Chromatin associations in Arabidopsis interphase nuclei
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
25431580
PubMed Central
PMC4230181
DOI
10.3389/fgene.2014.00389
Knihovny.cz E-zdroje
- Klíčová slova
- Arabidopsis, BAC, FISH, chromatin association, chromosome territory, expression, interphase nucleus, transcription,
- Publikační typ
- časopisecké články MeSH
The arrangement of chromatin within interphase nuclei seems to be caused by topological constraints and related to gene expression depending on tissue and developmental stage. In yeast and animals it was found that homologous and heterologous chromatin association are required to realize faithful expression and DNA repair. To test whether such associations are present in plants we analyzed Arabidopsis thaliana interphase nuclei by FISH using probes from different chromosomes. We found that chromatin fiber movement and variable associations, although in general relatively seldom, may occur between euchromatin segments along chromosomes, sometimes even over large distances. The combination of euchromatin segments bearing high or low co-expressing genes did not reveal different association frequencies probably due to adjacent genes of deviating expression patterns. Based on previous data and on FISH analyses presented here, we conclude that the global interphase chromatin organization in A. thaliana is relatively stable, due to the location of its 10 centromeres at the nuclear periphery and of the telomeres mainly at the centrally localized nucleolus. Nevertheless, chromatin movement enables a flexible spatial genome arrangement in plant nuclei.
Zobrazit více v PubMed
Abranches R., Beven A. F., Aragon-Alcaide L., Shaw P. J. (1998). Transcription sites are not correlated with chromosome territories in wheat nuclei. J. Cell. Biol. 143, 5–12. 10.1083/jcb.143.1.5 PubMed DOI PMC
Armstrong S. J., Franklin F. C., Jones G. H. (2001). Nucleolus-associated telomere clustering and pairing precede meiotic chromosome synapsis in Arabidopsis thaliana. J. Cell. Sci. 114, 4207–4217. PubMed
Baroux C., Pecinka A., Fuchs J., Schubert I., Grossniklaus U. (2007). The triploid endosperm genome of Arabidopsis adopts a peculiar, parental-dosage-dependent chromatin organization. Plant Cell 19, 1782–1794. 10.1105/tpc.106.046235 PubMed DOI PMC
Baroux C., Raissig M. T., Grossniklaus U. (2011). Epigenetic regulation and reprogramming during gamete formation in plants. Curr. Opin. Genet. Dev. 21, 124–133. 10.1016/j.gde.2011.01.017 PubMed DOI
Berr A., Schubert I. (2007). Interphase chromosome arrangement in Arabidopsis thaliana is similar in differentiated and meristematic tissues and shows a transient mirror symmetry after nuclear division. Genetics 176, 853–863. 10.1534/genetics.107.073270 PubMed DOI PMC
Bickmore W. A., van Steensel B. (2013). Genome architecture: domain organization of interphase chromosomes. Cell 152, 1270–1284. 10.1016/j.cell.2013.02.001 PubMed DOI
Boyle A. P., Song L., Lee B. K., London D., Keefe D., Birney E., et al. . (2011). High-resolution genome-wide in vivo footprinting of diverse transcription factors in human cells. Genome Res. 21, 456–464. 10.1101/gr.112656.110 PubMed DOI PMC
Branco M. R., Pombo A. (2006). Intermingling of chromosome territories in interphase suggests role in translocations and transcription-dependent associations. PLoS Biol. 4:e138. 10.1371/journal.pbio.0040138 PubMed DOI PMC
