Comparative genomic analysis of 5Mg chromosome of Aegilops geniculata and 5Uu chromosome of Aegilops umbellulata reveal genic diversity in the tertiary gene pool
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
37521926
PubMed Central
PMC10373596
DOI
10.3389/fpls.2023.1144000
Knihovny.cz E-zdroje
- Klíčová slova
- Aegilops geniculata, Aegilops umbellulata, disease, gene, homoeologous, resistance, sequencing, wheat,
- Publikační typ
- časopisecké články MeSH
Wheat is one of the most important cereal crops for the global food security. Due to its narrow genetic base, modern bread wheat cultivars face challenges from increasing abiotic and biotic stresses. Since genetic improvement is the most sustainable approach, finding novel genes and alleles is critical for enhancing the genetic diversity of wheat. The tertiary gene pool of wheat is considered a gold mine for genetic diversity as novel genes and alleles can be identified and transferred to wheat cultivars. Aegilops geniculata and Ae. umbellulata are the key members of the tertiary gene pool of wheat and harbor important genes against abiotic and biotic stresses. Homoeologous-group five chromosomes (5Uu and 5Mg) have been extensively studied from Ae. geniculata and Ae. umbellulata as they harbor several important genes including Lr57, Lr76, Yr40, Yr70, Sr53 and chromosomal pairing loci. In the present study, using chromosome DNA sequencing and RNAseq datasets, we performed comparative analysis to study homoeologous gene evolution in 5Mg, 5Uu, and group 5 wheat chromosomes. Our findings highlight the diversity of transcription factors and resistance genes, resulting from the differential expansion of the gene families. Both the chromosomes were found to be enriched with the "response to stimulus" category of genes providing resistance against biotic and abiotic stress. Phylogenetic study positioned the M genome closer to the D genome, with higher proximity to the A genome than the B genome. Over 4000 genes were impacted by SNPs on 5D, with 4-5% of those genes displaying non-disruptive variations that affect gene function.
Agricultural Research Service United States Department of Agriculture Albany CA United States
Centre of Plant Structural and Functional Genomics Institute of Experimental Botany Olomouc Czechia
Crops Genetics John Innes Centre Norwich United Kingdom
School of Agricultural Biotechnology Punjab Agricultural University Ludhiana India
Zobrazit více v PubMed
Akhunov E., Nicolet C., Dvorak J. (2009). Single nucleotide polymorphism genotyping in polyploid wheat with the illumina GoldenGate assay. Theor. Appl. Genet. 119, 507–517. doi: 10.1007/s00122-009-1059-5 PubMed DOI PMC
Alonge M., Soyk S., Ramakrishnan S., Wang X., Goodwin S., Sedlazeck F. J., et al. . (2019). RaGOO: fast and accurate reference-guided scaffolding of draft genomes. Genome Biol. 20, 224. doi: 10.1186/s13059-019-1829-6 PubMed DOI PMC
Andrews S. (2010) FastQC: a quality control tool for high throughput sequence data. Available at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc.
