The Anti-Obesogenic Effect of Lean Fish Species is Influenced by the Fatty Acid Composition in Fish Fillets

. 2020 Oct 03 ; 12 (10) : . [epub] 20201003

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33022997

Grantová podpora
FINS 900842 Fiskeri - og havbruksnæringens forskningsfond

Fillets from marine fish species contain n-3 polyunsaturated fatty acids (PUFAs) in the form of phospholipids (PLs). To investigate the importance of PL-bound n-3 PUFAs in mediating the anti-obesogenic effect of lean seafood, we compared the anti-obesogenic properties of fillets from cod with fillets from pangasius, a fresh water fish with a very low content of PL-bound n-3 PUFAs. We prepared high-fat/high-protein diets using chicken, cod and pangasius as the protein sources, and fed male C57BL/6J mice these diets for 12 weeks. Mice fed the diet containing cod gained less adipose tissue mass and had smaller white adipocytes than mice fed the chicken-containing diet, whereas mice fed the pangasius-containing diet were in between mice fed the chicken-containing diet and mice fed the cod-containing diet. Of note, mice fed the pangasius-containing diet exhibited reduced glucose tolerance compared to mice fed the cod-containing diet. Although the sum of marine n-3 PUFAs comprised less than 2% of the total fatty acids in the cod-containing diet, this was sufficient to significantly increase the levels of eicosapentaenoic acid (EPA) and docosahexaenoic acids (DHA) in mouse tissues and enhance production of n-3 PUFA-derived lipid mediators as compared with mice fed pangasius or chicken.

Zobrazit více v PubMed

Fogelholm M., Anderssen S., Gunnarsdottir I., Lahti-Koski M. Dietary macronutrients and food consumption as determinants of long-term weight change in adult populations: A systematic literature review. Food Nutr. Res. 2012;56 doi: 10.3402/fnr.v56i0.19103. PubMed DOI PMC

Mozaffarian D., Hao T., Rimm E.B., Willett W.C., Hu F.B. Changes in diet and lifestyle and long-term weight gain in women and men. N. Engl. J. Med. 2011;364:2392–2404. doi: 10.1056/NEJMoa1014296. PubMed DOI PMC

Smith J.D., Hou T., Ludwig D.S., Rimm E.B., Willett W., Hu F.B., Mozaffarian D. Changes in intake of protein foods, carbohydrate amount and quality, and long-term weight change: Results from 3 prospective cohorts. Am. J. Clin. Nutr. 2015;101:1216–1224. doi: 10.3945/ajcn.114.100867. PubMed DOI PMC

Liaset B., Øyen J., Jacques H., Kristiansen K., Madsen L. Seafood intake and the development of obesity, insulin resistance and type 2 diabetes. Nutr. Res. Rev. 2019;32:146–167. doi: 10.1017/S0954422418000240. PubMed DOI PMC

Madsen L., Petersen R.K., Kristiansen K. Regulation of adipocyte differentiation and function by polyunsaturated fatty acids. Biochim. Biophys. Acta. 2005;30:266–286. doi: 10.1016/j.bbadis.2005.03.001. PubMed DOI

Huang C.W., Chien Y.S., Chen Y.J., Ajuwon K.M., Mersmann H.M., Ding S.T. Role of n-3 Polyunsaturated Fatty Acids in Ameliorating the Obesity-Induced Metabolic Syndrome in Animal Models and Humans. Int. J. Mol. Sci. 2016;17:1689. doi: 10.3390/ijms17101689. PubMed DOI PMC

Kuda O., Rossmeisl M., Kopecky J. Omega-3 fatty acids and adipose tissue biology. Mol. Asp. Med. 2018;64:147–160. doi: 10.1016/j.mam.2018.01.004. PubMed DOI

Spitze A.R., Wong D.L., Rogers Q.R., Fascetti A.J. Taurine concentrations in animal feed ingredients; cooking influences taurine content. J. Anim. Physiol. Anim. Nutr. 2003;87:251–262. doi: 10.1046/j.1439-0396.2003.00434.x. PubMed DOI

