Human Activity Classification Using Multilayer Perceptron

. 2021 Sep 16 ; 21 (18) : . [epub] 20210916

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34577418

Grantová podpora
CZ.02.1.01/0.0/0.0/17_ 049/0008425 the European Regional Development Fund in "A 308 Research Platform focused on Industry 4.0 and Robotics in Ostrava Agglomeration
SP2021\123 Student Grant System of VSB Technical University of Ostrava

The number of smart homes is rapidly increasing. Smart homes typically feature functions such as voice-activated functions, automation, monitoring, and tracking events. Besides comfort and convenience, the integration of smart home functionality with data processing methods can provide valuable information about the well-being of the smart home residence. This study is aimed at taking the data analysis within smart homes beyond occupancy monitoring and fall detection. This work uses a multilayer perceptron neural network to recognize multiple human activities from wrist- and ankle-worn devices. The developed models show very high recognition accuracy across all activity classes. The cross-validation results indicate accuracy levels above 98% across all models, and scoring evaluation methods only resulted in an average accuracy reduction of 10%.

Zobrazit více v PubMed

Vanus J., Belesova J., Martinek R., Nedoma J., Fajkus M., Bilik P., Zidek J. Monitoring of the daily living activities in smart home care. Hum.-Centric Comput. Inf. Sci. 2017;7:30. doi: 10.1186/s13673-017-0113-6. DOI

Nweke H.F., Teh Y.W., Al-Garadi M.A., Alo U.R. Deep learning algorithms for human activity recognition using mobile and wearable sensor networks: State of the art and research challenges. Expert Syst. Appl. 2018;105:233–261. doi: 10.1016/j.eswa.2018.03.056. DOI

Wang J., Chen Y., Hao S., Peng X., Hu L. Deep learning for sensor-based activity recognition: A survey. Pattern Recognit. Lett. 2019;119:3–11. doi: 10.1016/j.patrec.2018.02.010. DOI

Ferrari A., Micucci D., Mobilio M., Napoletano P. On the personalization of classification models for human activity recognition. IEEE Access. 2020;8:32066–32079. doi: 10.1109/ACCESS.2020.2973425. DOI

Chen L., Hoey J., Nugent C.D., Cook D.J., Yu Z. Sensor-based activity recognition. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 2012;42:790–808. doi: 10.1109/TSMCC.2012.2198883. DOI

Minarno A.E., Kusuma W.A., Wibowo H. Performance Comparisson Activity Recognition using Logistic Regression and Support Vector Machine; Proceedings of the 2020 3rd International Conference on Intelligent Autonomous Systems (ICoIAS); Singapore. 26–29 February 2020; pp. 19–24.

Guan Y., Plötz T. Ensembles of deep lstm learners for activity recognition using wearables. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2017;1:1–28. doi: 10.1145/3090076. DOI

Ramasamy Ramamurthy S., Roy N. Recent trends in machine learning for human activity recognition—A survey. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2018;8:e1254. doi: 10.1002/widm.1254. DOI

Jiang W., Miao C., Ma F., Yao S., Wang Y., Yuan Y., Xue H., Song C., Ma X., Koutsonikolas D., et al. Towards environment independent device free human activity recognition; Proceedings of the 24th Annual International Conference on Mobile Computing and Networking; New York, NY, USA. 29 October–2 November 2018; pp. 289–304.

Lee S.M., Yoon S.M., Cho H. Human activity recognition from accelerometer data using Convolutional Neural Network; Proceedings of the 2017 IEEE International Conference on Big Data and Smart Computing (Bigcomp); Jeju, Korea. 13–16 February 2017; pp. 131–134.

Wan S., Qi L., Xu X., Tong C., Gu Z. Deep learning models for real-time human activity recognition with smartphones. Mob. Netw. Appl. 2020;25:743–755. doi: 10.1007/s11036-019-01445-x. DOI

Murad A., Pyun J.Y. Deep recurrent neural networks for human activity recognition. Sensors. 2017;17:2556. doi: 10.3390/s17112556. PubMed DOI PMC

Majidzadeh Gorjani O., Proto A., Vanus J., Bilik P. Indirect Recognition of Predefined Human Activities. Sensors. 2020;20:4829. doi: 10.3390/s20174829. PubMed DOI PMC

Geraldo Filho P., Villas L.A., Freitas H., Valejo A., Guidoni D.L., Ueyama J. ResiDI: Towards a smarter smart home system for decision-making using wireless sensors and actuators. Comput. Netw. 2018;135:54–69. doi: 10.1016/j.comnet.2018.02.009. DOI

Ueyama J., Villas L.A., Pinto A.R., Gonçalves V.P., Pessin G., Pazzi R.W., Braun T. Nodepm: A remote monitoring alert system for energy consumption using probabilistic techniques. Sensors. 2014;14:848–867. PubMed PMC

