Visualizing Chromosome Territories and Nuclear Architecture of Large Plant Genomes Using Alien Introgressions
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
- Klíčová slova
- 3D FISH, Chromosome territory, Confocal microscopy, Imaris, Interphase nucleus, Plant hybrid,
- MeSH
- buněčné jádro genetika MeSH
- chromozomy rostlin * genetika MeSH
- genom rostlinný MeSH
- hybridizace in situ MeSH
- zavlečené druhy * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Visualization of chromosome territories is a challenging task in plant genomes due to the lack of chromosome-specific probes, especially in species with large genomes. On the other hand, combination of flow sorting, genomic in situ hybridization (GISH), confocal microscopy, and employment of software for 3D modeling enables to visualize and characterize chromosome territories (CT) in interspecific hybrids. Here, we describe the protocol for the analysis of CTs in wheat-rye and wheat-barley hybrids, including amphiploids and introgression forms, where a pair of chromosomes or chromosome arms from one species is introgressed into the genome of another species. In this way, the architecture and dynamics of CTs in various tissues and different stages of cell cycle can be analyzed.
Zobrazit více v PubMed
Cremer T, Cremer C (2001) Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2:292–301. https://doi.org/10.1038/35066075 PubMed DOI
Fritz AJ, Barutcu AR, Martin-Buley L et al (2016) Chromosomes at work: organization of chromosome territories in the interphase nucleus. J Cell Biochem 117:9–19. https://doi.org/10.1002/jcb.25280 PubMed DOI PMC
Sun FL, Cuaycong MH, Craig CA et al (2000) The fourth chromosome of Drosophila melanogaster: interspersed euchromatic and heterochromatic domains. Proc Natl Acad Sci USA 97:5340–5345. https://doi.org/10.1073/pnas.090530797 PubMed DOI PMC
Mayer R, Brero A, von Hase J et al (2005) Common themes and cell type specific variations of higher order chromatin arrangements in the mouse. BMC Cell Biol 6:44. https://doi.org/10.1186/1471-2121-6-44 PubMed DOI PMC
Sequeira-Mendes J, Gutierrez C (2016) Genome architecture: from linear organisation of chromatin to the 3D assembly in the nucleus. Chromosoma 125:455–469. https://doi.org/10.1007/s00412-015-0538-5 PubMed DOI
Branco MR, Pombo A (2006) Intermingling of chromosome territories in interphase suggests role in translocations and transcription-dependent associations. PLoS Biol 4:e138. https://doi.org/10.1371/journal.pbio.0040138 PubMed DOI PMC
Dekker J, Rippe K, Dekker M et al (2002) Capturing chromosome conformation. Science 295:1306–1311. https://doi.org/10.1126/science.1067799 PubMed DOI
Lieberman-Aiden E, van Berkum NL, Williams L et al (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326:289–293. https://doi.org/10.1126/science.1181369 PubMed DOI PMC
Dixon JR, Selvaraj S, Yue F et al (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485:376–380. https://doi.org/10.1038/nature11082 PubMed DOI PMC
Abney JR, Cutler B, Fillbach ML et al (1997) Chromatin dynamics in interphase nuclei and its implications for nuclear structure. J Cell Biol 137:1459–1468. https://doi.org/10.1083/jcb.137.7.1459 PubMed DOI PMC
Cremer M, von Hase J, Volm T et al (2001) Non-random radial higher-order chromatin arrangements in nuclei of diploid human cells. Chromosom Res 9:541–567. https://doi.org/10.1023/a:1012495201697 DOI
Kolackova V, Pernickova K, Vrana J et al (2019) Nuclear disposition of alien chromosome introgressions into wheat and rye using 3D-FISH. Int J Mol Sci 20:4143. https://doi.org/10.3390/ijms20174143 PubMed DOI PMC
Idziak-Helmcke D, Warzecha T, Sowa M et al (2020) 3-D nucleus architecture in oat x maize addition lines. Int J Mol Sci 21:4280. https://doi.org/10.3390/ijms21124280 PubMed DOI PMC
Howe ES, Murphy SP, Bass HW (2013) Three-dimensional acrylamide fluorescence in situ hybridization for plant cells. In: Pawlowski WP, Grelon M, Armstrong S (eds) Plant meiosis: methods and protocols, Methods Mol Biol, vol 990, pp 53–66. https://doi.org/10.1007/978-1-62,703-333-6_6 DOI
Ito H, Nasuda S, Endo TR (2004) A direct repeat sequence associated with the centromeric retrotransposons in wheat. Genome 47(4):747–756. https://doi.org/10.1139/g04-034 PubMed DOI
Cuadrado A, Golczyk H, Jouve N (2009) A novel, simple and rapid nondenaturing FISH (ND-FISH) technique for the detection of plant telomeres. Potential used and possible target structures detected. Chromosom Res 17(6):755–762. https://doi.org/10.1007/s10577-009-9060-z DOI
Vrana J, Simkova H, Kubalakova M et al (2012) Flow cytometric chromosome sorting in plants: the next generation. Methods 57:331–337. https://doi.org/10.1016/j.ymeth.2012.03.006 PubMed DOI
Schwarzacher T, Heslop-Harrison JS (2000) Practical in situ hybridization. BIOS Scientific Publishers, Oxford, p 203