Borck P.C., Vettorazzi J.F., Branco R.C.S., Batista T.M., Santos-Silva J.C., Nakanishi V.Y., Boschero A.C., Ribeiro R.A., Carneiro E.M. Taurine supplementation induces long-term beneficial effects on glucose homeostasis in ob/ob mice. Amino Acids. 2018;50:765–774. doi: 10.1007/s00726-018-2553-3. PubMed DOI

Kim K.S., Doss H.M., Kim H.J., Yang H.I. Taurine Stimulates Thermoregulatory Genes in Brown Fat Tissue and Muscle without an Influence on Inguinal White Fat Tissue in a High-Fat Diet-Induced Obese Mouse Model. Foods. 2020;9:688. doi: 10.3390/foods9060688. PubMed DOI PMC

Kim K.S., Jang M.J., Fang S., Yoon S.G., Kim I.Y., Seong J.K., Yang H.I., Hahm D.H. Anti-obesity effect of taurine through inhibition of adipogenesis in white fat tissue but not in brown fat tissue in a high-fat diet-induced obese mouse model. Amino Acids. 2019;51:245–254. doi: 10.1007/s00726-018-2659-7. PubMed DOI

Liaset B., Madsen L., Hao Q., Criales G., Mellgren G., Marschall H.U., Hallenborg P., Espe M., Frøyland L., Kristiansen K. Fish protein hydrolysate elevates plasma bile acids and reduces visceral adipose tissue mass in rats. Biochim. Biophys. Acta. 2009;4:254–262. doi: 10.1016/j.bbalip.2009.01.016. PubMed DOI

Liaset B., Hao Q., Jørgensen H., Hallenborg P., Du Z.Y., Ma T., Marschall H.U., Kruhøffer M., Li R., Li Q., et al. Nutritional regulation of bile acid metabolism is associated with improved pathological characteristics of the metabolic syndrome. J. Biol. Chem. 2011;286:28382–28395. doi: 10.1074/jbc.M111.234732. PubMed DOI PMC

López Y.R., Pérez-Torres I., Zúñiga-Muñoz A., Lans V.G., Díaz-Díaz E., Castro E.S., Espejel R.V. Effect of Glycine on Adipocyte Hypertrophy in a Metabolic Syndrome Rat Model. Curr. Drug. Deliv. 2016;13:158–169. doi: 10.2174/156720181301160314151554. PubMed DOI

Tastesen H.S., Keenan A.H., Madsen L., Kristiansen K., Liaset B. Scallop protein with endogenous high taurine and glycine content prevents high-fat, high-sucrose-induced obesity and improves plasma lipid profile in male C57BL/6J mice. Amino Acids. 2014;46:1659–1671. doi: 10.1007/s00726-014-1715-1. PubMed DOI PMC

Aakre I., Næss S., Kjellevold M., Markhus M.W., Alvheim A.R., Dalane J., Kielland E., Dahl L. New data on nutrient composition in large selection of commercially available seafood products and its impact on micronutrient intake. Food Nutr. Res. 2019;63 doi: 10.29219/fnr.v63.3573. PubMed DOI PMC

Lie O., Lambertsen G. Fatty acid composition of glycerophospholipids in seven tissues of cod (Gadus morhua), determined by combined high-performance liquid chromatography and gas chromatography. J. Chromatogr. 1991;565:119–129. doi: 10.1016/0378-4347(91)80376-N. PubMed DOI

Zhang T.T., Xu J., Wang Y.M., Xue C.H. Health benefits of dietary marine DHA/EPA-enriched glycerophospholipids. Prog. Lipid. Res. 2019;75:20. doi: 10.1016/j.plipres.2019.100997. PubMed DOI