Brown J. M., Green J., das Neves R. P., Wallace H. A., Smith A. J., Hughes J., et al. . (2008). Association between active genes occurs at nuclear speckles and is modulated by chromatin environment. J. Cell. Biol. 182, 1083–1097. 10.1083/jcb.200803174 PubMed DOI PMC
Brown J. M., Leach J., Reittie J. E., Atzberger A., Lee-Prudhoe J., Wood W. G., et al. . (2006). Coregulated human globin genes are frequently in spatial proximity when active. J. Cell Biol. 172, 177–187. 10.1083/jcb.200507073 PubMed DOI PMC
Carretero M., Remeseiro S., Losada A. (2010). Cohesin ties up the genome. Curr. Opin. Cell Biol. 22, 781–787. 10.1016/j.ceb.2010.07.004 PubMed DOI
Cavalli G. (2007). Chromosome kissing. Current Opin. Genet. Dev. 17, 443–450. 10.1016/j.gde.2007.08.013 PubMed DOI
Cavalli G., Misteli T. (2013). Functional implications of genome topology. Nat. Struct. Mol. Biol. 20, 290–299. 10.1038/nsmb.2474 PubMed DOI PMC
Chakalova L., Debrand E., Mitchell J. A., Osborne C. S., Fraser P. (2005). Replication and transcription: shaping the landscape of the genome. Nat. Rev. Genet. 6, 669–677. 10.1038/nrg1673 PubMed DOI
Chakalova L., Fraser P. (2010). Organization of transcription. Cold Spring Harb. Perspect. Biol. 2, 1–15. 10.1101/cshperspect.a000729 PubMed DOI PMC
Cope N. F., Fraser P., Eskiw C. H. (2010). The yin and yang of chromatin spatial organization. Genome Biol. 11:204. 10.1186/gb-2010-11-3-204 PubMed DOI PMC
Crevillen P., Sonmez C., Wu Z., Dean C. (2013). A gene loop containing the floral repressor FLC is disrupted in the early phase of vernalization. EMBO J. 32, 140–148. 10.1038/emboj.2012.324 PubMed DOI PMC
Dekker J. (2008). Gene regulation in the third dimension. Science 319, 1793–1794. 10.1126/science.1152850 PubMed DOI PMC
Dekker J., Marti-Renom M. A., Mirny L. A. (2013). Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data. Nat. Rev. Genet. 14, 390–403. 10.1038/nrg3454 PubMed DOI PMC
Del Prete S., Arpón J., Sakai K., Andrey P., Gaudin V. (2014). Nuclear architecture and chromatin dynamics in interphase nuclei of Arabidopsis thaliana. Cytogenet. Genome Res. 143, 28–50. 10.1159/000363724 PubMed DOI
Deng W., Lee J., Wang H., Miller J., Reik A., Gregory P. D., et al. . (2012). Controlling long-range genomic interactions at a native locus by targeted tethering of a looping factor. Cell 149, 1233–1244. 10.1016/j.cell.2012.03.051 PubMed DOI PMC
de Wit E., de Laat W. (2012). A decade of 3C technologies: insights into nuclear organization. Genes Dev. 26, 11–24. 10.1101/gad.179804.111 PubMed DOI PMC
Dixon J. R., Selvaraj S., Yue F., Kim A., Li Y., Shen Y., et al. . (2012). Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–380. 10.1038/nature11082 PubMed DOI PMC
Dostie J., Dekker J. (2007). Mapping networks of physical interactions between genomic elements using 5C technology. Nat. Protoc. 2, 988–1002. 10.1038/nprot.2007.116 PubMed DOI
Duan Z., Andronescu M., Schutz K., McIlwain S., Kim Y. J., Lee C., et al. . (2010). A three-dimensional model of the yeast genome. Nature 465, 363–367. 10.1038/nature08973 PubMed DOI PMC
Feng S., Cokus S., Schubert V., Zhai J., Pellegrini M., Jacobsen S. (2014). Genome-wide Hi-C analyses in wild type and mutants reveal high-resolution chromatin interactions in Arabidopsis. Mol. Cell 55, 694–707. 10.1016/j.molcel.2014.07.008 PubMed DOI PMC