Arrigo N., Felber F., Parisod C., Buerki S., Alvarez N., David J., et al. . (2010). Origin and expansion of the allotetraploid aegilops geniculata, a wild relative of wheat. New Phytol. 187, 1170–1180. doi: 10.1111/j.1469-8137.2010.03328.x PubMed DOI
Arrigo N., Guadagnuolo R., Lappe S., Pasche S., Parisod C., Felber F. (2011). Gene flow between wheat and wild relatives: empirical evidence from aegilops geniculata, ae. neglecta and ae. triuncialis. Evol. Appl. 4, 685–695. doi: 10.1111/j.1752-4571.2011.00191.x PubMed DOI PMC
Bálint A. F., Kovács G., Erdei L., Sutka J. (2001). Comparison of the Cu, zn, fe, Ca and mg contents of the grains of wild, ancient and cultivated wheat species. Cereal Res. Commun. 29, 375–382. doi: 10.1007/BF03543684 DOI
Bansal M., Adamski N. M., Toor P. I., Kaur S., Molnár I., Holušová K., et al. . (2020). Aegilops umbellulata introgression carrying leaf rust and stripe rust resistance genes Lr76 and Yr70 located to 9.47-Mb region on 5DS telomeric end through a combination of chromosome sorting and sequencing. Theor. Appl. Genet. 133, 903–915. doi: 10.1007/s00122-019-03514-x PubMed DOI
Bansal M., Kaur S., Dhaliwal H. S., Bains N. S., Bariana H. S., Chhuneja P., et al. . (2017). Mapping of aegilops umbellulata-derived leaf rust and stripe rust resistance loci in wheat. Plant Pathol. 66, 38–44. doi: 10.1111/ppa.12549 DOI
Bao W., Kojima K. K., Kohany O. (2015). Repbase update, a database of repetitive elements in eukaryotic genomes. Mob DNA 6, 4–9. doi: 10.1186/s13100-015-0041-9 PubMed DOI PMC
Bolger A. M., Lohse M., Usadel B. (2014). Genome analysis Trimmomatic : a flexible trimmer for illumina sequence data. Bioinformatics 30, 2114–2120. doi: 10.1093/bioinformatics/btu170 PubMed DOI PMC
Buchfink B., Reuter K., Drost H. G. (2021). Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat. Methods 18, 366–368. doi: 10.1038/s41592-021-01101-x PubMed DOI PMC
Bushnell B. (2014). BBMap: A Fast, Accurate, Splice-Aware Aligner. in 9th Annual Genomics of Energy & Environment Meeting, Walnut Creek, CA, March 17-20, 2014, ed. B. C. No. LBNL-7065E . Ernest Orlando Lawrence Berkeley National Laboratory.
Camacho C., Coulouris G., Avagyan V., Ma N., Papadopoulos J., Bealer K., et al. . (2009). BLAST plus: architecture and applications. BMC Bioinf. 10, 1. doi: 10.1186/1471-2105-10-421 PubMed DOI PMC
Chaudhary H. K., Kaila V., Rather S. A., Badiyal A., Hussain W., Jamwal N. S., et al. . (2014). Wheat. In: Pratap A., Kumar J. (eds) Alien Gene Transfer in Crop Plants, Volume 2. (New York, NY: Springer; ). doi: 10.1007/978-1-4614-9572-7_1 DOI
Cingolani P., Platts A., Wang L. L., Coon M., Nguyen T., Wang L., et al. . (2012). A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6, 80–92. doi: 10.4161/fly.19695 PubMed DOI PMC
Conesa A., Götz S. (2008). Blast2GO: a comprehensive suite for functional analysis in plant genomics. Int. J. Plant Genomics 2008, 619832. doi: 10.1155/2008/619832 PubMed DOI PMC
Conway J. R., Lex A., Gehlenborg N. (2017). UpSetR: an r package for the visualization of intersecting sets and their properties. Bioinformatics 33, 2938–2940. doi: 10.1093/bioinformatics/btx364 PubMed DOI PMC
Criscuolo A. (2019). A fast alignment-free bioinformatics procedure to infer accurate distance-based phylogenetic trees from genome assemblies. Res. Ideas Outcomes 5, e36178. doi: 10.3897/rio.5.e36178 DOI
Danecek P., Bonfield J. K., Liddle J., Marshall J., Ohan V., Pollard M. O., et al. . (2021). Twelve years of SAMtools and BCFtools. Gigascience 10, giab008. doi: 10.1093/gigascience/giab008 PubMed DOI PMC