Fauske K.R., Bernhard A., Fjaere E., Myrmel L.S., Froyland L., Kristiansen K., Liaset B., Madsen L. Effects of Frozen Storage on Phospholipid Content in Atlantic Cod Fillets and the Influence on Diet-Induced Obesity in Mice. Nutrients. 2018;10:695. doi: 10.3390/nu10060695. PubMed DOI PMC

Schuchardt J.P., Hahn A. Bioavailability of long-chain omega-3 fatty acids. Prostaglandins Leukot. Essent. Fat. Acids. 2013;89:1–8. doi: 10.1016/j.plefa.2013.03.010. PubMed DOI

Ghasemifard S., Turchini G.M., Sinclair A.J. Omega-3 long chain fatty acid “bioavailability”: A review of evidence and methodological considerations. Prog. Lipid. Res. 2014;56:92–108. doi: 10.1016/j.plipres.2014.09.001. PubMed DOI

Ulven S.M., Holven K.B. Comparison of bioavailability of krill oil versus fish oil and health effect. Vasc. Health Risk. Manag. 2015;11:511–524. doi: 10.2147/VHRM.S85165. PubMed DOI PMC

Cholewski M., Tomczykowa M., Tomczyk M. A Comprehensive Review of Chemistry, Sources and Bioavailability of Omega-3 Fatty Acids. Nutrients. 2018;10:1662. doi: 10.3390/nu10111662. PubMed DOI PMC

Liisberg U., Fauske K.R., Kuda O., Fjaere E., Myrmel L.S., Norberg N., Froyland L., Graff I.E., Liaset B., Kristiansen K., et al. Intake of a Western diet containing cod instead of pork alters fatty acid composition in tissue phospholipids and attenuates obesity and hepatic lipid accumulation in mice. J. Nutr. Biochem. 2016;33:119–127. doi: 10.1016/j.jnutbio.2016.03.014. PubMed DOI

Rossmeisl M., Jilkova Z.M., Kuda O., Jelenik T., Medrikova D., Stankova B., Kristinsson B., Haraldsson G.G., Svensen H., Stoknes I., et al. Metabolic effects of n-3 PUFA as phospholipids are superior to triglycerides in mice fed a high-fat diet: Possible role of endocannabinoids. PLoS ONE. 2012;7:e38834. doi: 10.1371/journal.pone.0038834. PubMed DOI PMC

Zhang L.Y., Ding L., Shi H.H., Xu J., Xue C.H., Zhang T.T., Wang Y.M. Eicosapentaenoic acid in the form of phospholipids exerts superior anti-atherosclerosis effects to its triglyceride form in ApoE(-/-) mice. Food Funct. 2019;10:4177–4188. doi: 10.1039/C9FO00868C. PubMed DOI

Batetta B., Griinari M., Carta G., Murru E., Ligresti A., Cordeddu L., Giordano E., Sanna F., Bisogno T., Uda S., et al. Endocannabinoids may mediate the ability of (n-3) fatty acids to reduce ectopic fat and inflammatory mediators in obese Zucker rats. J. Nutr. 2009;139:1495–1501. doi: 10.3945/jn.109.104844. PubMed DOI

Piscitelli F., Carta G., Bisogno T., Murru E., Cordeddu L., Berge K., Tandy S., Cohn J.S., Griinari M., Banni S., et al. Effect of dietary krill oil supplementation on the endocannabinoidome of metabolically relevant tissues from high-fat-fed mice. Nutr. Metab. 2011;8:1743–7075. doi: 10.1186/1743-7075-8-51. PubMed DOI PMC

Alvheim A.R., Malde M.K., Osei-Hyiaman D., Lin Y.H., Pawlosky R.J., Madsen L., Kristiansen K., Froyland L., Hibbeln J.R. Dietary linoleic acid elevates endogenous 2-AG and anandamide and induces obesity. Obesity (Silver Spring) 2012;20:1984–1994. doi: 10.1038/oby.2012.38. PubMed DOI PMC