Ferrai C., Xie S. Q., Luraghi P., Munari D., Ramirez F., Branco M. R., et al. . (2010). Poised transcription factories prime silent uPA gene prior to activation. PLoS Biol. 8:e1000270. 10.1371/journal.pbio.1000270 PubMed DOI PMC
Fransz P., De Jong J. H., Lysak M., Castiglione M. R., Schubert I. (2002). Interphase chromosomes in Arabidopsis are organized as well defined chromocenters from which euchromatin loops emanate. Proc. Natl. Acad. Sci. U.S.A. 99, 14584–14589. 10.1073/pnas.212325299 PubMed DOI PMC
Fraser P., Bickmore W. (2007). Nuclear organization of the genome and the potential for gene regulation. Nature 447, 413–417. 10.1038/nature05916 PubMed DOI
Gerlich D., Beaudouin J., Kalbfuss B., Daigle N., Eils R., Ellenberg J. (2003). Global chromosome positions are transmitted through mitosis in mammalian cells. Cell 112, 751–764. 10.1016/S0092-8674(03)00189-2 PubMed DOI
Gibcus J. H., Dekker J. (2012). The context of gene expression regulation. F1000 Biol. Rep. 4:8. 10.3410/B4-8 PubMed DOI PMC
Gibcus J. H., Dekker J. (2013). The Hierarchy of the 3D Genome. Mol. Cell 49, 773–782. 10.1016/j.molcel.2013.02.011 PubMed DOI PMC
Grob S., Schmid M. W., Luedtke N. W., Wicker T., Grossniklaus U. (2013). Characterization of chromosomal architecture in Arabidopsis by chromosome conformation capture. Genome Biol. 14:R129. 10.1186/gb-2013-14-11-r129 PubMed DOI PMC
Hakim O., Sung M. H., Voss T. C., Splinter E., John S., Sabo P. J., et al. . (2011). Diverse gene reprogramming events occur in the same spatial clusters of distal regulatory elements. Genome Res. 21, 697–706. 10.1101/gr.111153.110 PubMed DOI PMC
Hou C., Corces V. G. (2012). Throwing transcription for a loop: expression of the genome in the 3D nucleus. Chromosoma 121, 107–116. 10.1007/s00412-011-0352-7 PubMed DOI PMC
Hou C., Li L., Qin Z. S., Corces V. G. (2012). Gene density, transcription, and insulators contribute to the partition of the Drosophila genome into physical domains. Mol. Cell 48, 471–484. 10.1016/j.molcel.2012.08.031 PubMed DOI PMC
Huang K. M., Jia J. P., Wu C. W., Yao M. Z., Li M., Jin J. J., et al. . (2013). Ribosomal RNA gene transcription mediated by the master genome regulator protein CCCTC-binding factor (CTCF) is negatively regulated by the condensin complex. J. Biol. Chem. 288, 26067–26077. 10.1074/jbc.M113.486175 PubMed DOI PMC
Iborra F. J., Pombo A., Jackson D. A., Cook P. R. (1996). Active RNA polymerases are localized within discrete transcription “factories” in human nuclei. J. Cell Sci. 109, 1427–1436. PubMed
Jackson D. A., Iborra F. J., Manders E. M., Cook P. R. (1998). Numbers and organization of RNA polymerases, nascent transcripts, and transcription units in HeLa nuclei. Mol. Biol. Cell 9, 1523–1536. 10.1091/mbc.9.6.1523 PubMed DOI PMC
Jin F., Li Y., Dixon J. R., Selvaraj S., Ye Z., Lee A. Y., et al. . (2013). A high-resolution map of the three-dimensional chromatin interactome in human cells. Nature 503, 290–294. 10.1038/nature12644 PubMed DOI PMC
Kalhor R., Tjong H., Jayathilaka N., Alber F., Chen L. (2012). Genome architectures revealed by tethered chromosome conformation capture and population-based modeling. Nat. Biotechnol. 30, 90–98. 10.1038/nbt.2057 PubMed DOI PMC