De Bie T., Cristianini N., Demuth J. P., Hahn M. W. (2006). CAFE: a computational tool for the study of gene family evolution. Bioinformatics 22, 1269–1271. doi: 10.1093/bioinformatics/btl097 PubMed DOI
Doležel J., Vrána J., Šafář J., Bartoš J., Kubaláková M., Šimková H. (2012). Chromosomes in the flow to simplify genome analysis. Funct. Integr. Genomics 12, 397–416. doi: 10.1007/s10142-012-0293-0 PubMed DOI PMC
Du X., Jia Z., Yu Y., Wang S., Che B., Ni F., et al. . (2019). A wheat-aegilops umbellulata addition line improves wheat agronomic traits and processing quality. Breed Sci. 69, 503–507. doi: 10.1270/jsbbs.18200 PubMed DOI PMC
Emms D. M., Kelly S. (2019). OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 1–14. doi: 10.1186/s13059-019-1832-y PubMed DOI PMC
Enghiad A., Ufer D., Countryman A. M., Thilmany D. D. (2017). An overview of global wheat market fundamentals in an era of climate concerns. Int. J. Agron. 2017, 1–15. doi: 10.1155/2017/3931897 DOI
Enright A. J., Van Dongen S., Ouzounis C. A. (2002). An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res. 30, 1575–1584. doi: 10.1093/nar/30.7.1575 PubMed DOI PMC
Farré M., Kim J., Proskuryakova A. A., Zhang Y., Kulemzina A. I., Li Q., et al. . (2019). Evolution of gene regulation in ruminants differs between evolutionary breakpoint regions and homologous synteny blocks. Genome Res. 29, 576–589. doi: 10.1101/gr.239863.118 PubMed DOI PMC
Fernandez-Calvin B., Orellana J. (1992). Relationship between pairing frequencies and genome affinity estimations in Aegiops ovata x Triticum aestivum hybrid plants. Heredity 68, 165–172. doi: 10.1038/hdy.1992.25 PubMed DOI
Feuillet C., Langridge P., Waugh R. (2008). Cereal breeding takes a walk on the wild side. Trends Genet. 24, 24–32. doi: 10.1016/j.tig.2007.11.001 PubMed DOI
Flynn J. M., Hubley R., Goubert C., Rosen J., Clark A. G., Feschotte C., et al. . (2020). RepeatModeler2 for automated genomic discovery of transposable element families. Proc. Natl. Acad. Sci. 117, 9451–9457. doi: 10.1073/pnas.1921046117 PubMed DOI PMC
Garg M., Tsujimoto H., Gupta R. K., Kumar A., Kaur N., Kumar R., et al. . (2016). Chromosome specific substitution lines of aegilops geniculata alter parameters of bread making quality of wheat. PloS One 11, e0162350. doi: 10.1371/journal.pone.0162350 PubMed DOI PMC
Han G., Lu C., Guo J., Qiao Z., Sui N., Qiu N., et al. . (2020). C2H2 zinc finger proteins: master regulators of abiotic stress responses in plants. Front. Plant Sci. 11. doi: 10.3389/fpls.2020.00115 PubMed DOI PMC
He F., Pasam R., Shi F., Kant S., Keeble-gagnere G., Kay P., et al. . (2019). Exome sequencing highlights the role of wild-relative introgression in shaping the adaptive landscape of the wheat genome. Nat. Genet. 51, 896–904. doi: 10.1038/s41588-019-0382-2 PubMed DOI
Hoff K. J., Stanke M. (2019). Predicting genes in single genomes with AUGUSTUS. Curr. Protoc. Bioinf. 65, e57. doi: 10.1002/cpbi.57 PubMed DOI
Huynen M. A., Bork P. (1998). Measuring genome evolution. Proc. Natl. Acad. Sci. USA 95, 5849–5856. doi: 10.1073/pnas.95.11.584 PubMed DOI PMC
Jin J., Tian F., Yang D. C., Meng Y. Q., Kong L., Luo J., et al. . (2017). PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Res. 45, D1040–D1045. doi: 10.1093/nar/gkw982 PubMed DOI PMC
Katiyar A., Smita S., Lenka S. K., Rajwanshi R., Chinnusamy V., Bansal K. C. (2012). Genome-wide classification and expression analysis of MYB transcription factor families in rice and arabidopsis. BMC Genomics 13, 544. doi: 10.1186/1471-2164-13-544 PubMed DOI PMC