Rossmeisl M., Medrikova D., van Schothorst E.M., Pavlisova J., Kuda O., Hensler M., Bardova K., Flachs P., Stankova B., Vecka M., et al. Omega-3 phospholipids from fish suppress hepatic steatosis by integrated inhibition of biosynthetic pathways in dietary obese mice. Biochim. Biophys. Acta. 2014;2:267–278. doi: 10.1016/j.bbalip.2013.11.010. PubMed DOI

Tillander V., Bjørndal B., Burri L., Bohov P., Skorve J., Berge R.K., Alexson S.E. Fish oil and krill oil supplementations differentially regulate lipid catabolic and synthetic pathways in mice. Nutr. Metab. 2014;11:1743–7075. doi: 10.1186/1743-7075-11-20. PubMed DOI PMC

Ahmmed M.K., Ahmmed F., Tian H., Carne A., Bekhit A.E. Marine omega-3 (n-3) phospholipids: A comprehensive review of their properties, sources, bioavailability, and relation to brain health. Compr. Rev. Food Sci. Food Saf. 2020;19:64–123. doi: 10.1111/1541-4337.12510. PubMed DOI

Liisberg U., Myrmel L.S., Fjaere E., Ronnevik A.K., Bjelland S., Fauske K.R., Holm J.B., Basse A.L., Hansen J.B., Liaset B., et al. The protein source determines the potential of high protein diets to attenuate obesity development in C57BL/6J mice. Adipocyte. 2016;5:196–211. doi: 10.1080/21623945.2015.1122855. PubMed DOI PMC

Mariotti F., Tomé D., Mirand P.P. Converting nitrogen into protein--beyond 6.25 and Jones’ factors. Crit. Rev. Food Sci. Nutr. 2008;48:177–184. doi: 10.1080/10408390701279749. PubMed DOI

Fjaere E., Aune U.L., Roen K., Keenan A.H., Ma T., Borkowski K., Kristensen D.M., Novotny G.W., Mandrup-Poulsen T., Hudson B.D., et al. Indomethacin Treatment Prevents High Fat Diet-induced Obesity and Insulin Resistance but Not Glucose Intolerance in C57BL/6J Mice. J. Biol. Chem. 2014;289:16032–16045. doi: 10.1074/jbc.M113.525220. PubMed DOI PMC

Lillefosse H.H., Tastesen H.S., Du Z.Y., Ditlev D.B., Thorsen F.A., Madsen L., Kristiansen K., Liaset B. Hydrolyzed casein reduces diet-induced obesity in male C57BL/6J mice. J. Nutr. 2013;143:1367–1375. doi: 10.3945/jn.112.170415. PubMed DOI

Dumlao D.S., Buczynski M.W., Norris P.C., Harkewicz R., Dennis E.A. High-throughput lipidomic analysis of fatty acid derived eicosanoids and N-acylethanolamines. Biochim. Biophys. Acta. 2011;1811:724–736. doi: 10.1016/j.bbalip.2011.06.005. PubMed DOI PMC

Holm J.B., Ronnevik A., Tastesen H.S., Fjaere E., Fauske K.R., Liisberg U., Madsen L., Kristiansen K., Liaset B. Diet-induced obesity, energy metabolism and gut microbiota in C57BL/6J mice fed Western diets based on lean seafood or lean meat mixtures. J. Nutr. Biochem. 2016;31:127–136. doi: 10.1016/j.jnutbio.2015.12.017. PubMed DOI

Myrmel L.S., Fauske K.R., Fjære E., Bernhard A., Liisberg U., Hasselberg A.E., Øyen J., Kristiansen K., Madsen L. The Impact of Different Animal-Derived Protein Sources on Adiposity and Glucose Homeostasis during Ad Libitum Feeding and Energy Restriction in Already Obese Mice. Nutrients. 2019;11:1153. doi: 10.3390/nu11051153. PubMed DOI PMC