Kato N., Lam E. (2001). Detection of chromosomes tagged with green fluorescent protein in live Arabidopsis thaliana plants. Genome Biol. 2:RESEARCH0045. 10.1186/gb-2001-2-11-research0045 PubMed DOI PMC
Kato N., Lam E. (2003). Chromatin of endoreduplicated pavement cells has greater range of movement than that of diploid guard cells in Arabidopsis thaliana. J. Cell Sci. 116, 2195–2201. 10.1242/jcs.00437 PubMed DOI
Küpper K., Kolbl A., Biener D., Dittrich S., von Hase J., Thormeyer T., et al. . (2007). Radial chromatin positioning is shaped by local gene density, not by gene expression. Chromosoma 116, 285–306. 10.1007/s00412-007-0098-4 PubMed DOI PMC
Li G., Ruan X., Auerbach R. K., Sandhu K. S., Zheng M., Wang P., et al. . (2012). Extensive promoter-centered chromatin interactions provide a topological basis for transcription regulation. Cell 148, 84–98. 10.1016/j.cell.2011.12.014 PubMed DOI PMC
Lieberman-Aiden E., van Berkum N. L., Williams L., Imakaev M., Ragoczy T., Telling A., et al. . (2009). Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293. 10.1126/science.1181369 PubMed DOI PMC
Marshall W. F., Straight A., Marko J. F., Swedlow J., Dernburg A., Belmont A., et al. . (1997). Interphase chromosomes undergo constrained diffusional motion in living cells. Curr. Biol. 7, 930–939. 10.1016/S0960-9822(06)00412-X PubMed DOI
Martin S., Pombo A. (2003). Transcription factories: quantitative studies of nanostructures in the mammalian nucleus. Chromosome Res. 11, 461–470. 10.1023/A:1024926710797 PubMed DOI
Mathieu O., Jasencakova Z., Vaillant I., Gendrel A.-V., Colot V., Schubert I., et al. . (2003). Changes in 5S rDNA chromatin organization and transcription during heterochromatin establishment in Arabidopsis. Plant Cell 15, 2929–2939. 10.1105/tpc.017467 PubMed DOI PMC
Matzke A. J., Huettel B., van der Winden J., Matzke M. (2005). Use of two-color fluorescence-tagged transgenes to study interphase chromosomes in living plants. Plant Physiol. 139, 1586–1596. 10.1104/pp.105.071068 PubMed DOI PMC
Matzke A. J. M., van der Winden J., Matzke M. (2003). Tetracycline operator/repressor system to visualize fluorescence-tagged T-DNAs in interphase nuclei of Arabidopsis. Plant Mol. Biol. Rep. 21, 9–19 10.1007/BF02773392 DOI
Moissiard G., Cokus S. J., Cary J., Feng S., Billi A. C., Stroud H., et al. . (2012). MORC family ATPases required for heterochromatin condensation and gene silencing. Science 336, 1448–1451. 10.1126/science.1221472 PubMed DOI PMC
Naughton C., Avlonitis N., Corless S., Prendergast J. G., Mati I. K., Eijk P. P., et al. . (2013). Transcription forms and remodels supercoiling domains unfolding large-scale chromatin structures. Nat. Struct. Mol. Biol. 20, 387–395. 10.1038/nsmb.2509 PubMed DOI PMC
Nora E. P., Lajoie B. R., Schulz E. G., Giorgetti L., Okamoto I., Servant N., et al. . (2012). Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485, 381–385. 10.1038/nature11049 PubMed DOI PMC
Obe G., Durante M. (2010). DNA double strand breaks and chromosomal aberrations. Cytogenet. Genome Res. 128, 8–16. 10.1159/000303328 PubMed DOI
Ohlsson R., Lobanenkov V., Klenova E. (2010). Does CTCF mediate between nuclear organization and gene expression? Bioessays 32, 37–50. 10.1002/bies.200900118 PubMed DOI PMC