Kim D., Paggi J. M., Park C., Bennett C., Salzberg S. L. (2019). Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37, 907–915. doi: 10.1038/s41587-019-0201-4 PubMed DOI PMC
Koressaar T., Remm M. (2007). Enhancements and modifications of primer design program Primer3. Bioinformatics 23, 1289–1291. doi: 10.1093/bioinformatics/btm091 PubMed DOI
Kuraparthy V., Chhuneja P., Dhaliwal H. S., Kaur S., Bowden R. L., Gill B. S. (2007). Characterization and mapping of cryptic alien introgression from aegilops geniculata with new leaf rust and stripe rust resistance genes Lr57 and Yr40 in wheat. Theor. Appl. Genet. 114, 1379–1389. doi: 10.1007/s00122-007-0524-2 PubMed DOI
Li H., Durbin R. (2010). Fast and accurate long-read alignment with burrows-wheeler transform. Bioinformatics 26, 589–595. doi: 10.1093/bioinformatics/btp698 PubMed DOI PMC
Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., et al. . (2009). The sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079. doi: 10.1093/bioinformatics/btp352 PubMed DOI PMC
Li L.-F., Liu B., Olsen K. M., Wendel J. F. (2015). A re-evaluation of the homoploid hybrid origin of aegilops tauschii, the donor of the wheat d-subgenome. New Phytol. 208, 4–8. doi: 10.1111/nph.13294 PubMed DOI
Liao Y., Smyth G. K., Shi W. (2014). FeatureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930. doi: 10.1093/bioinformatics/btt656 PubMed DOI
Liu W., Rouse M., Friebe B., Jin Y., Gill B., Pumphrey M. O. (2011). Discovery and molecular mapping of a new gene conferring resistance to stem rust, Sr53, derived from aegilops geniculata and characterization of spontaneous translocation stocks with reduced alien chromatin. Chromosome Res. 19, 669–682. doi: 10.1007/s10577-011-9226-3 PubMed DOI
Loureiro I., Escorial M. C., García-Baudín J. M., Chueca M. C. (2006). Evidence of natural hybridization between aegilops geniculata and wheat under field conditions in central Spain. Environ. Biosafety Res. 5, 105–109. doi: 10.1051/ebr:2006020 PubMed DOI
Luo M.-C., Gu Y. Q., Puiu D., Wang H., Twardziok S. O., Deal K. R., et al. . (2017). Genome sequence of the progenitor of the wheat d genome aegilops tauschii. Nature 551, 498–502. doi: 10.1038/nature24486 PubMed DOI PMC
Luo R., Liu B., Xie Y., Li Z., Huang W., Yuan J., et al. . (2012). SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 1, 18. doi: 10.1186/2047-217X-1-18 PubMed DOI PMC
Marcussen T., Sandve S. R., Heier L., Pfeifer M., Kugler K. G., Zhan B., et al. . (2014). A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 345, 1250092. doi: 10.1126/science.1251788 PubMed DOI
McCarthy D. J., Chen Y., Smyth G. K. (2012). Differential expression analysis of multifactor RNA-seq experiments with respect to biological variation. Nucleic Acids Res. 40, 4288–4297. doi: 10.1093/nar/gks042 PubMed DOI PMC
Meimberg H., Rice K. J., Milan N. F., Njoku C. C., McKay J. K. (2009). Multiple origins promote the ecological amplitude of allopolyploid Aegilops (Poaceae). Am. J. Bot. 96, 1262–1273. doi: 10.3732/ajb.0800345 PubMed DOI
Mena M., Orellana J., Lopez-Brafia I., Gareia-Olmedo E., Delibes A. (1993). Characterization of wheat/Aegilops ventricosa introgression and addition lines with respect to the Mv genome. Theor. Appl. Genet. 86, 197–204. PubMed
Middleton C. P., Senerchia N., Stein N., Akhunov E. D., Keller B., Wicker T., et al. . (2014). Sequencing of chloroplast genomes from wheat, barley, rye and their relatives provides a detailed insight into the evolution of the triticeae tribe. PloS One 9, e85761. doi: 10.1371/journal.pone.0085761 PubMed DOI PMC
