In Silico Analysis of Extended-Spectrum β-Lactamases in Bacteria
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
JG_2019_005
Junior Grant from Palacky University Olomouc
SPP 210015017
Increasing Internationalization of the Faculty 368 of Medicine and Dentistry, Palacky University Olomouc
IGA LF 2021_022
Internal Grant of the Palacky University Olomouc
PubMed
34356733
PubMed Central
PMC8300632
DOI
10.3390/antibiotics10070812
PII: antibiotics10070812
Knihovny.cz E-zdroje
- Klíčová slova
- ESBL, PCR, antibiotic resistance, bacteria, primer,
- Publikační typ
- časopisecké články MeSH
The growing bacterial resistance to available β-lactam antibiotics is a very serious public health problem, especially due to the production of a wide range of β-lactamases. At present, clinically important bacteria are increasingly acquiring new elements of resistance to carbapenems and polymyxins, including extended-spectrum β-lactamases (ESBLs), carbapenemases and phosphoethanolamine transferases of the MCR type. These bacterial enzymes limit therapeutic options in human and veterinary medicine. It must be emphasized that there is a real risk of losing the ability to treat serious and life-threatening infections. The present study aimed to design specific oligonucleotides for rapid PCR detection of ESBL-encoding genes and in silico analysis of selected ESBL enzymes. A total of 58 primers were designed to detect 49 types of different ESBL genes. After comparing the amino acid sequences of ESBLs (CTX-M, SHV and TEM), phylogenetic trees were created based on the presence of conserved amino acids and homologous motifs. This study indicates that the proposed primers should be able to specifically detect more than 99.8% of all described ESBL enzymes. The results suggest that the in silico tested primers could be used for PCR to detect the presence of ESBL genes in various bacteria, as well as to monitor their spread.
Zobrazit více v PubMed
Naas T., Oueslati S., Bonnin R.A., Dabos M.L., Zavala A., Dortet L., Retailleau P., Iorga B.I. Beta-lactamase database (BLDB)—structure and function. J. Enzym. Inhib. Med. Chem. 2017;32:917–919. doi: 10.1080/14756366.2017.1344235. PubMed DOI PMC
Jeon J.H., Hong M.K., Lee J.H., Lee J.J., Park K.S., Karim A.M., Jo J.Y., Kim J.H., Ko K.S., Kang L.W., et al. Structure of ADC-68, a novel carbapenem-hydrolyzing class C extended-spectrum beta-lactamase isolated from Acinetobacter baumannii. Acta Crystallogr. D Biol. Crystallogr. 2014;70:2924–2936. doi: 10.1107/S1399004714019543. PubMed DOI
Mammeri H., Guillon H., Eb F., Nordmann P. Phenotypic and biochemical comparison of the carbapenem-hydrolyzing activities of five plasmid-borne AmpC beta-lactamases. Antimicrob. Agents Chemother. 2010;54:4556–4560. doi: 10.1128/AAC.01762-09. PubMed DOI PMC
Jousset A.B., Oueslati S., Bernabeu S., Takissian J., Creton E., Vogel A., Sauvadet A., Cotellon G., Gauthier L., Bonnin R.A., et al. False-Positive Carbapenem-Hydrolyzing Confirmatory Tests Due to ACT-28, a Chromosomally Encoded AmpC with Weak Carbapenemase Activity from Enterobacter kobei. Antimicrob. Agents Chemother. 2019;63:e02388-18. doi: 10.1128/AAC.02388-18. PubMed DOI PMC
Kaitany K.C., Klinger N.V., June C.M., Ramey M.E., Bonomo R.A., Powers R.A., Leonard D.A. Structures of the class D Carbapenemases OXA-23 and OXA-146: Mechanistic basis of activity against carbapenems, extended-spectrum cephalosporins, and aztreonam. Antimicrob. Agents Chemother. 2013;57:4848–4855. doi: 10.1128/AAC.00762-13. PubMed DOI PMC
Marathe N.P., Janzon A., Kotsakis S.D., Flach C.F., Razavi M., Berglund F., Kristiansson E., Larsson D.G.J. Functional metagenomics reveals a novel carbapenem-hydrolyzing mobile beta-lactamase from Indian river sediments contaminated with antibiotic production waste. Environ. Int. 2018;112:279–286. doi: 10.1016/j.envint.2017.12.036. PubMed DOI
