004). Extinction risk from climate change. Nature 427, 145–148. 10.1038/nature02121 PubMed DOI
Tinker N. A., Kilian A., Wight C. P., Heller-Uszynska K., Wenzl P., Rines H. W., et al. (2009). New DArT markers for oat provide enhanced map coverage and global germplasm characterization. BMC Genomics 10, 39–60. 10.1186/1471-2164-10-39 PubMed DOI PMC
Tottman D. R. (1987). The decimal code for the growth stages of cereals, with illustrations. Ann. Appl. Biol. 110, 441–454. 10.1111/j.1744-7348.1987.tb03275.x DOI
van Slageren M. W. (1994). Wild Wheats: a Monograph of Aegilops L. and Amblyopyrum (Jaub and Spach) Eig (Poaceae). Wageningen: Wageningen Agricultural University Papers.
Vellend M., Myers J. A., Gardescu S., Marks P. L., et al. (2003). Dispersal of Trillium seeds by deer: implications for long-distance migration of forest herbs. Ecology 84, 1067–1072. 10.1890/0012-9658(2003)084[1067:DOTSBD]2.0.CO;2 DOI
Wang J., Luo M. C., Chen Z., You F. M., Wei Y., Zheng Y. (2013). Aegilops tauschii single nucleotide polymorphisms shed light on the origins of wheat D-genome genetic diversity and pinpoint the geographic origin of hexaploid wheat. New Phytol. 198, 925–937. 10.1111/nph.12164 PubMed DOI
Wenzl P., Carling J., Kudrna D., Jaccoud D., Huttner E., Kleinhofs A., et al. (2004). Diversity Arrays Technology (DArT) for whole-genome profiling of barley. Proc. Natl. Acad. Sci. 101, 9915–9920. 10.1073/pnas.0401076101 PubMed DOI PMC
Zaharieva M., Monneveux P. (2006). Spontaneous hybridization between bread wheat (Triticum aestivum L.) and its wild relatives in Europe. Crop Sci. 46, 512–527. 10.2135/cropsci2005.0023 DOI
Zaharieva M., Gaulin E., Havaux M., Acevedo E., Monneveux P. (2001. a). Drought and heat responses in the wild wheat relative roth. Crop Sci. 41, 1321–1329. 10.2135/cropsci2001.4141321x DOI
Zaharieva M., Monneveux P., Henry M., Rivoal R., Valkoun J., Nachit M. M. (2001. b). Evaluation of a collection of wild wheat relative Aegilops geniculata Roth and identification of potential sources for useful traits. Euphytica 119, 33–38. 10.1023/A:1017500728227 DOI
Zaharieva M., Prosperi J. M., Monneveux P. (2004). Ecological distribution and species diversity of Aegilops L. genus in Bulgaria. Biodivers. Conserv. 13, 2319–2337. 10.1023/B:BIOC.0000047917.11509.a2 DOI
Zhang P., Dundas I. S., McIntosh R. A., Xu S. S., Park R. F., Gill B. S., et al. (2015). “Wheat–Aegilops Introgressions,” in Alien Introgression in Wheat: Cytogenetics, Molecular Biology, and Genomics. Eds. Molnár-Láng M., Ceoloni C., Doležel J. (Springer International Publishing; Cham: ), 221–243. 10.1007/978-3-319-23494-6 DOI
Identification of New QTLs for Dietary Fiber Content in Aegilops biuncialis