Osborne C. S., Chakalova L., Brown K. E., Carter D., Horton A., Debrand E., et al. . (2004). Active genes dynamically colocalize to shared sites of ongoing transcription. Nat. Genet. 36, 1065–1071. 10.1038/ng1423 PubMed DOI
Osborne C. S., Chakalova L., Mitchell J. A., Horton A., Wood A. L., Bolland D. J., et al. . (2007). Myc dynamically and preferentially relocates to a transcription factory occupied by Igh. PLoS Biol. 5:e192. 10.1371/journal.pbio.0050192 PubMed DOI PMC
Palstra R. J., Simonis M., Klous P., Brasset E., Eijkelkamp B., de Laat W. (2008). Maintenance of long-range DNA interactions after inhibition of ongoing RNA polymerase II transcription. PLoS ONE 3:e1661. 10.1371/journal.pone.0001661 PubMed DOI PMC
Papantonis A., Cook P. R. (2013). Transcription factories: genome organization and gene regulation. Chem. Rev. 113, 8683–8705. 10.1021/cr300513p PubMed DOI
Parelho V., Hadjur S., Spivakov M., Leleu M., Sauer S., Gregson H. C., et al. . (2008). Cohesins functionally associate with CTCF on mammalian chromosome arms. Cell 132, 422–433. 10.1016/j.cell.2008.01.011 PubMed DOI
Pecinka A., Schubert V., Meister A., Kreth G., Klatte M., Lysak M. A., et al. . (2004). Chromosome territory arrangement and homologous pairing in nuclei of Arabidopsis thaliana are predominantly random except for NOR-bearing chromosomes. Chromosoma 113, 258–269. 10.1007/s00412-004-0316-2 PubMed DOI
Poon B. P. K., Mekhail K. (2011). Cohesin and related coiled-coil domain-containing complexes physically and functionally connect the dots across the genome. Cell Cycle 10, 2669–2682. 10.4161/cc.10.16.17113 PubMed DOI PMC
Rieder D., Trajanoski Z., McNally J. G. (2012). Transcription factories. Front. Genet. 3:221. 10.3389/fgene.2012.00221 PubMed DOI PMC
Robinett C. C., Straight A., Li G., Willhelm C., Sudlow G., Murray A., et al. . (1996). In vivo localization of DNA sequences and visualization of large-scale chromatin organization using lac operator/repressor recognition. J. Cell Biol. 135, 1685–1700. 10.1083/jcb.135.6.1685 PubMed DOI PMC
Rosa S., De Lucia F., Mylne J. S., Zhu D., Ohmido N., Pendle A., et al. . (2013). Physical clustering of FLC alleles during Polycomb-mediated epigenetic silencing in vernalization. Genes Dev. 27, 1845–1850. 10.1101/gad.221713.113 PubMed DOI PMC
Rosin F. M., Watanabe N., Cacas J. L., Kato N., Arroyo J. M., Fang Y., et al. . (2008). Genome-wide transposon tagging reveals location-dependent effects on transcription and chromatin organization in Arabidopsis. Plant J. 55, 514–525. 10.1111/j.1365-313X.2008.03517.x PubMed DOI
Sanyal A., Lajoie B. R., Jain G., Dekker J. (2012). The long-range interaction landscape of gene promoters. Nature 489, 109–113. 10.1038/nature11279 PubMed DOI PMC
Schmid M., Davison T. S., Henz S. R., Pape U. J., Demar M., Vingron M., et al. . (2005). A gene expression map of Arabidopsis thaliana development. Nat. Genet. 37, 501–506. 10.1038/ng1543 PubMed DOI
Schubert I., Fransz P. F., Fuchs J., de Jong J. H. (2001). Chromosome painting in plants. Methods Cell Sci. 23, 57–69. 10.1023/A:1013137415093 PubMed DOI
Schubert I., Shaw P. (2011). Organization and dynamics of plant interphase chromosomes. Trends Plant Sci. 16, 273–281. 10.1016/j.tplants.2011.02.002 PubMed DOI
Schubert V. (2009). SMC proteins and their multiple functions in higher plants. Cytogenet. Genome Res. 124, 202–214. 10.1159/000218126 PubMed DOI
