A innovative wavelet transformation method optimization in the noise-canceling application within intelligent building occupancy detection monitoring
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
37234606
PubMed Central
PMC10205525
DOI
10.1016/j.heliyon.2023.e16114
PII: S2405-8440(23)03321-2
Knihovny.cz E-zdroje
- Klíčová slova
- Activities monitoring with indirect methods, Big data processing, Prediction of room occupancy, Presence of person monitoring, Smart home,
- Publikační typ
- časopisecké články MeSH
The study deals with detection of the occupation of Intelligent Building (IB) using data obtained from indirect methods with Big Data Analysis within IoT. In the area of daily living activity monitoring, one of the most challenging tasks is occupancy prediction, giving us information about people's mobility in the building. This task can be done via monitoring of CO2 as a reliable method, which has the ambition to predict the presence of the people in specific areas. In this paper, we propose a novel hybrid system, which is based on the Support Vector Machine (SVM) prediction of the CO2 waveform with the use of sensors that measure indoor/outdoor temperature and relative humidity. For each such prediction, we also record the gold standard CO2 signal to objectively compare and evaluate the quality of the proposed system. Unfortunately, this prediction is often linked with a presence of predicted signal activities in the form of glitches, often having an oscillating character, which inaccurately approximates the real CO2 signals. Thus, the difference between the gold standard and the prediction results from SVM is increasing. Therefore, we employed as the second part of the proposed system a smoothing procedure based on Wavelet transformation, which has ambitions to reduce inaccuracies in predicted signal via smoothing and increase the accuracy of the whole prediction system. The whole system is completed with an optimization procedure based on the Artificial Bee Colony (ABC) algorithm, which finally classifies the wavelet's response to recommend the most suitable wavelet settings to be used for data smoothing.
Zobrazit více v PubMed
Rajan Sreeranga, Ginkel W.V., Sundaresan N., Bardhan Anant, Chen Y., Fuchs A., Kapre A., Lane A., Lu Rongxing, Manadhata Pratyusa, Molina J., Mora A.C., Murthy P., Roy Arnab, Sathyadevan Shiju, Shah Nrupak. Cloud Security Alliance Report on the Top Ten Challenges in Big Data Privacy and Security. 2013. https://doi.org/10.13140/RG.2.1.1744.1127 DOI
Spiegel S. In: Smart Information Systems. Hopfgartner F., editor. Springer International Publishing; Cham: 2015. Optimization of in-house energy demand; pp. 271–289. DOI
L. Brett, R. Love, L. Harvey, Big Data: Time for a lean approach in financial services, a Deloitte Analytics paper.
Fog Computing and the Internet of Things: Extend the Cloud to Where the Things Are.
Alotaibi B. Utilizing blockchain to overcome cyber security concerns in the Internet of things: a review. IEEE Sens. J. 2019;19(23):10953–10971. doi: 10.1109/JSEN.2019.2935035. DOI
Mohanty S.N., Ramya K., Rani S.S., Gupta D., Shankar K., Lakshmanaprabu S., Khanna A. An efficient lightweight integrated blockchain (ELIB) model for IoT security and privacy. Future Gener. Comput. Syst. 2020;102:1027–1037. doi: 10.1016/j.future.2019.09.050. DOI
Pešić S., Tošić M., Iković O., Radovanović M., Ivanović M., Bošković D. BLEMAT: data analytics and machine learning for smart building occupancy detection and prediction. Int. J. Artif. Intell. Tools. 2019;28(06) doi: 10.1142/S0218213019600054. DOI
Kim K., Jalal A., Mahmood M. Vision-based human activity recognition system using depth silhouettes: a smart home system for monitoring the residents. J. Electr. Eng. Technol. 2019;14(6):2567–2573. doi: 10.1007/s42835-019-00278-8. DOI
Longo E., Redondi A.E., Cesana M. Accurate occupancy estimation with WiFi and bluetooth/BLE packet capture. Comput. Netw. 2019;163 doi: 10.1016/j.comnet.2019.106876. DOI
Wang F., Feng Q., Chen Z., Zhao Q., Cheng Z., Zou J., Zhang Y., Mai J., Li Y., Reeve H. Predictive control of indoor environment using occupant number detected by video data and CO 2 concentration. Energy Build. 2017;145:155–162. doi: 10.1016/j.enbuild.2017.04.014. DOI