Mistry J., Bateman A., Finn R. D. (2007). Predicting active site residue annotations in the pfam database. BMC Bioinf. 8, 298. doi: 10.1186/1471-2105-8-298 PubMed DOI PMC
Molnár I., Kubaláková M., Šimková H., Cseh A., Molnár-Láng M., Doležel J. (2011). Chromosome isolation by flow sorting in aegilops umbellulata and ae. comosa and their allotetraploid hybrids ae. biuncialis and ae. geniculata. PloS One 6, e27708. doi: 10.1371/journal.pone.0027708 PubMed DOI PMC
Molnár I., Kubaláková M., Šimková H., Farkas A., Cseh A., Megyeri M., et al. . (2014). Flow cytometric chromosome sorting from diploid progenitors of bread wheat, t. urartu, ae. speltoides and ae. tauschii. Theor. Appl. Genet. 127, 1091–1104. doi: 10.1007/s00122-014-2282-2 PubMed DOI
Nakano T., Suzuki K., Fujimura T., Shinshi H. (2006). Genome-wide analysis of the ERF gene family in arabidopsis and rice. Plant Physiol. 140, 411–432. doi: 10.1104/pp.105.073783 PubMed DOI PMC
Natsidis P., Kapli P., Schiffer P. H., Telford M. J. (2021). Systematic errors in orthology inference and their effects on evolutionary analyses. iScience 24, 102110. doi: 10.1016/j.isci.2021.102110 PubMed DOI PMC
Okada M., Ikeda T. M., Yoshida K., Takumi S. (2018. a). Effect of the U genome on grain hardness in nascent synthetic hexaploids derived from interspecific hybrids between durum wheat and aegilops umbellulata. J. Cereal Sci. 83, 153–161. doi: 10.1016/j.jcs.2018.08.011 DOI
Okada M., Michikawa A., Yoshida K., Nagaki K., Ikeda T. M., Takumi S. (2020). Phenotypic effects of the U-genome variation in nascent synthetic hexaploids derived from interspecific crosses between durum wheat and its diploid relative aegilops umbellulata. PloS One 15, e0231129. doi: 10.1371/journal.pone.0231129 PubMed DOI PMC
Okada M., Yoshida K., Nishijima R., Michikawa A., Motoi Y., Sato K., et al. . (2018. b). RNA-Seq analysis reveals considerable genetic diversity and provides genetic markers saturating all chromosomes in the diploid wild wheat relative aegilops umbellulata. BMC Plant Biol. 18, 271. doi: 10.1186/s12870-018-1498-8 PubMed DOI PMC
Rakszegi M., Molnár I., Lovegrove A., Darkó É., Farkas A., Láng L., et al. . (2017). Addition of aegilops U and m chromosomes affects protein and dietary fiber content of wholemeal wheat flour. Front. Plant Sci. 8. doi: 10.3389/fpls.2017.01529 PubMed DOI PMC
Ramírez-González R. H., Borrill P., Lang D., Harrington S. A., Brinton J., Venturini L., et al. . (2018). The transcriptional landscape of polyploid wheat. Science 361, eaar6089. doi: 10.1126/science.aar6089 PubMed DOI
Ramirez-Gonzalez R. H., Uauy C., Caccamo M. (2015). PolyMarker: a fast polyploid primer design pipeline. Bioinformatics 31, 2038–2039. doi: 10.1093/bioinformatics/btv069 PubMed DOI PMC
Said M., Holušová K., Farkas A., Ivanizs L., Gaál E., Cápal P., et al. . (2021). Development of DNA markers from physically mapped loci in aegilops comosa and aegilops umbellulata using single-gene FISH and chromosome sequences. Front. Plant Sci. 12. doi: 10.3389/fpls.2021.689031 PubMed DOI PMC
Schwacke R., Ponce-Soto G. Y., Krause K., Bolger A. M., Arsova B., Hallab A., et al. . (2019). MapMan4: a refined protein classification and annotation framework applicable to multi-omics data analysis. Mol. Plant 12, 879–892. doi: 10.1016/j.molp.2019.01.003 PubMed DOI
Sears E. R. (1956) The transfer of leaf-rust resistance from aegilops umbellulata to wheat. Available at: https://www.cabdirect.org/cabdirect/abstract/19581600184.