Rocha Filho G.P., Meneguette R.I., Maia G., Pessin G., Gonçalves V.P., Weigang L., Ueyama J., Villas L.A. A fog-enabled smart home solution for decision-making using smart objects. Future Gener. Comput. Syst. 2020;103:18–27. doi: 10.1016/j.future.2019.09.045. DOI

Goncalves V.P., Geraldo Filho P., Mano L.Y., Bonacin R. FlexPersonas: Flexible design of IoT-based home healthcare systems targeted at the older adults. AI Soc. 2021:1–19. doi: 10.1007/s00146-020-01113-9. DOI

Subbaraj R., Venkatraman N. Consistent context aware behaviour in smart home environment. Int. J. Sustain. Soc. 2018;10:300–312. doi: 10.1504/IJSSOC.2018.099025. DOI

Torres Neto J.R., Rocha Filho G.P., Mano L.Y., Villas L.A., Ueyama J. Exploiting offloading in IoT-based microfog: Experiments with face recognition and fall detection. Wirel. Commun. Mob. Comput. 2019;2019:2786837. doi: 10.1155/2019/2786837. DOI

Balakrishnan S., Vasudavan H., Murugesan R.K. Smart home technologies: A preliminary review; Proceedings of the 6th International Conference on Information Technology, IoT and Smart City; Hong Kong, China. 29–31 December 2018; pp. 120–127.

Tax N. Human activity prediction in smart home environments with LSTM neural networks; Proceedings of the 2018 14th International Conference on Intelligent Environments (IE); Rome, Italy. 25–28 June 2018; pp. 40–47.

Azzi S., Bouzouane A., Giroux S., Dallaire C., Bouchard B. Human activity recognition in big data smart home context; Proceedings of the 2014 IEEE International Conference on Big Data (Big Data); Washington, DC, USA. 27–30 October 2014; pp. 1–8.

Sim J.M., Lee Y., Kwon O. Acoustic sensor based recognition of human activity in everyday life for smart home services. Int. J. Distrib. Sens. Netw. 2015;11:679123. doi: 10.1155/2015/679123. DOI

Sadreazami H., Bolic M., Rajan S. Fall detection using standoff radar-based sensing and deep convolutional neural network. IEEE Trans. Circuits Syst. Express Briefs. 2019;67:197–201. doi: 10.1109/TCSII.2019.2904498. DOI

Ahamed F., Shahrestani S., Cheung H. Conference on Complex, Intelligent, and Software Intensive Systems. Springer; Berlin/Heidelberg, Germany: 2019. Intelligent fall detection with wearable IoT; pp. 391–401.

Hsueh Y.L., Lie W.N., Guo G.Y. Human behavior recognition from multiview videos. Inf. Sci. 2020;517:275–296. doi: 10.1016/j.ins.2020.01.002. DOI

Szczurek A., Maciejewska M., Pietrucha T. Occupancy determination based on time series of CO2 concentration, temperature and relative humidity. Energy Build. 2017;147:142–154. doi: 10.1016/j.enbuild.2017.04.080. DOI

Vanus J., Machac J., Martinek R., Bilik P., Zidek J., Nedoma J., Fajkus M. The design of an indirect method for the human presence monitoring in the intelligent building. Hum. Centric Comput. Inf. Sci. 2018;8:28. doi: 10.1186/s13673-018-0151-8. DOI

Vanus J., Kubicek J., Gorjani O.M., Koziorek J. Using the IBM SPSS SW tool with wavelet transformation for CO2 prediction within IoT in Smart Home Care. Sensors. 2019;19:1407. doi: 10.3390/s19061407. PubMed DOI PMC

Vanus J., M Gorjani O., Bilik P. Novel Proposal for Prediction of CO2 Course and Occupancy Recognition in Intelligent Buildings within IoT. Energies. 2019;12:4541. doi: 10.3390/en12234541. DOI

Van Kasteren T., Noulas A., Englebienne G., Kröse B. Accurate activity recognition in a home setting; Proceedings of the 10th International Conference on Ubiquitous Computing; Seoul, Korea. 21–24 September 2008; pp. 1–9.

Albert M.V., Toledo S., Shapiro M., Koerding K. Using mobile phones for activity recognition in Parkinson’s patients. Front. Neurol. 2012;3:158. doi: 10.3389/fneur.2012.00158. PubMed DOI PMC

Hassan M.M., Uddin M.Z., Mohamed A., Almogren A. A robust human activity recognition system using smartphone sensors and deep learning. Future Gener. Comput. Syst. 2018;81:307–313. doi: 10.1016/j.future.2017.11.029. DOI

Zhou X., Liang W., Kevin I., Wang K., Wang H., Yang L.T., Jin Q. Deep-learning-enhanced human activity recognition for Internet of healthcare things. IEEE Internet Things J. 2020;7:6429–6438. doi: 10.1109/JIOT.2020.2985082. DOI

Kwapisz J.R., Weiss G.M., Moore S.A. Activity recognition using cell phone accelerometers. ACM SigKDD Explor. Newsl. 2011;12:74–82. doi: 10.1145/1964897.1964918. DOI

Bayat A., Pomplun M., Tran D.A. A study on human activity recognition using accelerometer data from smartphones. Procedia Comput. Sci. 2014;34:450–457. doi: 10.1016/j.procs.2014.07.009. DOI

Ravi N., Dandekar N., Mysore P., Littman M.L. Activity Recognition from Accelerometer Data. Volume 5. Aaai; Pittsburgh, PA, USA: 2005. pp. 1541–1546.