Ioannidis D., Tropios P., Krinidis S., Tzovaras D., Likothanassis S. In: Iliadis L., Maglogiannis I., editors. vol. 475. Springer International Publishing; Cham: 2016. Building multi-occupancy analysis and visualization through data intensive processing; pp. 587–599. (Artificial Intelligence Applications and Innovations). DOI
Akkaya K., Guvenc I., Aygun R., Pala N., Kadri A. 2015 IEEE Wireless Communications and Networking Conference Workshops (WCNCW) IEEE; New Orleans, LA, USA: 2015. IoT-based occupancy monitoring techniques for energy-efficient smart buildings; pp. 58–63. DOI
Demiris G. 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE; Minneapolis, MN: 2009. Privacy and social implications of distinct sensing approaches to implementing smart homes for older adults; pp. 4311–4314. PubMed DOI
Ni Q., García Hernando A., de la Cruz I. The Elderly's independent living in smart homes: a characterization of activities and sensing infrastructure survey to facilitate services development. Sensors. 2015;15(5):11312–11362. doi: 10.3390/s150511312. PubMed DOI PMC
Candanedo L.M., Feldheim V. Accurate occupancy detection of an office room from light, temperature, humidity and CO 2 measurements using statistical learning models. Energy Build. 2016;112:28–39. doi: 10.1016/j.enbuild.2015.11.071. DOI
Hobson B.W., Lowcay D., Gunay H.B., Ashouri A., Newsham G.R. Opportunistic occupancy-count estimation using sensor fusion: a case study. Build. Environ. 2019;159 doi: 10.1016/j.buildenv.2019.05.032. DOI
Arendt K., Johansen A., Jørgensen B.N., Kjærgaard M.B., Mattera C.G., Sangogboye F.C., Schwee J.H., Veje C.T. Proceedings of the First Workshop on Data Acquisition to Analysis. ACM; Shenzhen China: 2018. Room-level occupant counts, airflow and CO 2 data from an office building; pp. 13–14. DOI
Lachhab F., Bakhouya M., Ouladsine R., Essaaidi M. Context-driven monitoring and control of buildings ventilation systems using big data and Internet of things–based technologies, proceedings of the institution of mechanical engineers, Part I. J. Syst. Control Eng. 2019;233(3):276–288. doi: 10.1177/0959651818791406. DOI
Scott J., Bernheim Brush A., Krumm J., Meyers B., Hazas M., Hodges S., Villar N. Proceedings of the 13th International Conference on Ubiquitous Computing - UbiComp '11. ACM Press; Beijing, China: 2011. PreHeat: controlling home heating using occupancy prediction; p. 281. DOI
Wang W., Xu X., Wei H.-H., Ren B., Chen J. Modeling occupancy distribution in large building spaces for HVAC energy efficiency. Energy Proc. 2018;152:1230–1235. doi: 10.1016/j.egypro.2018.09.174. DOI
D'Oca S., Hong T. Occupancy schedules learning process through a data mining framework. Energy Build. 2015;88:395–408. doi: 10.1016/j.enbuild.2014.11.065. DOI
Crivello A., Mavilia F., Barsocchi P., Ferro E., Palumbo F. Detecting occupancy and social interaction via energy and environmental monitoring. Int. J. Sens. Netw. 2018;27(1):61. doi: 10.1504/IJSNET.2018.092136. DOI
Noury N., Berenguer M., Teyssier H., Bouzid M.-J., Giordani M. Building an index of activity of inhabitants from their activity on the residential electrical power line. IEEE Trans. Inf. Technol. Biomed. 2011;15(5):758–766. doi: 10.1109/TITB.2011.2138149. PubMed DOI
Pyle D. Morgan Kaufmann Publishers; San Francisco, Calif: 1999. Data Preparation for Data Mining.
García S., Luengo J., Herrera F. vol. 72. Springer International Publishing; Cham: 2015. Data Preprocessing in Data Mining. (Intelligent Systems Reference Library). DOI
García S., Luengo J., Herrera F. Springer International Publishing; Cham: 2015. Data Preparation Basic Models, vol. 72; pp. 39–57. DOI
Eitrich T., Lang B. Efficient optimization of support vector machine learning parameters for unbalanced datasets. Int. J. Comput. Appl. Math. 2006;196(2):425–436. doi: 10.1016/j.cam.2005.09.009. DOI
Farahani B., Firouzi F., Chakrabarty K. In: Intelligent Internet of Things. Firouzi F., Chakrabarty K., Nassif S., editors. Springer International Publishing; Cham: 2020. Healthcare IoT; pp. 515–545. DOI
Ho Y., Pepyne D. Simple explanation of the no-free-lunch theorem and its implications. J. Optim. Theory Appl. 2002;115(3):549–570. doi: 10.1023/A:1021251113462. DOI
Wolpert D., Macready W. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997;1(1):67–82. doi: 10.1109/4235.585893. DOI
Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., Blondel M., Prettenhofer P., Weiss R., Dubourg Scikit-learn V. Machine learning in Python. J. Mach. Learn. Res. 2011;12:2825–2830.