Suh B., Bae I.K., Kim J., Jeong S.H., Yong D., Lee K. Outbreak of meropenem-resistant Serratia marcescens comediated by chromosomal AmpC beta-lactamase overproduction and outer membrane protein loss. Antimicrob. Agents Chemother. 2010;54:5057–5061. doi: 10.1128/AAC.00768-10. PubMed DOI PMC
Bonnet R. Growing group of extended-spectrum beta-lactamases: The CTX-M enzymes. Antimicrob. Agents Chemother. 2004;48:1–14. doi: 10.1128/AAC.48.1.1-14.2004. PubMed DOI PMC
Tanimoto K., Nomura T., Hashimoto Y., Hirakawa H., Watanabe H., Tomita H. Isolation of Serratia fonticola Producing FONA, a Minor Extended-Spectrum beta-Lactamase (ESBL), from Imported Chicken Meat in Japan. Jpn. J. Infect. Dis. 2021;74:79–81. doi: 10.7883/yoken.JJID.2020.114. PubMed DOI
Zhou D., Sun Z., Lu J., Liu H., Lu W., Lin H., Zhang X., Li Q., Zhou W., Zhu X., et al. Characterization of a Novel Chromosomal Class C beta-Lactamase, YOC-1, and Comparative Genomics Analysis of a Multidrug Resistance Plasmid in Yokenella regensburgei W13. Front. Microbiol. 2020;11:2021. doi: 10.3389/fmicb.2020.02021. PubMed DOI PMC
Toth M., Antunes N.T., Stewart N.K., Frase H., Bhattacharya M., Smith C.A., Vakulenko S.B. Class D beta-lactamases do exist in Gram-positive bacteria. Nat. Chem. Biol. 2016;12:9. doi: 10.1038/nchembio.1950. PubMed DOI PMC
Bradford P.A. Extended-spectrum beta-lactamases in the 21st century: Characterization, epidemiology, and detection of this important resistance threat. Clin. Microbiol. Rev. 2001;14:933–951. doi: 10.1128/CMR.14.4.933-951.2001. PubMed DOI PMC
Paterson D.L., Bonomo R.A. Extended-spectrum beta-lactamases: A clinical update. Clin. Microbiol. Rev. 2005;18:657–686. doi: 10.1128/CMR.18.4.657-686.2005. PubMed DOI PMC
Naas T., Poirel L., Nordmann P. Minor extended-spectrum beta-lactamases. Clin. Microbiol. Infect. 2008;14(Suppl. 1):42–52. doi: 10.1111/j.1469-0691.2007.01861.x. PubMed DOI
Guillon H., Eb F., Mammeri H. Characterization of CSP-1, a novel extended-spectrum beta-lactamase produced by a clinical isolate of Capnocytophaga sputigena. Antimicrob. Agents Chemother. 2010;54:2231–2234. doi: 10.1128/AAC.00791-09. PubMed DOI PMC
Lamoureaux T.L., Vakulenko V., Toth M., Frase H., Vakulenko S.B. A novel extended-spectrum beta-lactamase, SGM-1, from an environmental isolate of Sphingobium sp. Antimicrob. Agents Chemother. 2013;57:3783–3788. doi: 10.1128/AAC.00808-13. PubMed DOI PMC
Pfennigwerth N., Lange F., Campos C.B., Hentschke M., Gatermann S.G., Kaase M. Genetic and biochemical characterization of HMB-1, a novel subclass B1 metallo-beta-lactamase found in a Pseudomonas aeruginosa clinical isolate. J. Antimicrob. Chemother. 2017;72:1068–1073. doi: 10.1093/jac/dkw554. PubMed DOI
Queenan A.M., Bush K. Carbapenemases: The versatile beta-lactamases. Clin. Microbiol. Rev. 2007;20:440–458. doi: 10.1128/CMR.00001-07. PubMed DOI PMC
Poirel L., Heritier C., Podglajen I., Sougakoff W., Gutmann L., Nordmann P. Emergence in Klebsiella pneumoniae of a chromosome-encoded SHV beta-lactamase that compromises the efficacy of imipenem. Antimicrob. Agents Chemother. 2003;47:755–758. doi: 10.1128/AAC.47.2.755-758.2003. PubMed DOI PMC
Poirel L., Ortiz de la Rosa J.M., Richard A., Aires-de-Sousa M., Nordmann P. CTX-M-33, a CTX-M-15 derivative conferring reduced susceptibility to carbapenems. Antimicrob. Agents Chemother. 2019;63:e01515-19. doi: 10.1128/AAC.01515-19. PubMed DOI PMC
Alegria A., Arias-Temprano M., Fernandez-Natal I., Rodriguez-Calleja J.M., Garcia-Lopez M.L., Santos J.A. Molecular Diversity of ESBL-Producing Escherichia coli from Foods of Animal Origin and Human Patients. Int. J. Environ. Res. Public Health. 2020;17:1312. doi: 10.3390/ijerph17041312. PubMed DOI PMC