Fjaere E., Myrmel L.S., Lutzhoft D.O., Andersen H., Holm J.B., Kiilerich P., Hannisdal R., Liaset B., Kristiansen K., Madsen L. Effects of exercise and dietary protein sources on adiposity and insulin sensitivity in obese mice. J. Nutr. Biochem. 2019;66:98–109. doi: 10.1016/j.jnutbio.2019.01.003. PubMed DOI

Flachs P., Horakova O., Brauner P., Rossmeisl M., Pecina P., Franssen-van Hal N., Ruzickova J., Sponarova J., Drahota Z., Vlcek C., et al. Polyunsaturated fatty acids of marine origin upregulate mitochondrial biogenesis and induce beta-oxidation in white fat. Diabetologia. 2005;48:2365–2375. doi: 10.1007/s00125-005-1944-7. PubMed DOI

Huang X.F., Xin X., McLennan P., Storlien L. Role of fat amount and type in ameliorating diet-induced obesity: Insights at the level of hypothalamic arcuate nucleus leptin receptor, neuropeptide Y and pro-opiomelanocortin mRNA expression. Diabetes Obes. Metab. 2004;6:35–44. doi: 10.1111/j.1463-1326.2004.00312.x. PubMed DOI

Mori T., Kondo H., Hase T., Tokimitsu I., Murase T. Dietary fish oil upregulates intestinal lipid metabolism and reduces body weight gain in C57BL/6J mice. J. Nutr. 2007;137:2629–2634. doi: 10.1093/jn/137.12.2629. PubMed DOI

Rossmeisl M., Jelenik T., Jilkova Z., Slamova K., Kus V., Hensler M., Medrikova D., Povysil C., Flachs P., Mohamed-Ali V., et al. Prevention and reversal of obesity and glucose intolerance in mice by DHA derivatives. Obesity (Silver Spring) 2009;17:1023–1031. doi: 10.1038/oby.2008.602. PubMed DOI

Ruzickova J., Rossmeisl M., Prazak T., Flachs P., Sponarova J., Veck M., Tvrzicka E., Bryhn M., Kopecky J. Omega-3 PUFA of marine origin limit diet-induced obesity in mice by reducing cellularity of adipose tissue. Lipids. 2004;39:1177–1185. doi: 10.1007/s11745-004-1345-9. PubMed DOI

Ukropec J., Reseland J.E., Gasperikova D., Demcakova E., Madsen L., Berge R.K., Rustan A.C., Klimes I., Drevon C.A., Sebokova E. The hypotriglyceridemic effect of dietary n-3 FA is associated with increased beta-oxidation and reduced leptin expression. Lipids. 2003;38:1023–1029. doi: 10.1007/s11745-006-1156-z. PubMed DOI

Wang H., Storlien L.H., Huang X.F. Effects of dietary fat types on body fatness, leptin, and ARC leptin receptor, NPY, and AgRP mRNA expression. Am. J. Physiol. Endocrinol Metab. 2002;282:E1352–E1359. doi: 10.1152/ajpendo.00230.2001. PubMed DOI

Salem N., Kuratko C.N. A reexamination of krill oil bioavailability studies. Lipids Health Dis. 2014;13 doi: 10.1186/1476-511X-13-137. PubMed DOI PMC

Alvheim A.R., Torstensen B.E., Lin Y.H., Lillefosse H.H., Lock E.-J., Madsen L., Hibbeln J.R., Malde M.K. Dietary linoleic acid elevates endogenous 2-arachidonoylglycerol and anandamide in Atlantic salmon (Salmo salar L.) and mice, and induces weight gain and inflammation in mice. Br. J. Nutr. 2013;109:1508–1517. doi: 10.1017/S0007114512003364. PubMed DOI PMC

Midtbø L.K., Borkowska A.G., Bernhard A., Rønnevik A.K., Lock E.-J., Fitzgerald M.L., Torstensen B.E., Liaset B., Brattelid T., Pedersen T.L., et al. Intake of farmed Atlantic salmon fed soybean oil increases hepatic levels of arachidonic acid-derived oxylipins and ceramides in mice. J. Nutr. Biochem. 2015;26:585–595. doi: 10.1016/j.jnutbio.2014.12.005. PubMed DOI