Vanus J., Gorjani O.M., Bilik P. Novel proposal for prediction of CO2 course and occupancy recognition in intelligent buildings within IoT. Energies. 2019;12(23):4541. doi: 10.3390/en12234541. DOI
Vanus J., Martinek R., Danys L., Nedoma J., Bilik P. Occupancy detection in smart home space using interoperable building automation technologies. Hum.-Cent. Comput. Inf. Sci. 2022;12(1):616–632. doi: 10.22967/HCIS.2022.12.047. DOI
Vanus J., Majidzadeh Gorjani O., Dvoracek P., Bilik P., Koziorek J. Application of a new CO2 prediction method within family house occupancy monitoring. IEEE Access. 2021;9:158760–158772. doi: 10.1109/ACCESS.2021.3130216. DOI
Vanus J., Fiedorova K., Kubicek J., Gorjani O.M., Augustynek M. Wavelet-based filtration procedure for denoising the predicted CO2 waveforms in smart home within the Internet of things. Sensors. 2020;20(3):620. doi: 10.3390/s20030620. PubMed DOI PMC
Vanus J., Kubicek J., Gorjani O.M., Koziorek J. Using the IBM SPSS SW tool with wavelet transformation for CO2 prediction within IoT in smart home care. Sensors. 2019;19(6):1407. doi: 10.3390/s19061407. PubMed DOI PMC
Mena A.R., Ceballos H.G., Alvarado-Uribe J. Measuring indoor occupancy through environmental sensors: a systematic review on sensor deployment. Sensors. 2022;22(10):3770. doi: 10.3390/s22103770. PubMed DOI PMC
Ali S., Bouguila N. Towards scalable deployment of hidden Markov models in occupancy estimation: a novel methodology applied to the study case of occupancy detection. Energy Build. 2022;254 doi: 10.1016/j.enbuild.2021.111594. DOI
Guo J., Amayri M., Bouguila N., Fan W. A hybrid of interactive learning and predictive modeling for occupancy estimation in smart buildings. IEEE Trans. Consum. Electron. 2021;67(4):285–293. doi: 10.1109/TCE.2021.3131943. DOI
Huang Q., Rodriguez K., Whetstone N., Habel S. Rapid Internet of things (IoT) prototype for accurate people counting towards energy efficient buildings. Electron. J. Inf. Tech. Constr. 2019;24:1–13. doi: 10.36680/j.itcon.2019.001. DOI
Shirsat K.P., Bhole G.P. In: Proceedings of International Conference on Sustainable Expert Systems, vol. 176. Shakya S., Balas V.E., Haoxiang W., Baig Z., editors. Springer Singapore; Singapore: 2021. An empirical study on the occupancy detection techniques based on context-aware IoT system; pp. 95–105. DOI
Howedi A., Lotfi A., Pourabdollah A. Employing entropy measures to identify visitors in multi-occupancy environments. J. Ambient Intell. Humaniz. Comput. 2022;13(2):1093–1106. doi: 10.1007/s12652-020-02824-z. DOI
Huang Q. Occupancy-driven energy-efficient buildings using audio processing with background sound cancellation. Buildings. 2018;8(6):78. doi: 10.3390/buildings8060078. DOI
Huang T., Zhao R., Bi L., Zhang D., Lu C. Neural embedding singular value decomposition for collaborative filtering. IEEE Trans. Neural Netw. Learn. Syst. 2021:1–9. doi: 10.1109/TNNLS.2021.3070853. PubMed DOI
Das A., Gupta R., Chakraborty S. 2020 International Conference on COMmunication Systems & NETworkS (COMSNETS) IEEE; Bengaluru, India: 2020. A study on real-time edge computed occupancy estimation in an indoor environment; pp. 527–530. DOI
Sun Z., Yang J., Li X. Differentially private singular value decomposition for training support vector machines. Comput. Intell. Neurosci. 2022;2022:1–11. doi: 10.1155/2022/2935975. PubMed DOI PMC
Skön J.P., Johansson M., Raatikainen M., Leiviskä K., Kolehmainen M. Modelling indoor air carbon dioxide (CO2) concentration using neural network. Methods. 2012;14(15):16.
Huang Qiujun, Mao Jingli, Liu Yong. 2012 IEEE 14th International Conference on Communication Technology. IEEE; Chengdu, China: 2012. An improved grid search algorithm of SVR parameters optimization; pp. 1022–1026. DOI
Li S., Fang H., Liu X. Parameter optimization of support vector regression based on sine cosine algorithm. Expert Syst. Appl. 2018;91:63–77. doi: 10.1016/j.eswa.2017.08.038. DOI
Zhang D., Liu W., Wang A., Jin H. 2010 Chinese Conference on Pattern Recognition (CCPR) IEEE; Chongqing, China: 2010. Parameter optimization for SVR based on genetic algorithm and simplex method; pp. 1–6. DOI
Pan Kongzhi-Lilun-Zhuanye-Weiyuanhui Q., editor. 2013 32nd Chinese Control Conference; (CCC 2013): Xi'an, China, 26 - 28 July 2013; Piscataway, NJ: IEEE; 2013.
Pasolli L., Notarnicola C., Bruzzone L. Multi-objective parameter optimization in support vector regression: general formulation and application to the retrieval of soil moisture from remote sensing data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012;5(5):1495–1508. doi: 10.1109/JSTARS.2012.2197178. DOI