Bardon J., Mlynarcik P., Prochazkova P., Roderova M., Mezerova K., Kolar M. Occurrence of bacteria with a dangerous extent of antibiotic resistance in poultry in the Central Region of Moravia. Acta Vet. Brno. 2018;87:165–172. doi: 10.2754/avb201887020165. DOI
Zhang H., Zhou Y., Guo S., Chang W. Prevalence and characteristics of extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae isolated from rural well water in Taian, China, 2014. Environ. Sci. Pollut. Res. Int. 2015;22:11488–11492. doi: 10.1007/s11356-015-4387-9. PubMed DOI
Abbott I., Cerqueira G.M., Bhuiyan S., Peleg A.Y. Carbapenem resistance in Acinetobacter baumannii: Laboratory challenges, mechanistic insights and therapeutic strategies. Expert Rev. Anti Infect. Ther. 2013;11:395–409. doi: 10.1586/eri.13.21. PubMed DOI
Kolar M., Htoutou Sedlakova M., Urbanek K., Mlynarcik P., Roderova M., Hricova K., Mezerova K., Kucova P., Zapletalova J., Fiserova K., et al. Implementation of Antibiotic Stewardship in a University Hospital Setting. Antibiotics. 2021;10:93. doi: 10.3390/antibiotics10010093. PubMed DOI PMC
Mlynarcik P., Kolar M. Molecular mechanisms of polymyxin resistance and detection of mcr genes. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc. Czech. Repub. 2019;163:28–38. doi: 10.5507/bp.2018.070. PubMed DOI
Mlynarcik P., Chalachanova A., Vagnerova I., Holy O., Zatloukalova S., Kolar M. PCR Detection of Oxacillinases in Bacteria. Microb Drug Resist. 2020 doi: 10.1089/mdr.2019.0330. PubMed DOI
Bendjama E., Loucif L., Chelaghma W., Attal C., Bellakh F.Z., Benaldjia R., Kahlat I., Meddour A., Rolain J.M. First detection of an OXA-48-producing Enterobacter cloacae isolate from currency coins in Algeria. J. Glob. Antimicrob. Resist. 2020;23:162–166. doi: 10.1016/j.jgar.2020.09.003. PubMed DOI PMC
Gniadkowski M. Evolution and epidemiology of extended-spectrum beta-lactamases (ESBLs) and ESBL-producing microorganisms. Clin. Microbiol. Infect. 2001;7:597–608. doi: 10.1046/j.1198-743x.2001.00330.x. PubMed DOI
Canton R., Novais A., Valverde A., Machado E., Peixe L., Baquero F., Coque T.M. Prevalence and spread of extended-spectrum beta-lactamase-producing Enterobacteriaceae in Europe. Clin. Microbiol. Infect. 2008;14(Suppl. 1):144–153. doi: 10.1111/j.1469-0691.2007.01850.x. PubMed DOI
Bush K. The ABCD’s of beta-lactamase nomenclature. J. Infect. Chemother. 2013;19:549–559. doi: 10.1007/s10156-013-0640-7. PubMed DOI
Mlynarcik P., Bardon J., Htoutou Sedlakova M., Prochazkova P., Kolar M. Identification of novel OXA-134-like beta-lactamases in Acinetobacter lwoffii and Acinetobacter schindleri isolated from chicken litter. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc. Czech. Repub. 2019;163:141–146. doi: 10.5507/bp.2018.037. PubMed DOI
Mlynarcik P., Roderova M., Kolar M. Primer Evaluation for PCR and its Application for Detection of Carbapenemases in Enterobacteriaceae. Jundishapur. J. Microbiol. 2016;9:e29314. doi: 10.5812/jjm.29314. PubMed DOI PMC
Mlynarcik P., Dolejska M., Vagnerova I., Kutilová I., Kolar M. Detection of clinically important β-lactamases by using PCR. FEMS Microbiol. Lett. 2021;368:fnab068. doi: 10.1093/femsle/fnab068. PubMed DOI
Peleg A.Y., Seifert H., Paterson D.L. Acinetobacter baumannii: Emergence of a successful pathogen. Clin. Microbiol. Rev. 2008;21:538–582. doi: 10.1128/CMR.00058-07. PubMed DOI PMC
Peymani A., Naserpour-Farivar T., Zare E., Azarhoosh K.H. Distribution of blaTEM, blaSHV, and blaCTX-M genes among ESBL-producing P. aeruginosa isolated from Qazvin and Tehran hospitals, Iran. J. Prev. Med. Hyg. 2017;58:E155–E160. PubMed PMC
Pagani L., Dell’Amico E., Migliavacca R., D’Andrea M.M., Giacobone E., Amicosante G., Romero E., Rossolini G.M. Multiple CTX-M-Type extended-spectrum b-lactamases in nosocomial isolates of Enterobacteriaceae from a hospital in northern Italy. J. Clin. Microbiol. 2003;41:4264–4269. doi: 10.1128/JCM.41.9.4264-4269.2003. PubMed DOI PMC
Analysis of BlaEC family class C beta-lactamase