Schubert V. (2014). RNA polymerase II forms transcription networks in rye and Arabidopsis nuclei and its amount increases with endopolyploidy. Cytogenet. Genome. Res. 143, 69–77. 10.1159/000365233 PubMed DOI
Schubert V., Berr A., Meister A. (2012). Interphase chromatin organisation in Arabidopsis nuclei: constraints versus randomness. Chromosoma 121, 369–387. 10.1007/s00412-012-0367-8 PubMed DOI
Schubert V., Kim Y. M., Schubert I. (2008). Arabidopsis sister chromatids often show complete alignment or separation along a 1.2-Mb euchromatic region but no cohesion “hot spots.” Chromosoma 117, 261–266. 10.1007/s00412-007-0141-5 PubMed DOI
Schubert V., Klatte M., Pecinka A., Meister A., Jasencakova Z., Schubert I. (2006). Sister chromatids are often incompletely aligned in meristematic and endopolyploid interphase nuclei of Arabidopsis thaliana. Genetics 172, 467–475. 10.1534/genetics.105.048363 PubMed DOI PMC
Sexton T., Yaffe E., Kenigsberg E., Bantignies F., Leblanc B., Hoichman M., et al. . (2012). Three-dimensional folding and functional organization principles of the Drosophila genome. Cell 148, 458–472. 10.1016/j.cell.2012.01.010 PubMed DOI
She W., Grimanelli D., Rutowicz K., Whitehead M. W., Puzio M., Kotlinski M., et al. . (2013). Chromatin reprogramming during the somatic-to-reproductive cell fate transition in plants. Development 140, 4008–4019. 10.1242/dev.095034 PubMed DOI
Shopland L. S., Lynch C. R., Peterson K. A., Thornton K., Kepper N., von Hase J., et al. . (2006). Folding and organization of a contiguous chromosome region according to the gene distribution pattern in primary genomic sequence. J. Cell Biol. 174, 27–38. 10.1083/jcb.200603083 PubMed DOI PMC
Simonis M., Klous P., Splinter E., Moshkin Y., Willemsen R., de Wit E., et al. . (2006). Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat. Genet. 38, 1348–1354. 10.1038/ng1896 PubMed DOI
Sofueva S., Hadjur S. (2012). Cohesin-mediated chromatin interactions-into the third dimension of gene regulation. Brief. Funct. Genomics 11, 205–216. 10.1093/bfgp/elr048 PubMed DOI
Steinhauser D., Usadel B., Luedemann A., Thimm O., Kopka J. (2004). CSB.DB: a comprehensive systems-biology database. Bioinformatics 20, 3647–3651. 10.1093/bioinformatics/bth398 PubMed DOI
Tanizawa H., Iwasaki O., Tanaka A., Capizzi J. R., Wickramasinghe P., Lee M., et al. . (2010). Mapping of long-range associations throughout the fission yeast genome reveals global genome organization linked to transcriptional regulation. Nucleic Acids Res. 38, 8164–8177. 10.1093/nar/gkq955 PubMed DOI PMC
Tessadori F., Schulkes R. K., van Driel R., Fransz P. (2007). Light-regulated large-scale reorganization of chromatin during the floral transition in Arabidopsis. Plant J. 50, 848–857. 10.1111/j.1365-313X.2007.03093.x PubMed DOI
Tessadori F., van Zanten M., Pavlova P., Clifton R., Pontvianne F., Snoek L. B., et al. . (2009). Phytochrome B and histone deacetylase 6 control light-induced chromatin compaction in Arabidopsis thaliana. PLoS Genet. 5:e1000638. 10.1371/journal.pgen.1000638 PubMed DOI PMC
van Zanten M., Carles A., Li Y., Soppe W. J. (2012a). Control and consequences of chromatin compaction during seed maturation in Arabidopsis thaliana. Plant Signal. Behav. 7, 338–341. 10.4161/psb.19281 PubMed DOI PMC