Midtbø L.K., Ibrahim M.M., Myrmel L.S., Aune U.L., Alvheim A.R., Liland N.S., Torstensen B.E., Rosenlund G., Liaset B., Brattelid T. Intake of farmed Atlantic salmon fed soybean oil increases insulin resistance and hepatic lipid accumulation in mice. PLoS ONE. 2013;8:e53094. doi: 10.1371/journal.pone.0053094. PubMed DOI PMC

Naughton S.S., Mathai M.L., Hryciw D.H., McAinch A.J. Fatty Acid modulation of the endocannabinoid system and the effect on food intake and metabolism. Int. J. Endocrinol. 2013;2013:361895. doi: 10.1155/2013/361895. PubMed DOI PMC

Ravinet Trillou C., Delgorge C., Menet C., Arnone M., Soubrie P. CB1 cannabinoid receptor knockout in mice leads to leanness, resistance to diet-induced obesity and enhanced leptin sensitivity. Int. J. Obes. Relat. Metab. Disord. 2004;28:640–648. doi: 10.1038/sj.ijo.0802583. PubMed DOI

Ravinet Trillou C., Arnone M., Delgorge C., Gonalons N., Keane P., Maffrand J.P., Soubrie P. Anti-obesity effect of SR141716, a CB1 receptor antagonist, in diet-induced obese mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2003;284:R345–R353. doi: 10.1152/ajpregu.00545.2002. PubMed DOI

Cota D., Marsicano G., Tschop M., Grubler Y., Flachskamm C., Schubert M., Auer D., Yassouridis A., Thone-Reineke C., Ortmann S., et al. The endogenous cannabinoid system affects energy balance via central orexigenic drive and peripheral lipogenesis. J. Clin. Invest. 2003;112:423–431. doi: 10.1172/JCI17725. PubMed DOI PMC

Di Marzo V., Goparaju S.K., Wang L., Liu J., Batkai S., Jarai Z., Fezza F., Miura G.I., Palmiter R.D., Sugiura T., et al. Leptin-regulated endocannabinoids are involved in maintaining food intake. Nature. 2001;410:822–825. doi: 10.1038/35071088. PubMed DOI

Osei-Hyiaman D., DePetrillo M., Pacher P., Liu J., Radaeva S., Batkai S., Harvey-White J., Mackie K., Offertaler L., Wang L., et al. Endocannabinoid activation at hepatic CB1 receptors stimulates fatty acid synthesis and contributes to diet-induced obesity. J. Clin. Invest. 2005;115:1298–1305. doi: 10.1172/JCI200523057. PubMed DOI PMC

Perwitz N., Wenzel J., Wagner I., Büning J., Drenckhan M., Zarse K., Ristow M., Lilienthal W., Lehnert H., Klein J. Cannabinoid type 1 receptor blockade induces transdifferentiation towards a brown fat phenotype in white adipocytes. Diabetes Obes. Metab. 2010;12:158–166. doi: 10.1111/j.1463-1326.2009.01133.x. PubMed DOI

Tedesco L., Valerio A., Cervino C., Cardile A., Pagano C., Vettor R., Pasquali R., Carruba M.O., Marsicano G., Lutz B., et al. Cannabinoid type 1 receptor blockade promotes mitochondrial biogenesis through endothelial nitric oxide synthase expression in white adipocytes. Diabetes. 2008;57:2028–2036. doi: 10.2337/db07-1623. PubMed DOI PMC

Guo Y.Y., Li B.Y., Peng W.Q., Guo L., Tang Q.Q. Taurine-mediated browning of white adipose tissue is involved in its anti-obesity effect in mice. J. Biol. Chem. 2019;294:15014–15024. doi: 10.1074/jbc.RA119.009936. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...