Sela N., Kim E., Ast G. (2010). The role of transposable elements in the evolution of non-mammalian vertebrates and invertebrates. Genome Biol. 11, R59. doi: 10.1186/gb-2010-11-6-r59 PubMed DOI PMC
Sharma A., Srivastava P., Mavi G. S., Kaur S., Kaur J., Bala R., et al. . (2021). Resurrection of wheat cultivar PBW343 using marker-assisted gene pyramiding for rust resistance. Front. Plant Sci. 12. doi: 10.3389/fpls.2021.570408 PubMed DOI PMC
Simão F. A., Waterhouse R. M., Ioannidis P., Kriventseva E. V., Zdobnov E. M. (2015). BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212. doi: 10.1093/bioinformatics/btv351 PubMed DOI
Slater G. S. C., Birney E. (2005). Automated generation of heuristics for biological sequence comparison. BMC Bioinf. 6, 31. doi: 10.1186/1471-2105-6-31 PubMed DOI PMC
Steadham J., Schulden T., Kalia B., Koo D. H., Gill B. S., Bowden R., et al. . (2021). An approach for high-resolution genetic mapping of distant wild relatives of bread wheat: example of fine mapping of Lr57 and Yr40 genes. Theor. Appl. Genet. 134, 2671–2686. doi: 10.1007/s00122-021-03851-w PubMed DOI
Stoilova T., Spetsov P. (2006). Chromosome 6U from aegilops geniculata Roth carrying powdery mildew resistance in bread wheat. Breed Sci. 56, 351–357. doi: 10.1270/jsbbs.56.351 DOI
Sun X., Wang Y., Sui N. (2018). Transcriptional regulation of bHLH during plant response to stress. Biochem. Biophys. Res. Commun. 503, 397–401. doi: 10.1016/j.bbrc.2018.07.123 PubMed DOI
Tang H., Lyons E., Pedersen B., Schnable J. C., Paterson A. H., Freeling M. (2011). Screening synteny blocks in pairwise genome comparisons through integer programming. BMC Bioinf. 12, 102. doi: 10.1186/1471-2105-12-102 PubMed DOI PMC
Tarailo-Graovac M., Chen N. (2009). Using RepeatMasker to identify repetitive elements in genomic sequences. Curr. Protoc. Bioinf. 4.10.1-4.10.14. doi: 10.1002/0471250953.bi0410s25 PubMed DOI
Theißen G., Melzer R., Ruümpler F. (2016). MADS-domain transcription factors and the floral quartet model of flower development: linking plant development and evolution. Dev. (Cambridge) 143, 3259–3271. doi: 10.1242/dev.134080 PubMed DOI
The International Wheat Genome Sequencing Consortium (IWGSC) et al. . (2018). Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361, 661. doi: 10.1126/science.aar7191 PubMed DOI
The SRA Toolkit Development Team . Available at: https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?view=software.