van Zanten M., Koini M. A., Geyer R., Liu Y., Brambilla V., Bartels D., et al. . (2011). Seed maturation in Arabidopsis thaliana is characterized by nuclear size reduction and increased chromatin condensation. Proc. Natl. Acad. Sci. U.S.A. 108, 20219–20224. 10.1073/pnas.1117726108 PubMed DOI PMC
van Zanten M., Tessadori F., Bossen L., Peeters A. J., Fransz P. (2010a). Large-scale chromatin de-compaction induced by low light is not accompanied by nucleosomal displacement. Plant Signal. Behav. 5, 1677–1678. 10.4161/psb.5.12.14039 PubMed DOI PMC
van Zanten M., Tessadori F., McLoughlin F., Smith R., Millenaar F. F., van Driel R., et al. . (2010b). Photoreceptors CRYTOCHROME2 and phytochrome B control chromatin compaction in Arabidopsis. Plant Physiol. 154, 1686–1696. 10.1104/pp.110.164616 PubMed DOI PMC
van Zanten M., Tessadori F., Peeters A. J., Fransz P. (2012b). Shedding light on large-scale chromatin reorganization in Arabidopsis thaliana. Mol. Plant 5, 583–590. 10.1093/mp/sss030 PubMed DOI
Vazquez J., Belmont A. S., Sedat J. W. (2001). Multiple regimes of constrained chromosome motion are regulated in the interphase Drosophila nucleus. Curr. Biol. 11, 1227–1239. 10.1016/S0960-9822(01)00390-6 PubMed DOI
Voss T. C., Hager G. L. (2014). Dynamic regulation of transcriptional states by chromatin and transcription factors. Nat. Rev. Genet. 15, 69–81. 10.1038/nrg3623 PubMed DOI PMC
Walter J., Schermelleh L., Cremer M., Tashiro S., Cremer T. (2003). Chromosome order in HeLa cells changes during mitosis and early G1, but is stably maintained during subsequent interphase stages. J. Cell Biol. 160, 685–697. 10.1083/jcb.200211103 PubMed DOI PMC
Ward P. (2002). FISH probes and labelling techniques, in FISH, eds Beatty B., Mai S., Squire J. (Oxford: Oxford University; ), 5–28.
Watanabe K., Pacher M., Dukowic S., Schubert V., Puchta H., Schubert I. (2009). The STRUCTURAL MAINTENANCE OF CHROMOSOMES 5/6 Complex Promotes Sister Chromatid Alignment and Homologous Recombination after DNA Damage in Arabidopsis thaliana. Plant Cell 21, 2688–2699. 10.1105/tpc.108.060525 PubMed DOI PMC
Wegel E., Koumproglou R., Shaw P., Osbourn A. (2009). Cell type-specific chromatin decondensation of a metabolic gene cluster in oats. Plant Cell 21, 3926–3936. 10.1105/tpc.109.072124 PubMed DOI PMC
Wood A. J., Lo T. W., Zeitler B., Pickle C. S., Ralston E. J., Lee A. H., et al. . (2011). Targeted genome editing across species using ZFNs and TALENs. Science 333, 307. 10.1126/science.1207773 PubMed DOI PMC
Woodcock C. L., Ghosh R. P. (2010). Chromatin higher-order structure and dynamics. Cold Spring Harb. Perspect. Biol. 2:a000596. 10.1101/cshperspect.a000596 PubMed DOI PMC
Yaffe E., Tanay A. (2011). Probabilistic modeling of Hi-C contact maps eliminates systematic biases to characterize global chromosomal architecture. Nat. Genet. 43, 1059–1065. 10.1038/ng.947 PubMed DOI
Yang J., Corces V. G. (2012). Insulators, long-range interactions, and genome function. Curr. Opin. Genet. Dev. 22, 86–92. 10.1016/j.gde.2011.12.007 PubMed DOI PMC
Zhang Y., McCord R. P., Ho Y. J., Lajoie B. R., Hildebrand D. G., Simon A. C., et al. . (2012). Spatial organization of the mouse genome and its role in recurrent chromosomal translocations. Cell 148, 908–921. 10.1016/j.cell.2012.02.002 PubMed DOI PMC
Nuclear Disposition of Alien Chromosome Introgressions into Wheat and Rye Using 3D-FISH