Chen Y., Shen C. Performance analysis of smartphone-sensor behavior for human activity recognition. IEEE Access. 2017;5:3095–3110. doi: 10.1109/ACCESS.2017.2676168. DOI

Bao L., Intille S.S. International Conference on Pervasive Computing. Springer; Berlin/Heidelberg, Germany: 2004. Activity recognition from user-annotated acceleration data; pp. 1–17.

Trost S.G., Zheng Y., Wong W.K. Machine learning for activity recognition: Hip versus wrist data. Physiol. Meas. 2014;35:2183. doi: 10.1088/0967-3334/35/11/2183. PubMed DOI

Zhang S., Wei Z., Nie J., Huang L., Wang S., Li Z. A review on human activity recognition using vision-based method. J. Healthc. Eng. 2017;2017:3090343. doi: 10.1155/2017/3090343. PubMed DOI PMC

B-L475E-IOT01A—STMicroelectronics. [(accessed on 20 April 2021)]. Available online: https://www.st.com/en/evaluation-tools/b-l475e-iot01a.html.

Discovery Kit for IoT Node, Multi-Channel Communication with STM32L4. [(accessed on 21 April 2021)]. Available online: https://www.st.com/resource/en/user_manual/dm00347848-discovery-kit-for-iot-node-multichannel-communication-with-stm32l4-stmicroelectronics.pdf.

LSM6DSL: Always-on 3D Accelerometer and 3D Gyroscope. [(accessed on 21 April 2021)]. Available online: https://www.st.com/resource/en/application_note/dm00402563-lsm6dsl-alwayson-3d-accelerometer-and-3d-gyroscope-stmicroelectronics.pdf.

LIS3MDL: Three-Axis Digital Output Magnetometer. [(accessed on 21 April 2021)]. Available online: https://www.st.com/resource/en/application_note/dm00136626-lis3mdl-threeaxis-digital-output-magnetometer-stmicroelectronics.pdf.

RTOS—Handbook. [(accessed on 21 April 2021)]. Available online: https://os.mbed.com/handbook/RTOS.

Jchristn. Jchristn/SimpleTcp. [(accessed on 21 April 2021)]. Available online: https://github.com/jchristn/SimpleTcp.

Bracewell R.N., Bracewell R.N. The Fourier Transform and Its Applications. Volume 31999 McGraw-Hill; New York, NY, USA: 1986.

Karayiannis N.B. Reformulated radial basis neural networks trained by gradient descent. IEEE Trans. Neural Netw. 1999;10:657–671. doi: 10.1109/72.761725. PubMed DOI

Fan J. Design-adaptive nonparametric regression. J. Am. Stat. Assoc. 1992;87:998–1004. doi: 10.1080/01621459.1992.10476255. DOI

Specht D.F. A general regression neural network. IEEE Trans. Neural Netw. 1991;2:568–576. doi: 10.1109/72.97934. PubMed DOI

Iwendi C., Srivastava G., Khan S., Maddikunta P.K.R. Cyberbullying detection solutions based on deep learning architectures. Multimed. Syst. 2020:1–14. doi: 10.1007/s00530-020-00701-5. PubMed DOI

Sun T., Vasarhalyi M.A. Handbook of Financial Econometrics, Mathematics, Statistics, and Machine Learning. World Scientific; Singapore: 2021. Predicting credit card delinquencies: An application of deep neural networks; pp. 4349–4381.

Pinardi N., Miller D.A.J., Delle Monache D.L., Chapman D.W., Lucidi G. Application of Neural Networks in Atmospheric Rivers Forecasting. Geophys. Res. Lett. 2019;46:10627–10635. doi: 10.1029/2019GL083662. DOI

IBM . IBM SPSS Modeler 18 Algorithms Guide. IBM; Armonk, NY, USA: 2019. [(accessed on 21 April 2021)]. Available online: ftp://public.dhe.ibm.com/software/analytics/spss/documentation/modeler/18.0/en/AlgorithmsGuide.pdf.

Kohavi R. A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection. Volume 14. Ijcai; Montreal, QC, Canada: 1995. pp. 1137–1145.

Krogh A., Vedelsby J. Advances in Neural Information Processing Systems. MIT Press; Denver, CO, USA: 1995. Neural network ensembles, cross validation, and active learning; pp. 231–238.

Golub G.H., Heath M., Wahba G. Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics. 1979;21:215–223. doi: 10.1080/00401706.1979.10489751. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...