Thiel T., Michalek W., Varshney R. K., Graner A. (2003). Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare l.). Theor. Appl. Genet. 106, 411–422. doi: 10.1007/s00122-002-1031-0 PubMed DOI
Tiwari V. K., Wang S., Danilova T., Koo D. H., Vrána J., Kubaláková M., et al. . (2015). Exploring the tertiary gene pool of bread wheat: sequence assembly and analysis of chromosome 5Mg of aegilops geniculata. Plant J. 84, 733–746. doi: 10.1111/tpj.13036 PubMed DOI
Tiwari V. K., Wang S., Sehgal S., Vrána J., Friebe B., Kubaláková M., et al. . (2014). SNP discovery for mapping alien introgressions in wheat. BMC Genomics 15, 273. doi: 10.1186/1471-2164-15-273 PubMed DOI PMC
van Poecke R. M. P., Maccaferri M., Tang J., Truong H. T., Janssen A., van Orsouw N. J., et al. . (2013). Sequence-based SNP genotyping in durum wheat. Plant Biotechnol. J. 11, 809–817. doi: 10.1111/pbi.12072 PubMed DOI
Walkowiak S., Gao L., Monat C., Haberer G., Delorean E., Thambugala D., et al. . (2020). Multiple wheat genomes reveal global variation in modern breeding. Nature 588, 277–283. doi: 10.1038/s41586-020-2961-x PubMed DOI PMC
Wang Y., Zhang Y., Zhou R., Dossa K., Yu J., Li D., et al. . (2018). Identification and characterization of the bZIP transcription factor family and its expression in response to abiotic stresses in sesame. PloS One 13, e0200850. doi: 10.1371/journal.pone.0200850 PubMed DOI PMC
Wickham H. (2016). ggplot2: elegant graphics for data analysis (Verlag New York: Springer; ). Available at: https://ggplot2.tidyverse.org.
Winfield M. O., Allen A. M., Burridge A. J., Barker G. L. A., Benbow H. R., Wilkinson P. A., et al. . (2016). High-density SNP genotyping array for hexaploid wheat and its secondary and tertiary gene pool. Plant Biotechnol. J. 14, 1195–1206. doi: 10.1111/pbi.12485 PubMed DOI PMC
Yadav I. S., Sharma A., Kaur S., Nahar N., Bhardwaj S. C., Sharma T. R., et al. . (2016). Comparative temporal transcriptome profiling of wheat near isogenic line carrying Lr57 under compatible and incompatible interactions. Front. Plant Sci. 7. doi: 10.3389/fpls.2016.01943 PubMed DOI PMC
Yang X., Xu M., Wang Y., Cheng X., Huang C., Zhang H., et al. . (2022). Development and molecular cytogenetic identification of two wheat-aegilops geniculata Roth 7Mg chromosome substitution lines with resistance to fusarium head blight, powdery mildew and stripe rust. Int. J. Mol. Sci. 23, 7056. doi: 10.3390/ijms23137056 PubMed DOI PMC
Ye J., Zhang Y., Cui H., Liu J., Wu Y., Cheng Y., et al. . (2018). WEGO 2.0: a web tool for analyzing and plotting GO annotations 2018 update. Nucleic Acids Res. 46, W71–W75. doi: 10.1093/nar/gky400 PubMed DOI PMC
Young M. D., Wakefield M. J., Smyth G. K., Oshlack A. (2010) Gene ontology analysis for RNA-seq: accounting for selection bias. Available at: http://genomebiology.com/2010/11/2/R14. PubMed PMC
Zeller F. J., Kong L., Hartl L., Mohler V., Hsam S. L. K. (2002). Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum l. em thell.) 7. gene Pm29 in line pova. Euphytica 123, 187–194. doi: 10.1023/A:1014944619304 DOI
Zhang X.-Y., Wang R.-C., Dong Y.-S. (1996). RAPD polymorphisms in aegilops geniculata Roth (Ae. ovata auct. non l.). Genet. Resour. Crop Evol. 43, 429. doi: 10.1007/BF00123733 DOI